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Using a technique originated by A. Olsen, J. Seely, and D. Birkes (Ann. Statist. 4 
(1976), 878-890) and developed by L. R. LaMotte (Ann. Statist. 10 (1982), 
245-256) we establish necessary conditions of C. R. Rao’s type (Ann. Stafisf. 4 
(1976), 1023-1037) for a linear estimator to be admissible among the class of linear 
estimators in a general linear model. They are shown to be sufficient for the 
regression model with a nonnegative detinite covariance matrix and for the model 
with the mean lying in a subspace and the covariance operators varying through 
the set of all nonnegative definite symmetric matrices. From these results necessary 
and/or sufficient conditions for admissibility of nonhomogeneous estimators are 
also derived. 0 1988 Academic Press. Inc. 

1. INTRODUCTION 

The current interest in the problem of characterizing admissible linear 
estimators in general linear models derives from two sources. The first one 
is characterization of linear admissible estimators in regression models. 
Here the paper of Rao [ 163 published in 1976 should be mentioned, where 
a complete characterization of admissible linear estimators has been given 
for the regression model with covariance o*V with a known pd (positive 
definite) matrix V. Results regarding this topic were also published in [ 1, 2, 
6, 7, 9, 13, 18, 201. 

The second source of interest is the work aimed at the characterization 
of admissible quadratic invariant (unbiased and biased) estimators for 
variance components in mixed linear models. This field of research was 
stimulated mainly by a paper of Olsen et al. [14], also published in 1976. 
Generalizations and extensions of these results may be found in [4, 5, 8, 
12, 131. 
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In particular, in [13], LaMotte extended the method of characterizing 
admissible estimators which was originated in [ 143. It is a step-wise 
procedure and it applies to any general linear model with no restrictions on 
the relation between mean vectors and covariance matrices. At each step it 
has to be examined whether or not the considered estimator is best among 
an afline set of linear estimators, with the dimension of the afline sets 
decreasing at each step. 

Similarly, as in [16], the purpose of this paper is to characterize the 
structure of admissible linear estimators. Using the technique developed by 
LaMotte we establish easy to check (one-step) necessary conditions for 
admissibility of homogeneous linear estimators in a general linear model. 
Also we show that these conditions are sufficient in two particular cases: (i) 
the regression model with covariance matrix 02V with a known nnd (non- 
negative definite) matrix V; (ii) the model with the mean vectors varying 
through a linear subspace and the covariance matrices varying through the 
set of all nnd matrices. Making use of the fact that within the general linear 
model considered in this paper, nonhomogeneous estimators are a par- 
ticular case of homogeneous estimators, necessary and/or sufficient 
conditions for admissibility of nonhomogeneous estimators are also given. 

For the reason of simplicity of notation we restrict our considerations to 
random vectors Y taking values in the Euclidean vector space B’ endowed 
with the usual inner product. However, the results presented carry over to 
random vectors, taking values in a finite-dimensional vector space endowed 
with an arbitrary inner product (see [S]). 

2. PRELIMINARIES 

Let YE 9” be a random vector with an unknown distribution belonging 
to 9, say. Suppose that the expected value ,u and the covariance V of Y 
exist for all distributions in 9. It is desired to estimate C’,u, where C is an 
n x t matrix, while C’ stands for the transpose matrix of C. The estimators 
considered are L'Y, where L is an n x t matrix. For simplicity we refer to 
the estimator L' Y of c’j~ in terms “estimator L of C.” To compare 
estimators we use the risk function E(L'Y - C’p)’ (L' Y - C’p). Writing the 
risk as CL, VL] + [L - C, p$(L - C)], we see that it depends on the dis- 
tribution of Y only through V and 11~‘. Here [A, B] stands for the trace of 
matrix A'B. Taking (V, &) as the parameter, the parameter space, to be 
denoted by r, is a subset of the Cartesian product Vi x KY,, where K is the 
set of all n x n rind matrices. The aim of this paper is to study the structure 
of admissible linear estimators within models with parameter spaces 
%Tccnx*yn. 
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For a given n x s matrix F let W(F) denote the subspace spanned by the 
columns of F and N(F) the subspace (x E 9’ : Fx = 0} called the null space 
of F. Moreover, let X(F) = W(F@ I,), I, being the t x t unit matrix, be the 
subspace spanned by F@ I,, where (A @ B) C = ABC’. As usual F+ denotes 
the Moore-Penrose generalized inverse matrix of F and 11 FJI = [F, F] “*. 
For a given set &cc,, x ..I xc,, where c,, is the space of the n x n 
symmetric matrices, denote by [&I the minimal closed convex cone 
containing d. Element A E [&I, A = (A,, . . . . A,,,) say, is referred to as 
maximal in [a] if 

Jlr(A,+-+A,)= f-j N(B,+...+B,). 
(81. . . . . Bm)E [xl] 

There exists a maximal element (V,,,, &,,,) in [S] such that V,,, and 
4 max are maximal in Y and @, respectively. Here -Y- = {V: 34, 
(VP 4)E WI) and @= (4:3V, ( V, 4) E [S J }. The subspace 
.N( V,,, + &,,,) is referred to as the null space of the maximal elements in 
[S]. Also throughout the paper 

Following LaMotte [ 131 denote by W a subspace of {,, x [, such that 
Few”. 

Denote by p(S; L) the extension of the risk function from 5 to W 
defined for every S = (S, , S,) E W by 

p(S; L) = [L, S’L] + [L - c, S*(L - C)]. (2.1) 

Estimator L in the afine set Y = Lo + X(F) is called best among 9’ at 
point SE W if p(S; L) < p(S; M) for all ME 9. For L E Y, say 
L = Lo + FZ, formula (2.1) becomes p(S; L) = V,(Z, Z) + p(S; L,), 
where, for s x t matrices Z, and Zz, V,(Z1, Z,) = [Z,, T(S) Z,] + 
[Z, + Z2, U(S)], with T(S) = F(S, + S,) F and U(S) = F’S1 L,, + 
F&(L, - C,). If T(S) is nnd, then VJZ,, Z,) is a quasi-inner product on 
the space of s x t matrices. Consequently, by using the projection theorem 
for a quasi-inner product (see Drygas [3] or Theorem 3.1 in LaMotte 
[13]), we get that L is best among 9 at SEW iff T(S) is nnd and 
T(S) 2 + U(S) = 0. A point SE W is said to be a trivial point for 9 if 
every L is best among 9 at S. By Theorem 3.1 in [ 133, the set of trivial 
points Y for Y is given by 9’ = {SE W: T(S) = U(S) = O}. For each set 
.% c W the relations “as good as” and “better than” among 9 on ?X may 
be defined in the usual way. Estimator L is said to be admissible among 9 
on X if L E 8 and if no other estimator in 9 is better than L on S. As 
noted in [13] the relations among 9 are equivalent on *F-, [S] and on 
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[S + Y]. The term “among 9” will be omitted if 9 coincides with the 
space of all n x 2 matrices. 

The following result of LaMotte (see Corollary 3.10 in [13]) plays an 
important role in characterizing admissible linear estimators. 

THEOREM 2.1. In order that L be admissible among Y on 5 it is 
necessary and sufftciem that either 9 c 9 or there exists a point S in 
[S + 9’1 which is not trivialfor 9, such that L is best among Y at S and is 
admissible among 9, = { ME 9 : M is best among 9’ at S} on F. 

The following results will be required later. As above, let Z’ = L, + .X(F) 
and let P be the orthogonal projection on the null space of the maximal 
elements in [S]. 

PROPOSITION 2.2. If L is an admissible estimator among 9 on F and if 
the risk function of an estimator M such that (I-P) ME (I- P)(U) is on 
F identical with the risk function of L, then (Z-P) M= (Z-P) L. 

Proposition 2.2 is a consequence of the fact that the risk function is 
strictly convex with respect to L at each point (V, 4) E [S] provided VS 4 
is pd. 

PROPOSITION 2.3. Let W be any nonsingular n x n matrix. Zf L is an 
admissible estimator of C among 9 on F, then WL is an admissible 
estimator of WC among W(9) on F* = (((wy VW-‘, 
(W’~‘,~~‘W-‘):(U,~~‘)E~}.I~W~=A+Z-AA+, whereA isnnd, then 
W-‘AW-‘=AA+. 

To establish the first part of Proposition 2.3 it is sufficient to notice that 
L’Y= (WL)’ (IV-’ Y and that F* is the parameter space of (W’)’ Y. 

In view of this proposition we may assume without loss of generality that 
there exists an idempotent maximal element in V or that there exists an 
idempotent maximal element in @. 

PROPOSITION 2.4. Zf L is an admissible estimator of C among 2 on F, 
then for any t x s matrix T, the estimator LT is admissible for CT among 
LO + W(F@ Z,7) on F. 

Proposition 2.4 is a slight generalization of an important lemma due to 
Shinozaki [ 183 (see also Rao [163) which says that if L is an admissible 
estimator of C under the risk function E(L’Y- C’p)’ (L’Y- C’p) 
introduced in Section 2, then it is also admissible under any risk function of 
the form E( L’ Y - C’,u) M(L’Y - C’y), where M is nnd. 

To prove this proposition one needs a more general formulation of 
Theorem 2.1 for afline sets L, + B(K), where K may be an arbitrary linear 
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operator with its range in the space of n x t matrices. The proof of this 
extension of LaMotte’s theorem proceeds along the same lines as the proof 
of Theorem 2.1 and will be omitted. 

PROPOSITION 2.5. Zf L is an admissible estimator among 9 on F-, then L 
is an admissible estimator among 9 within any model FS provided 
[Y J t [ST*] and provided the null spaces of the maximal elements in [S] 
and [S,] coincide. 

This proposition is an immediate consequence of Proposition 2.2. It 
shows an interesting fact that the property of admissibility within linear 
models is not lost by augmentation of the parameter space when the null 
space of the maximal elements in the new parameter space coincides with 
the null space of the maximal elements in the original space. 

3. NECESSARY CONDITIONS FOR ADMISSIBILITY 

The next theorem gives necessary conditions for the admissibility of a 
linear estimator within a general linear model. We assume only that the 
dimension of the null space of the maximal elements in [S] is equal to 
zero. This is no loss of generality. In case it is not fultilled, the matrix L 
appearing in the conditions of the theorem should be replaced (see [ 13, 
p. 2511) by (Z-P) L, where P is the orthogonal projection on the null 
space of the maximal elements in [S] 

THEOREM 3.1. If L is an admissible estimator of C, then under the 
specified assumptions and notation 

0) WL’) = L’%LJ t W3 

(ii) 9(L’-C’)=%((L-C)’ V,,,)c@%!(V,,,), VCE%? 

(iii) tf Lx = ICx for some C E % and x = a + ib, where a, b E W’, and if 
Cx # 0, then 1 is a real number and is in the closed interval [0, 11 

(iv) there exists a nonzero matrix V E [Y] such that for every C E @ 

(a) L’ VC is symmetric 

(b) L’VL < L’VC. 

ProoJ In order to show that 9(L’) =W(L’rj,,,) we may assume by 
Propositions 2.3 and 2.5 that I,,,, is idempotent and that Y = Vn. Let G be 
any matrix such that &,.,,, LL’ = &,, LL’q&,, G’. Put A = q&,, L, 
B = (I- &,,X) L, D = (I- #,,,) G, and M= (I+ D) A. Then 

S(M’) c a(A) = W(M’Q,,,). (3.1) 

683/24/l-2 
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Because L = A + B and because AB’ = AA’D’, we easily verify that 
LL’ - MM’ = BB’ - DAA’D’ which is nnd. On the other hand, 
(L - C)’ d(L - C) = (M - C)’ q4(M - C) for each nnd matrix 4 such that 
%H = Wmax) since dmax B = b,,,D = 0. From this and the assumption 
that L is admissible we conclude that M= L by Proposition 2.2. The first 
part of (i) follows now from (3.1). 

Since L is admissible for C, it follows from Proposition 2.4 that 
LCJ- (t4llax C) + (4max C)l . admissible for 0. Hence 
[I- C’&,,(C’~,,,)’ ] L’ = 0 ?y Proposition 2.2. This proves the second 
part of (i). 

The assertion (ii) follows from (i) by noting that the risk defined by (2.1) 
is symmetric in the sense that p( (S, , SJ; L) = p((S,, S,); C - L). 

To prove (iii) suppose to the contrary that 1 is not in [0, 11. Let 
1= c1+ $, where ~1, fi E 9% Since L is admissible for C E %?, it follows from 
Proposition 2.4 that L(a, 6) is admissible for C(a, b). Now Lx = 1Cx 
implies 

La = aCa - /lCb 

Lb = aCb + fiGa, 

so that the risk of L(a, b) at point (V, d)~ [Y] becomes 

p((K 4); L(a, 6)) = a2(CCa, VCal + CC& J’Cbl) 
+ (a - l)* ([Ca, &‘a] + [Cb, c&Z%]) 

+B”(CCa,(v+~)Cal+CCb,(V+~)Cbl). 

Since Cx # 0, the expression in the last parentheses is positive for ( V, 4) = 
( V,,,, #,,,). This leads to a contradiction in case a $ [O, I] or p # 0, since 
suitable multiples of L(a, b) would improve L(a, b) at (I’, 4) = 
( vrnax 9 t4nax 1. 

(a) To prove (iv) we may assume without loss of generality that 
W = span Y-. In view of Theorem 2.1 there exists a nonzero point ( VO, #0) 
in [S] such that for every C in % 

(vo+hdL=4oc~ (3.2) 

Transposing and postmultiplying with C yields L’ V. C = C’ V. C - 
L’( V0 + b,,) L. Also L’ V,, C - L’ V,, L = (L - C)’ &( L - C). This obviously 
establishes (iv) with V = V, when V. # 0. 

(jI) In the case when V, = 0, Eq. (3.2) reduces to &(L - C) = 0 with 
&, # 0. This implies that L E -ri9, = C+ X(N,). Here C may be any element 
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in % and N, is the orthogonal projection on JV(&). Since &,,,, is a pd 
matrix when N1 = 0, we need to consider only the case when N1 # 0. 

To show that there exists a nonzero matrix V in [V] which fulfills (iv) 
we apply Theorem 2.1 to 9i. By this theorem there exists a nontrivial point 
(IV,, IV,) in [S+qJ, such that N,(W,+WZ)L=N,W2C for every 
C E %?. Here Y1 is the set of trivial points for 9, and the given C. Since for 
every C in W there exists a matrix Z such that L = C + N, Z, this becomes 

N,(W,+ W*)N,Z= -N, w,c. (3.3) 

Because ( W,, W,) E [S + Y1] = [[S] + Y,], there exist two sequences 
( ( Vm), qs’“‘)} c [S] and { (Sc;l), Sim))} c Y; such that ( I’(“‘) + SC,“), 

qP)+ S$m)) 4 ( W,, W,) as n 4 00. 

First let us consider the case when there exists a subsequence {mi} such 
that v'"1'4 V, # 0 as i 4 co. Then, necessarily, S’“‘) 4 Si, say, and 
V, E [“Y]. Moreover, (3.3) implies that 

N,(V, + W,) N,Z= -N1 VIC, (3.4) 

provided that W = span Y. Hence Z’N, V, C = -Z’N1( V, + W,) N1 Z, 
which in turn implies that 

L’V,C=C’V,C-Z’N,(V,+ WZ)NIZ 

and 

L’VIC-L’V,L=Z’N, W2N,Z. 

Thus conditions (iv) are met for V= V,. 
Next let us consider the case when no subsequence of (V’“‘} is con- 

vergent. Define U’“’ = V(“)/jl V(“’ [( and let U@‘” 4 U1 as i 4 cc. Clearly, 
U, #O and U, E (V]. Partitioning each Ucmd) as 

U’““= N, U’““N, + N, @““(I-N,) + (Z-N,) U’“I’N, 

+ (Z-N,) Uc’“t)(I- N,) 

and noting that (N, U@‘f’N,} converges to the zero matrix, we obtain that 
U1 = (Z-N,) U,(I- N,). Consequently, L’U, C= C’U1 C and L’U,L = 
L’U1 C. Thus, in this case, conditions (iv) hold with V = U1. 

In the remaining case when flmi) 4 0 as i 4 cc, relation (3.4) reduces to 
N, W,N,Z=O, i.e., N, W,(L - C) = 0, where N, W, N, # 0. Hence 
L E J$ = C + X(N,), where, as above, C may be any element in 59, while 
N2 is the orthogonal projection on W(N,) n Jlr(N, WIN,). 
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It should be noted that I$,,,,~ must be pd when Nz=O. In fact, since 
W( W,) c W(q&,,) and since %‘(Z- N,) c 9(q5,,,), we have that 
a( W,+Z-Nl)cW(q&,,,). But W,+Z- N, is pd when N,=O. Thus, if 
N, =O, then %= (C,} so that L = C, and in this case (iv) is trivially 
fulfilled. 

On the other hand, when N, #O we still need to consider a further 
step: applying Theorem 2.1 to .9* we return to part (p). Since at each time, 
the dimension of the resulting afine set decreases, we ultimately establish 
the desired property (iv). The proof of Theorem 3.1 is hence completed. 

The following example illustrates that the conditions appearing in 
Theorem 3.1 are not sufficient. 

EXAMPLE 3.2. Consider a model with parameter space 5 = V x Vz, 
where Y = {Z, N}, N= (A z), while Vz is the set of all 2 x 2 nnd matrices. 
Then L= (i $) and C= I meet conditions (i)-(iv) of Theorem 3.1. 
However, L is inadmissible on F. In fact L E Y = N + X(Z- N), but L is 
best at no nontrivial point in [S + 93, where Sp is the set of trivial points 
for 9, i.e., Y= {(EN, Y--Z---N) Y(Z-N)):cleW, Y symmetric}. 

Remark 3.3. It should be observed that by using the symmetry of the 
risk function (see proof of (ii)) additional necessary conditions from the 
results of Theorem 3.1 may be derived. However, it may be worthwhile to 
add that the problem of estimation is not symmetric with respect to @ and 
“Y-, because @ is spanned by one-dimensional matrices, whereas Y does 
not need to be. 

4. NECESSARY AND SUFFICIENT CONDITIONS FOR 
ADMISSIBILITY FOR Two SPECIAL MODELS 

First we show that the necessary conditions established in Theorem 3.1 
are sufficient for models with the mean vectors varying through a subspace 
9P; of 3” and covariance matrix a2V, where V is a known nnd matrix. In 
this case Y = (( o2 V, &) : c* 2 0, p E a;;}. Note that V,,,,, = V and suppose 
that V+ &,, is pd. First we consider the estimation of the mean vector ,L 

Theorem 4.1. The estimator L is an admissible estimator of C = Z iff 

6) WL’) t W4,,,) 
(ii) W(L’-Z)=W((L’-I) V) 
(iii) (a) L’V is symmetric 

(b) L’VL < L’V. 
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Proof The necessity follows immediately from Theorem 3.1. 
To prove sufficiency we first establish that every matrix L satisfying 

conditions (i)-(iii) is semisimple. In fact, by (ii) there exists a matrix A 
such that L’(Z- VA)(Z- VA)’ is symmetric. Hence part (a) of (iii) implies 
that L’[ I/+ (I- VA)(Z- V.4)‘) is symmetric. This entails the assertion, 
since the matrix in the big parentheses is pd. 

Now let N denote the orthogonal projection on &?(Z- L). Then 

(I-N)L=Z-N, Z-NE@, (4.1) 

because &?(I- N) = Jlr(L’ -I) c W(&,,) by (i). Formula (4.1) asserts that 
L is best at point (0, I- N) E [S]. If N = 0, then L = Z is admissible. 

For N # 0 define A = NVLN and B = N(Z- L) N. By (iii) we have 

AB= NL’VN(Z- L) N= NL’V(Z- L) N= N(L’V- L’VL) N 

which is nnd. Since Z- L is semisimple, we have W(N) c k%‘(B). Therefore 
W(A)c%?(B), so that 4 = AB+ is nnd. Combining (iii) (a) and (4.1) we 
find 

(L’-Z)q5=(L’VL-L’V)B+=-L’VBB+=-L’VN. 

This shows that 

N(V+d)L=N& (K b)E [SlF (4.2) 

which means that L is best among L& = I- N + X(N) at point 
(V, 4) E [S]. To verify that L is admissible it is now enough to show that 
L is the unique best estimator among Y1 at (V, 4). 

According to (ii) and part (a) of (iii) we have the inclusion g(Z - L’) c 
W(V). This and &!(N)=L%(N(Z- L’)) ensures that 9(N)cW(NV). Hence 
L?(N) = $?#(N( V+ 4) N), which is a sufficient condition for (4.2) to have a 
unique solution in Y1. Theorem 4.1 is proven. 

It may be worthwhile to note that the sufficiency part of Theorem 4.1 
becomes incorrect if the assumption that the mean vector varies through a 
subspace is omitted. For example, the matrix L = ($z y) fulfills all con- 
ditions of Theorem 4.1 within model [S] = {(G*(: i), (; $)): CT*, a, paO}, 
but L is not admissible for C = Z on Y. In fact L is best at no nonzero 
point in [S]. 

COROLLARY 4.2. In order that L be an admissible estimator within model 
9 = { ( V, pp’) : p E 9:) it is necessary that L be semisimple. 

The preceding theorem extends to the case where the estimated function 
is c’p, while C may be any n x t matrix. 
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THEOREM 4.3. The estimator L is an admissibIe estimator of C ifs 

(i) W(L’) c 92(Cb) 
(ii) .%?(L’-C)=g((L-C)’ V),VCEV 

(iii) (a) B( VL) c ~R(4,,,) 
(b) L’ VC,, is symmetric 

(c) L’VL Q L’VC@ 

ProoJ All these conditions except (iii)(a) appear in Theorem 3.1. The 
latter one follows from part (a) of (iv) which for the underlying model 
states that L’VC is symmetric for all C E %. 

To show sufficiency we need only consider the case where 9(C,) is a 
proper subspace of a(&,,,). Otherwise there exists in 59 a nonsingular 
matrix C, and with such a selection of C, conditions (i)-(iii) imply that L is 
admissible by Proposition 2.4 and Theorem 4.1. Also by virtue of 
Proposition 2.3 we may assume that V is idempotent. 

(a) We first consider the case when W(&,,) c 9(V). Then in view of 
the adopted assumptions V=I, conditions (i)-(iii) reduce to 

(4 W(L) c W4,.J 
(b) L’C, is symmetric 

(c) L’L d L’CQ. 

Let H= L(L’CO) + L’. This is a symmetric matrix and W(H) c 9(#,,,) 
by (b) and (a), respectively. Because 9(L’) = @(L/L) c W(L’CO) by (c), we 
have L = HC for all C E %?. Also H* < H, by observing that 

L(L’co)+ L’L(L’CJf L’< L(L’c,)+ L’&(L’&)f L’= L(L’co)+ L’. 

Thus H meets the conditions of Theorem 4.1 with V= 1, and consequently 
H is an admissible estimator of 1. Proposition 2.4 implies then that L is an 
admissible estimator of C. 

(/I) In the case when 9?(4,,,) is not a subspace of 9( V) we proceed 
essentially as in part (a). However, to construct the corresponding matrix 
H we need to define two matrices A and B, say. 

First note that under the adopted assumptions VL is an admissible 
estimator of VC, within model Y* = ((c?V, &): rr2 > 0, ,u E ai], where 
$.SI!; = %?(&,,) n a( I’). This follows at once by noting that if L and C, 
fulfill conditions (i)-(iii) of Theorem 4.3, within model Y-, then, respec- 
tively, VL and VC,, fulfill these conditions within model .Y.,.,. Therefore, 
similarly as in part (a), there exists a matrix A which has the following 
properties: VL = A VC for all CE %‘, W(A) c 9: , A’ Y is symmetric, and 
A’VA < A’V. 
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Next we show that there exists a matrix B such that &‘(I- VB)c 
.,A(@,,,). Since a(&,) c 9(4,,,) there exist matrices G and 2 such that 

GC;=O and GZ’ = I- &naxdL~ (4.3) 

Put C, = C, + (I- #m,,#i,,) 2. Since C, E %‘, there exists by assumption 
(iii) of Theorem 4.3 a matrix B such that 

L’-Ck=(L-C,)’ VB, 

and we may choose B so that VB= B and BV= r Multiplying from the 
left-hand side by G and then using (4.3) and the inclusion %‘(L’)c~A?(cb) 
we obtain I - d,,, #,‘,, = (I- 4,,,#,‘,,) VZ3. Thus B has the required 
property. 

Now let H = I+ B’(A - V). Because, obviously, L = HC for all C E # it 
remains to show that H is admissible for Z on Y. This will be accomplished 
by showing that H fulfills the conditions of Theorem 4.1. 

Using the stated properties of A and B it is easy to verify that 
(H - I)’ V = (A - V)’ V. Hence (ii) is valid. Furthermore, noting that 
H’V= [Z+ (A - I’)’ B] V=A’V and that H’VH=A’V[Z+ B’(A - V)] = 
A’V.4 we obtain (iii). Now this, together with Proposition 2.4, implies that 
L is admissible. This terminates the proof of Theorem 4.3. 

Theorem 4.3 includes as special cases the results established by Karlin 
[7], Cohen [l, 21, Shinozaki [18], Rao [16], and Klonecki [S]. The 
following result is slightly more general than Theorem 3.4 in [ 161. 

COROLLARY 4.4. Within model F = { (02V, pp’) : cr2 2 0, ~1 E a$>, where 
V is rind, the following two statements are equivalent: 

(i) L’V is symmetric and Lp is an admissible estimator of pfor every 
pEgfl 

(ii) L is an admissible estimator of I. 

Proof That (ii) implies (i) follows from Theorem 4.1 and 
Proposition 2.4. The reversed implication is a direct consequence of 
Theorems 4.1 and 4.3 and the fact that if p’&?(A) c p’&?(B) for every p E .!4!“, 
then g(A)cW(B). 

In proving Theorem 4.3 we have established that within the regression 
model L is an admissible estimator of C iff there exists an n x n matrix H 
such that L = HC and such that H is admissible for I. Zontek [20] has 
defined a class of linear models for which both these implications are still 
valid. 

In the conclusion of our investigation of the regression model 
r = ((a* I’, z.+‘) : o2 > 0, p E 9;l) with a( V) + W;t = %Y’, we formulate 
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without proof alternative conditions which characterize admissible linear 
estimators. 

The estimator L is an admissible estimator of C = I iff there exist two 
matrices q$, and 4I in @ such that 

6) hJ=h 
(ii) N(V+b,)L=N$, 

(iii) 9(N( V+ #I,) N) =9(N), 

where N= I- &,q&,+. 
Since (iii) guarantees that V+ (rr, + (PI is pd, a standard calculation leads 

to the following result. The estimator L is an admissible estimator of C 8 
there exist two matrices 4, and 4, in @ such that 

L=jiJnpv+~,)-‘~,c, (4.4) 

where #z = (1 - A) &, + @, , while i, E (0, 1). Using the terminology as in 
[16] and referring to [14], we can therefore say that for the regression 
model under consideration the Bayes homogeneous linear estimators of C 
with respect to all matrices (b in @ which fulfill the condition Jr/-( Vf 4) = 0 
and their limits form a complete class of estimators. 

Finally, if V is pd, then L is an admissible estimator of C iff it may be 
represented as 

L = jP’x(yv-‘x)-‘/* /qjpV-‘X)-‘/2 x’c (4.5) 

for some symmetric matrix A with all its eigenvalues in [0, 1). Here X 
stands for any matrix of full rank whose columns span 99:. For V= I 
formula (4.4) has been established by LaMotte in [ 131 and formula (4.5) is 
essentially due to Cohen [2] and Rao [ 161. 

Next we establish necessary and sufficient conditions for the admissibility 
of a linear estimator within model Y with the mean vectors varying 
through a subspace of 3” and the covariances varying through Vn. Such 
models are of special interest, because by Proposition 2.5 any estimator 
admissible within some model .& such that [5*] c [Y] and with a 
positive definite maximal element must be admissible also within model 9. 

THEOREM 4.6. In order that L be an admissible estimator of C within 
model 5 = V” x (pp’ : p E W;;} it is necessary and sufficient that 

(i) B(L’) = ~(L’+L,,)c~(Cb) 
(ii1 for every C E +Z if Lx = Kx, Cx # 0, then A E [IO, 13. 

Proof. Because of Theorem 3.1 we need only prove the sufficiency part. 
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(a) To begin with suppose that &,aX is pd and that C, = I. Then (i) 
and (ii) assert only that the eigenvalues of L are in [0, 11. 

Step 1. Denote by P,, . . . . P, the eigenvectors of L’ and suppose they 
correspond to eigenvalues I,, . . . . A,, respectively. Let 

I/= t (1-ni) P;Pi. and I$= i n,p,p;.. 
i= I i= I 

Then ( Y+ 4) L = 4, where ( Y, 4) E [S]. The class of estimators best at 
(V, 4) is Y1 = L + X(N,), where N, is the orthogonal projection on the 
null space of C;=, PiPI. For N, = 0 the assertion follows. Otherwise we 
proceed to the second step. 

Step 2. Denote by Q,, . . . . Q, the eigenvectors of N, L’ in 9(N,). Sup- 
pose they correspond to the eigenvalues fl,, . . . . fi,. Now let 

S,=A,,+A*,+A;, 

& = B,, + B,, + B;z, 
(4.6) 

where 

A12= i QiQiLK,KT, K, = (I- N,)(Z- L)(Z-N,) 
i= I 

B,, = i PiQiQ: 

i= 1 

B,,= - i QiQ:LM, MT 7 M, = (I- N,) L(Z- iv,). 
i=l 

Since pie [0, 11, i= 1, ..,, s, by Lemma Al, therefore (S,, &)E 
[S + Y;], where Y; is the space of trivial points for 9’i. From (4.6) it 
follows that N,(S, + S,) N= Cf3,, QiQ: is a nonzero matrix. Moreover, 
NIPI + S,) L = N1 s*, since N, LN, = LN,. Now the set of all best 
estimators of C among 9i is ZZ = L + X(N,N,), where N, is the 
orthogonal projection on the null space of Cf= I QiQ:. Obviously, 
dim(YZ) < dim(9i). If N2N, =O, the admissibility of L follows. Otherwise 
we need to consider a further step. 

Step 3. Denote by R,, . . . . R, the eigenvectors of Nz N, L’ in W(N, N,), 
and by yl, . . . . y, the corresponding eigenvalues. Let AZ1, A22, Bzl, Bzz be 
defined as A 11, A ,Z, B,, , B,, in Step 2 with the /I’s, Q’s, and N, replaced by 
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the y’s, R’s, and N, N,, respectively, and let T, = A’, + A,, + Aiz and 
T, = B,, + Bzz + B;,. Since the eigenvalues of N, N,L’ are in [0, 11, it 
follows that (T,, T2) E [S + Yz], where Y; is the space of trivial points for 
z. Utilizing N, N,LN, Nz = LN, N, we arrive at N, N,( T, + T,) L = 
N, N, T,. The dimension of 9’ = L + X(N, N, N3), where N, is the 
orthogonal projection on the null space of XI= r R,R;, is less than the 
dimension of &. If N, N, N, = 0, the desired result follows. Otherwise, we 
still need to consider a further step, and so on. Continuing in this manner 
altogether at most n times we ultimately establish that, in the considered 
case, L is an admissible estimator of C. 

(/I) We now proceed to the case when &,, is pd and C is singular. 
As seen from part (LX) of the proof of Theorem 4.6 and from Proposition 2.4 
it is enough to show that there exists a matrix F such that the eigenvalues 
of the matrix H = LC+ + F(Z- CC’) are in [O, 11. By Corollary A3 there 
exists such a matrix F iff rank { (L - AZ) CC+ } < rank { CC+ ) is valid for jl 
in [0, l] only. And this is precisely assured by (i) and (ii). 

(y) Now using the results established in parts (CX) and (/?) we prove 
the assertion in the remaining case when d,,, is not pd. In view of 
Proposition 2.4 we may assume without loss of generality that C is 
idempotent and that C = C,. 

For brevity let N = b,,..~$&, , Condition (i) implies then that L= LN. 
Moreover, since (i) and (ii) remain valid with L replace by NLN, it follows 
that NLN is an admissible estimator of C on & = { (NVN, 4): (V, 4) E 5 >. 
Thus by Theorem 2.1 (here we assume that w  = {(S,, S2): Sr and S, 
symmetricf), there exist r < rank(N) points S1, . . . . S, in YY combined with 
r+l affine sets 9r~...1>9~+,, where Yr+,=NLN+X(I--N), which 
meet the necessary conditions of Theorem 2.1 with Y c ,$Y+, In particular, 
SiE [.%+$I, Si$q, for i= 1, . . . . r. 

Using the necessary conditions for admissibility of NLN within model 
Y* we now establish sufficient conditions for the admissibility of L on Y. 

Since L= NLN+ (I- N) LN, it should be obvious that for i= 1, . . . . r, 
estimator L is best among q at Si and admissible among z+ I on 9. Since 
y ck Yr+l, the above conditions are not sufficient on 5. However, we 
shall show that, by adding one more point S,+r E [Y+Yr+r], the 
resulting conditions become sufficient. In fact, we show that there exists a 
point S,, , = (V, 0) E [Y] such that V is pd, (Z-N) V(Z- N) = I- N, and 
(Z-N) VL = 0. This latter equation becomes [Z-N+ (Z-N) VN] L = 0, 
which in turn may be written as L’NV(Z- N)= -L’(Z= N). Since 
.%(L’(Z- N)) c W(L’N) by (ii), it has a solution with respect to NV(Z- N). 
Thus there exists a pd matrix V with the stated properties and these imply 
that L is the only estimator in L$+, best among pr+, at S,, , . 
Theorem 4.6 is fully proved. 
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5. NECESSARY AND SUFFICIENT CONDITIONS FOR ADMISSIBILITY 
OF NONHOMOGENEOUS LINEAR ESTIMATORS 

Comparing nonhomogeneous linear estimators S + L’ Y, where 6 E B’, 
while L is a n x t matrix, under the risk function E(6 + L’Y- C’p)’ 
(6 + L’ Y - C’p), the problem of determining the admissibility of a non- 
homogeneous linear estimator transforms to a problem of determining the 
admissibility of a homogeneous linear estimator. In fact, the estimator 
6 + L’Y of C’p on y becomes a homogeneous estimator (,$)’ ( :) of (z)’ (‘;) 
on y* = { (( 0” z), (‘;)( ‘;))‘: ( V, &) E y }. In consequence necessary and/or 
sufficient conditions for admissibility of a nonhomogeneous linear 
estimator may be derived directly from those of the corresponding 
homogeneous linear estimator. 

Let (Vmax, #,,,) be a maximal element in 5 and suppose that 
vrnax + Anax is pd. Also, as before, let %? = C, + X(Z- $,,Xr5f,). 

THEOREM 5.1. In order that 6 + L’Y he an admissible estimator of C’p 
among the class of all nonhomogeneous linear estimators on 9- it is necessary 
that 

0) 6 E WV - C)’ ~,,J 
(ii) 9(L’, S)=&!(L’#,,,, 6)cS!(Cb) 

(iii) .B(L’-C, 6)=W((L-C)’ V,,,)cC’S?(V,,,), VCE% 

(iv) ifLx=Kxfor some CE%? and ifCx#O, 6’x=O, then 1~ [0, l] 
(v) there exists a nonzero V E v such that for each C E W 

(a) L’VC is symmetric 

(b) L’VL 6 L’VC. 

Proof. Let L, = (L’, 6)’ and let C, = (C’, 0)‘. Moreover, let 
N = (0, . . . . 0, 1)’ (0, . . . . 0, 1). Since L, is admissible for C, among 
(Z-N) L, +.X(N), there exists by Theorem 2.1 a point 
(O,Q)*)E[~*+~*] such that Nd,N#O and iV#,(L,--C,)=O. This 
entails (i). The remaining conditions are immediate consequences of 
Theorem 3.1. 

From Theorems 4.3 and 5.1 it follows that if 6 + L’Y is an admissible 
estimator of c’p within the regression model considered in Section 4, then 
6 fulfills condition (i) of Theorem 5.1 and L’Y is an admissible estimator of 
C’p among the class of all homogeneous linear estimators. Now we show 
that this implication may be reversed. We first set down a result for 
homogeneous linear estimation which will be required in the proof of the 
next theorem. 
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To the end of this section we assume that 

5-=-x {xg/?‘r:pEB*), (5.1) 

PROPOSITION 5.2. If L’Y is an admissible estimator of C’X on 5, then, 
for every y E BP, L’( Y + Xy) is an admissible homogeneous linear estimator 

of C’W + Y 1. 

Proof For 9 given by (5.1) the risk (2.1) may be rewritten as 
p((~,x~);L)=p((v,xBp’x’);L)=cL, VLl+CL-c, J$B’WL - C)l, 
where (V,/?)~ t̂rxB?~. 

If there would exist an estimator M’( Y + Xy) better than L’( Y + Xy) for 
C’X(/I + y), that means if p(( V, X(/l + y); M) < p(( V, X(/3 + y)); L) for all 
( V, p) E V x W*, then also P(( K XP); W G<p(( K U>; L) for all 
(V, j3) E 3’ x .9Zp. From this, it would then follow that the risk functions of 
L and M are identical on 5. This contradiction concludes the proof. 

THEOREM 5.3, In order that 6 + L’Y be an admissible estimator of C’X/l 
among nonhomogeneous linear estimators on 9 it is necessary and sufficient 
that 

(i) sEB?((L-C)‘X) 

(ii) L’Y be an admissible estimator of C’Xt!l among the linear 
estimators on 9. 

Proof First note that if S + L’Y is admissible for @X(3, then (i) is 
fulfilled by Theorem 5.1, i.e., there exists a vector y E WJ’ such that 
S=(L-C)‘Xy. 

Now the assertion of Theorem 5.3 is established by noting that the 
following statements are equivalent for an arbitrary y E gp: 

(a) (L-C)’ Xy + L’Y is admissible for C’Xj? among non- 
homogeneous linear estimators 

(b) L’( Y + Xy) is admissible for @X(/I + y) 

(c) L’Y is admissible for C’X/?. 

The equivalence of (a) and (b) is a consequence of the considered risk 
functions; the equivalence of (b) and (c) follows straightforwardly from 
Proposition 5.2. 

Conditions for admissibility of a nonhomogeneous linear estimator 
within the regression model with a pd covariance have been established by 
Rao in [16] and LaMotte in [ll]. 
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APPENDIX 

LEMMA Al. Let P, , . . . . P, be linearly independent and real eigenvectors 
of matrix L and let N be the orthogonal projection on the space spanned by 
these r vectors. Then 

(i) each real nonzero eigenvalue of (I- N) L is an eigenvalue of L, 

(ii) each eigenvalue of L which corresponds to none of the eigenvectors 
PI, . . . . P, is an eigenvalue of (I - N) L. 

Proof. For N = Z, conditions (i) and (ii) are obviously fulfilled. Thus 
suppose that N # I. Let /I be a real, nonzero eigenvalue of (I- N) L 
corresponding to eigenvector Q, say. Moreover, suppose that p # &, where 
I 1, . . . . A, are the eigenvalues of L corresponding to P, , . . . . P,, respectively. 

To prove (i) it is sufficient to show that there exists a vector X such that 
(L - j?Z)(Q + NX) = 0, where Q + NXf 0. Writing this equation in the 
form (L - /?I) NX= - NLQ, we note that it has a solution in X when 
93(N) c a( (L - /IZ) N). However, such an inclusion holds, because 
9((L--,M)N)=%?((,I-fl)P,, . . . . (I+-j?)P,). Moreover, since QE~(I- N) 
when fl#O and since .%!(N)n&?(I-N)= (01, it follows that Q+NX#O. 
Thus /I is an eigenvalue of L as asserted. 

Now let LQ = j?Q, where j? # 3Lj, i= 1, . . . . r, while Q #O. Then 
(I- N) LQ = /3(Z- N) Q. Since (Z-N) L(Z- N) = (I-N) L, we obtain 
(I- N) LT= /?T, where T= (I- N) Q. Now we show that T # 0. Suppose 
to the contrary that T= 0. Then Q = CT= i p/Pi, for some pi # 0 and 
I<s<r so that LQ = c,“=, P~&,P~ = J$=, /3p,P,. Consequently, 
cj”= 1 pj(fl- Ai,) P, = 0. Since PI, . . . . P, are linearly independent, this yields 
that /I = I, for some 1 < i0 < r. This contradiction proves (ii). 

In the remainder of this section let A be a complex (n - I) x n matrix. 
Denote by 9 the set of all characteristic polynomials w,(n) of the n x n 
matrices (g), where B= (b,, . . . . b,) varies over all 1 x n complex vectors. 
Denote by W, = IV,(n), . . . . W,= W,(n) the cofactors of the elements 
b i, . . . . 6, - l which appear in the last row of the matrix (2) - AZ, respec- 
tively. With this notation we have 

W,(A) = ‘f bi W,(k) - ,IW,(A). 
i= I 

A polynomial P(R) is called the greatest divisor for J if it is a divisor of 
each polynomial in 9 and if there exists no other polynomial of degree 
greater than the degree of P(A), which is a divisor of all the polynomials 
in 9. 
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LEMMA A2. The degree of the greatest diaisor P(A) for 1 is qua1 to r ij 
and only if W, , . . . . W,, span an (n - r)-dimensional set. 

Proof: First we show that if W,, . . . . W, span a set of dimension n - r, 
then the degree of the greatest divisor for 9 is at least equal to r. Without 
loss of generality we may assume that A has the Jordan normal form, i.e., 

where, for j = 1, . . . . m, 

i>/ 1 0 . . . 0 
A,= 0 Ai 1 ... 0 

I 

i 1 

. . . . . . . . . . . . . . . . . . . . 

0 0 0 “. Aj 

is ii x ii, C, = (c,i, . . . . cji/)’ and x7!, i, = n. 
Also without loss of generality we may assume that 1, = .. . = 1, and 

ij#I, for i>s. Now let 

0 
gj  = 

when c,~ = 0, 1 <k < ii 
max(k:cjk#O, 1 <k<ij} otherwise, 

and let g = max(g{: i= 1, . . . . s}. Clearly, we may assume without loss of 
generality that g =g,. To simplify the notation let r0 = 0 and let 
rk = CJ!=, i,, k = 1, . . . . m. 

Since the greatest divisor of Wr,-, + , , . . . . W,,, i,< s, is (A, - l)rf-gl h(l), 
where 

therefore, 

H(i) = (A, - L),mg h(A) 

is the greatest divisor of W,, . . . . W,$. 
Note that W, = W,= ... = Wr3=0 when g=O. In case g#O, the 

polynomials W,, . . . . W, are linearly independent, while Wg+ ,, . . . . W,$ may 
be expressed as linear combinations of W,, . . . . Wg. In fact, let Vi = WJH 
for i= 1, . . . . g. Then the coordinates of V,, . . . . V, with respect to the basis 1, 
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A,--1 ,..., (R,-A)g-* are ((-l)n-g+l~,g, (-l)“-*+‘~r,~-~ ,..., (-1)” 
c,,), (O,(-l)“-g+lClg )...) (-1),-l CJ )...) (0 )...) 0, (-l)n-g+lc& 
respectively. Since c,, # 0, it follows that V, , . . . . I’, are linearly independent 
and that V,+ ,, . . . . Vr, may be expressed as linear combinations of 
V , 3 . . . . V,. This shows that (A, - jb)r5-g, where Y, -g is equal to the number 
of linearly independent polynomials among W,, . . . . W,, is a divisor of 
w  ] ) . .) W” . 

To prove the necessity part of Lemma A2 suppose that W,, . . . . W, span a 
set of dimension n-s and that the degree of the greatest divisor for 2 
equals Y. With this notation n--s < n - Y. On the other hand, from the 
above established result it follows that s 6 Y. Thus the necessity is 
established. 

Sufficiency also follows straightforwardly from the established result by 
noting that the intersection of the set spanned by W,, . . . . W, and the set 
spanned by W,.< + 1 , . . . . W, has dimension zero. 

Because the roots of the maximal divisor P(1) are roots of W,(A), 
whatever be B, there exists a matrix B such that the eigenvalues of (2) are 
in [0, 1 ] iff the roots of P(I) are real and in [0, 11. For our considerations 
we formulate this as follows without need of further proof. 

COROLLARY A3. Let C be a n x n real idempotent symmetric matrix and 
let E be a n x n real matrix. There exists a n x n real matrix F such that the 
eigenvalue of EC + F(Z - C) are in [O, 1 ] iff rank ( (E - d1) C> < rank (C> 
is valid for I E [O, l] only. 
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