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The first results on next-to-leading order QCD corrections to production of two Z bosons in hadronic
collisions in the extra dimension model of Randall and Sundrum are presented. Various kinematical
distributions are obtained to order αs in QCD by taking into account all the parton level subprocesses.
We estimate the impact of the QCD corrections on various observables and find that they are significant.
We also show the reduction in factorization scale uncertainty when O(αs) effects are included.
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1. Introduction

The last missing piece of the standard model (SM), the Higgs
boson, remains elusive to this date, and it is hoped that the Large
Hadron Collider (LHC) will shed light on the mechanism of spon-
taneous symmetry breaking and discover the Higgs bosons. Even if
it is discovered there remain fundamental issues, such as the hier-
archy problem and others, which make us believe in the existence
of some new physics beyond the standard model. The LHC which
will operate at an enormous centre of mass energy (

√
S = 14 TeV)

promises to be a discovery machine and it is hoped that some
signals of new physics beyond the SM will be observed. Extra
dimension models [1–4] offer an attractive alternative to the su-
persymmetry to address the hierarchy problem. In this Letter we
will consider the extra dimension model of Randall and Sundrum
(RS) [3,4]. For a review of extra dimension models and their phe-
nomenology see [5]. There are many important discovery channels
at the LHC such as γ γ , Z Z , W +W − , jet production. In the SM
the production of two Z bosons is suppressed as it begins at
the order e4 in the electromagnetic coupling and also because of
the large Z Z production threshold. The two Z bosons can cou-
ple to Kaluza–Klein (KK) gravitons, thus Z Z pairs can be produced
through virtual graviton exchange at the leading order. These ob-
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servations make Z Z production one of the important discovery
channels.

At hadron colliders Quantum Chromodynamics (QCD) plays an
important role as the incoming states in any scattering event are
the partons, which are described by parton distribution functions
(pdf’s). The pdf’s depend on the factorization scale (μF ) which
is, to a large extent, arbitrary. This scale μF enters into any ob-
servable and makes it sensitive to the choice of its value and any
leading order computation suffers from this sensitivity. However,
as a computation beyond the leading order (LO) is carried out, the
μF dependence partially cancels yielding results less sensitive to
the factorization scale. It also improves upon LO results in that
it includes missing higher orders terms of the perturbation se-
ries which can be large. It is, thus, the motivation of this Letter
to consider production of Z boson pairs at the LHC at next-to-
leading order (NLO) accuracy in the strong coupling constant in RS
model.

Leading order studies for Z Z production in the SM can be
found in [6]. Z pair with a large transverse momentum jet at LO
was studied in [7]. LO study for Z Z production in the context of
extra dimension model of RS was carried out in [8] and coupling
of radion with gluon and top quark loop was considered in [9].
Because of its importance Z Z production has also been studied to
NLO accuracy in the SM [10–12]. These results were subsequently
updated in [14,13]. NLO studies in SM via gluon fusion were car-
ried out in [15,16]. These studies provide the precise estimate of
higher order effects through K factor as well as the sensitivity of
the predictions to factorization scale. Importantly, the corrections
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turned out to be larger than the expectations based on soft gluon
effects justifying a full-fledged NLO computation taking into all the
processes. We presented NLO results for Z Z production at the LHC
in large extra dimension model of Arkani-Hamed, Dimopoulos and
Dvali [1,2] in [17] where it was shown that the K factors are large.
The significance of NLO corrections in the Drell–Yan [18] and di-
photon processes [19] in extra-dimension models has been already
demonstrated. Although NLO results are available in SM and ADD
model they do not exist in literature in the context of RS model
which is the material of the present Letter.

The results which are presented in this Letter are obtained
using our NLO Monte Carlo code (which is implemented on
FORTRAN 77) that can easily accommodate any cuts on the final
state particles and obtain various kinematical distributions. Our
code is based on the method of two cutoff phase space slicing (for
a review of the method see [20]) to deal with soft and collinear
singularities in the real emission contributions. We will use the
matrix elements presented in [17] and refer the reader to this Let-
ter for further details.

In what follows we will first briefly describe the RS model and
then present the numerical results and finally conclude.

2. RS model

The model of Randall and Sundrum addresses the hierarchy
problem by introducing one extra spatial dimension which is com-
pactified with a radius Rc and is orbifolded. At the orbifold fixed
point φ = π the Planck brane is located and the SM fields are lo-
calized at the TeV brane which is at φ = 0. This geometry gives the
following metric in 5-dimensions:

ds2 = e−2K Rc |φ|ημν dxμ dxν + R2
c dφ2, (1)

where 0 � φ � π . To explain the hierarchy between the Planck
scale and the electroweak scale we need K Rc only of the order
O(10). Introducing an extra scalar field in the bulk [21,22] showed
that K Rc can me made stable against the quantum fluctuations.

The variations of the above setup have also been considered
in the literature where the SM fields, except for the Higgs field,
have been allowed to propagate in the bulk [23–27]. This frame-
work provides an interesting new approach to the flavor problem,
as now also the hierarchical structures observed in the masses and
the mixing of the SM fermions could be explained in terms of geo-
metrical effects [25,27–30]. In this Letter we will consider only the
original proposal of Randall and Sundrum and carry out the NLO
computation as the details of the QCD computation and the im-
portant results viz. K factor, etc., will not depend on details of the
realization of the RS model.

The effect of extra dimensions on the SM fields is felt through
the KK gravitons. These KK gravitons, h(n)

μν , couple to the SM
energy–momentum tensor and the interaction Lagrangian is

Lint ∼ − 1

MPl
T μν(x)h(0)

μν(x) − eπ K Rc

MPl

∞∑

n=1

T μν(x)h(n)
μν(x). (2)

T μν is the symmetric energy–momentum tensor for the SM par-
ticles on the 3-brane, and MPl is the reduced Planck scale. The
masses of the h(n)

μν are given by

Mn = xn K e−π K Rc , (3)

where the xn are the zeros of the Bessel function J1(x). The first
term in the interaction Lagrangian gives the coupling of the zero-
mode and it is Planck scale suppressed. The coupling of the mas-
sive KK states is enhanced due to the exponential factor eπ K Rc and
gives interactions of electroweak strength. Consequently, except for
the overall warp factor in the RS case, the Feynman rules in the RS
model are the same as those for the ADD case [31,32]. The basic
parameters of the RS model are

m0 = Ke−π K Rc ,

c0 = K/MPl, (4)

where m0 is a scale of the dimension of mass and c0 (0.01 �
c0 � 0.1) is an effective coupling. For our analysis we choose to
work with the RS parameters c0 and M1 the first excited mode of
the graviton rather than m0.

Summing over all the KK states we obtain effective graviton
propagator:

D
(

Q 2) =
∞∑

n=1

1

Q 2 − M2
n + iMnΓn

≡ λ

m2
0

, (5)

where Mn are the masses of the individual resonances (see Eq. (3))
and the Γn are the corresponding widths.

As the gravitons couple to Z bosons, P P → Z Z can now also
proceed through a process where gravitons appear at the propaga-
tor level. These new channels make it possible to observe devia-
tions from SM predictions if extra dimensions exist. In the follow-
ing we will consider spin-2 gravitons only at the propagator level
and investigate this process at NLO level.

3. Numerical results

In this section we present invariant mass (Q ) and rapidity (Y )
distribution of the Z boson pairs. These kinematical variables are
defined as

Q 2 = (p Z1 + p Z2)
2, Y = 1

2
ln

P1 · q

P2 · q
, (6)

where P1 and P2 are the momenta of colliding hadrons, and q =
p Z1 + p Z2 denotes the sum of the Z -boson 4-momenta. In obtain-
ing these distributions all order αs contributions have been taken
into account. At leading order in SM, the process proceeds through
qq̄ initiated process. As the gravitons couple to the Z bosons,
qq̄ and gg initiated processes with virtual gravitons also contribute
at the same order in QCD. We have considered all the qq̄, gg
initiated one loop virtual and, qq̄, qg , gg initiated real emission
corrections to these processes, both in the SM and the gravity me-
diated processes, and their interferences. At the virtual level we
used method of Passarino and Veltman [33] to reduce tensor loop
integrals to scalar integrals. In dealing with real emission contribu-
tions we have used two cutoff phase space slicing method. Here,
using two small dimensionless slicing parameters δs and δc , the
singular (soft and collinear) regions of phase space are separated
from the finite hard noncollinear region. We will refer to the sum
of contributions to cross section from virtual, soft and collinear re-
gions as 2-body contribution, and from hard noncollinear region as
3-body contribution. The soft singularities cancel between real and
virtual contributions and the collinear singularities were removed
by mass factorization in MS scheme, this gives the finite 2-body
contribution. Finally the kinematical distributions were obtained
by integrating the 2-body, 3-body and leading order pieces over
the phase space using Monte Carlo methods. Individually 2-body
and 3-body contributions depend on the slicing parameters δs and
δc but the sum is invariant against variations of these parameters
over a wide range. For further analysis we will use δs = 10−3 and
δc = 10−5. For further details please see [17].

Below we present various distributions for the LHC with a cen-
ter of mass energy of 14 TeV as a default choice. However we will
also present some results for a center of mass energy of 10 TeV
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Fig. 1. Invariant mass distribution for SM and signal both at LO and NLO. Dash-
dot curves represent LO results and solid curves give NLO results. We have chosen
M1 = 1500 GeV and the parameter c0 = 0.01.

for the LHC. For numerical evaluation, the following SM parame-
ters [34] are used

M Z = 91.1876 GeV, sin2 θW = 0.231 (7)

where θW is the weak mixing angle. For the electromagnetic cou-
pling constant α we use α−1 = 128.89. CTEQ6 [35,36] density sets
are used for parton distribution functions. 2-loop running for the
strong coupling constant has been used, and we have done calcu-
lation with 5 quark flavors and taken the masses of quarks to be
zero. The value of ΛQCD is chosen as prescribed by the CTEQ6 den-
sity sets. At leading order we use CTEQ 6L1 density set (which uses
the LO running αs) with the corresponding ΛQCD = 165 MeV. At
NLO we use CTEQ 6M density set (which uses 2-loop running αs)
with the ΛQCD = 22 MeV; this value of ΛQCD enters into the eval-
uation of the 2-loop strong coupling. The default choice for the
renormalization and factorization scale is the identification to the
invariant mass of the Z boson pair, i.e., μF = μR = Q . Further-
more the Z bosons will be constrained to satisfy |y Z | < 2.5, where
y Z is the rapidity of a final state Z boson.

In Fig. 1 we have plotted the invariant mass distribution both
for the SM and the signal for LHC at 14 TeV. The two curves
with peaks correspond to the signal and the remaining two curves
give SM predictions. Here we have chosen c0 = 0.01 and M1 =
1500 GeV. To highlight the importance of QCD corrections we have
also displayed the LO results of SM and the signal, and we observe
that the K factors (defined as K = dσ NLO/dσ LO) are large. For the
signal the K factor is 1.82 at Q = 1500 GeV. Next we present in
Fig. 2 the effects of varying the parameter c0 on the invariant mass
distribution. All the curves shown correspond to NLO results, and
we have also plotted the SM background for comparison.

In Fig. 3 we have plotted the rapidity distribution dσ/dY at LO
and NLO both for SM and the signal for c0 = 0.01. We have carried
out an integration over the invariant mass interval 1450 < Q <

1550 to increase the signal over the SM background.
We have mentioned before that the NLO QCD corrections re-

duce the sensitivity of the cross sections to the factorization
scale μF ; this we now show in Fig. 4. We have plotted SM and
the signal both at LO and NLO, and have varied the factorization
scale μF in the range Q /2 < μF < 2Q . The central curve in a
Fig. 2. Effect of variation of c0 on invariant mass distribution. All the curves corre-
spond to NLO results with M1 fixed at 1500 GeV. The solid curve corresponds to SM
and the dash-dot curves to the signal. The signal is plotted for c0 = 0.01,0.04,0.08
and the dash size increases with increasing c0.

Fig. 3. Rapidity distribution for SM and signal both at LO and NLO. Dash curves rep-
resent LO results and solid curves give NLO results. We have chosen M1 = 1500 GeV
and the parameter c0 = 0.01. To enhance the signal we have integrated over Q in
the range 1450 � Q � 1550.

given band (shown by the dotted curves) correspond to μF = Q .
In all these results the renormalization scale is fixed at μR = Q .
We notice that the factorization scale uncertainty at NLO is much
reduced compared to the LO. For instance at Q = 1500 GeV vary-
ing μF between Q /2 to 2Q shows a variation of 20.6% at LO for
the signal, however the NLO result at the same Q value shows
a variation of 7.1%. Similarly we show the dependence on factor-
ization scale at LO and NLO in the rapidity distribution in Figs. 5
and 6 for SM and signal respectively.

At the end we present in Fig. 7, dσ/dQ for LHC with a cen-
tre of mass energy of 10 TeV at NLO both for SM and signal. For
comparison we have also plotted the 14 TeV results in the same
figure.
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Fig. 4. Factorization scale variation in the invariant mass distribution. The curves
correspond to c0 = 0.01 and M1 = 1500 GeV at the LHC at

√
S = 14 TeV. The μF is

varied between Q /2 and 2Q . The dash curves correspond to μF = Q .

Fig. 5. Factorization scale variation in the rapidity distribution for the SM. We have
integrated over Q in the range 1450 � Q � 1550. The μF is varied between Q /2
and 2Q . The dash curves correspond to μF = Q .

4. Conclusions

In this Letter we have carried out a full NLO QCD calcula-
tion for the production of two Z bosons at the LHC at 14 TeV
in the extra dimension model of Randall and Sundrum. Here we
take all order αs contributions, both in the SM and in the grav-
ity mediated processes and their interferences, into account. We
have presented invariant mass and rapidity distributions both at
LO and NLO. We use CTEQ 6L1 and CTEQ 6M parton density sets
for LO and NLO observables, respectively. Significant enhancements
over the LO predictions are observed. The K factors are found to
be large, for instance in the invariant mass distribution the sig-
nal has a K factor of 1.82 at Q = 1500 GeV (the position of first
resonance). We have also presented the effects of variation of pa-
rameter c0 both in Q and Y distributions. We have shown that
a significant reduction in LO theoretical uncertainty, arising from
Fig. 6. Factorization scale variation in the rapidity distribution for signal. The curves
correspond to c0 = 0.01 and M1 = 1500 GeV at the LHC at

√
S = 14 TeV. To en-

hance the signal we have integrated over Q in the range 1450 � Q � 1550. The
μF is varied between Q /2 and 2Q . The dash curves correspond to μF = Q .

Fig. 7. Invariant mass distribution for SM and signal at
√

S = 10 TeV and 14 TeV.
All the curves correspond to NLO results. We have chosen M1 = 1500 GeV and the
parameter c0 = 0.01.

the factorization scale, is achieved by our NLO computation. For
instance at 1500 GeV varying μF between Q /2 to 2Q shows a
variation of 20.6% at LO for the signal, however the NLO result at
the same Q value shows a variation of 7.1%. Thus our NLO results
are more precise than the LO results and suitable for further stud-
ies for constraining the parameters of the RS model. Invariant mass
distribution is also presented for LHC at a center of mass energy
of 10 TeV at the NLO level.
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