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Abstract 

A procedure is presented for calculating time-dependent fields in magnetic deflection systems (especially saddle coils) in a 
rotationally symmetric surrounding consisting of materials with arbitrary permeability and conductivity using the FEM method 
and a vector potential approach. The vector potential and the current distribution are expanded as Fourier series with respect to
the azimuthal coordinate . Consequently, each harmonic can be handled as a separate two-dimensional problem. The backward 
Euler method is used for time integration. Corrections of the local FEM equations are calculated which originate from the time 
dependence. The global FEM equations coincide with the corresponding equations in the stationary case.  © 2008 Elsevier B.V. 

PACS:  41.85.-p;  81.70.Ex;  47.11.Fg 
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1. Introduction 

Magnetic deflection systems are used in devices such as electron beam lithography systems. The time-dependent 
field of these deflectors creates eddy currents in conducting materials such as pole pieces of lenses. The settling time 
of these deflectors, which is caused by eddy currents, is of particular interest since it influences throughput. 

Time-dependent three-dimensional field approaches with the magnetic vector potential have been described 
elsewhere [4], and commercially available FEM software can be used to simulate three-dimensional eddy current 
effects. However, the fully three-dimensional approach is very time-consuming and requires a large amount of 
computer resources. In the specific case of a deflector in a complicated magnetic lens surrounding with shielding 
ferrites etc. the three-dimensional approach is nearly impossible. 

In a first paper of this series [1] a vector potential approach was presented to calculate stationary fields of 
magnetic deflection systems in ferromagnetic surroundings using the Finite Element Method (FEM). Although this 

* Corresponding author. Tel.: +49-3641-651932 
E-mail address: thomas.elster@vistec-semi.com 

Physics Procedia 1 (2008) 257–264

Received 9 July 2008; received in revised form 9 July 2008; accepted 9 July 2008

www.elsevier.com/locate/procedia

doi:10.1016/j.phpro.2008.07.104

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.phpro.2008.07.104
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 T. Elster et al. / Physics Procedia 00 (2008) 000–000 

approach is also useful for the computation of stationary fields, the actual reason for using the vector potential was 
the application to time-dependent fields. The magnetic scalar potential approach ([2], [3]) suitable for calculating 
stationary fields can no longer be employed for time-dependent fields because eddy currents are created in 
conducting materials and Hcurl  is no longer zero in eddy current regions. Therefore, in the time-dependent case, 
the vector potential has to be used throughout. 

In this paper we are focussing on the time-dependent fields of saddle coils. However, the case of toroidal coils 
can be handled similarly.  Fortunately, in electron optics only few field harmonics are of interest and therefore the 
three-dimensional problem can be replaced by few two-dimensional problems. 

Since both the magnetic vector potential a  and the current distribution j  are expanded into Fourier series with 
respect to the azimuth angle  of the cylindrical coordinate system, each Fourier harmonic of a  can be handled as a 
separate two-dimensional FEM problem. Therefore only few two-dimensional FEM problems have to be solved 
instead of a much more complicated three-dimensional FEM problem as long as the distribution of ferromagnetic 
and/or conducting materials is rotationally symmetric (see [2], [3] for the magnetic scalar potential case). 

2. Energy functional for the vector potential formulation 

The Maxwell equations for a time-dependent magnetic field are 

Ddiv

Bdiv

t

B
Ecurl

t

D
jHcurl

0

 (1) 

together with the material equation 

.0 HB r
(2) 

As usual in the quasi-stationary approximation the displacement current is neglected ( 0tD ). Moreover, we 
assume that there are no free charges ( 0 ). The current density can be written as 

ejjj 0
(3) 

where 0j  is the specified current density in the coils, and ej  is the eddy current density induced in conductors by 
changing magnetic fields. The latter is given by 

Eje
(4) 

where  is the electric conductivity. 

The third of equation (1) is satisfied with the ansatz 

,acurlB (5) 

where a  is the magnetic vector potential. Inserting (5) in (1b) gives: 

t

a
E (6) 

From (4) and (6) we get: 
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Using (1a), (2), (5) and (7) we get the diffusion equation: 
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Equation (8) can be derived as Euler-Lagrange equation from an energy functional 

£dVW (9) 

containing the Lagrange density 
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3. Time integration procedure 

In a first step for time integration we employ the backward Euler method ([5], [6]). Let nt  be the sequence of 
time integration points and 1nn tth  the time step size. The magnetic vector potential nta  at the time nt  can 
be written as: 

ntt
nn t

a
htata 1

 (11) 

Solving (11) for 
nttta  and using (8) gives the time-discretized diffusion equation: 
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tacurlcurl  (12) 

Equation (12) is a purely “space-like” differential equation (i.e. it contains only spatial derivatives with respect to 
the coordinates (r, , z)) for the vector potential nta  at the time nt  provided that the vector potential 1nta  at the 
time 1nt  is already known. The Lagrange density now takes the form: 
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In the following we use cylindrical coordinates (r, , z). In these coordinates (13) can be written as: 
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We now expand the components of the vector potential in Fourier series of mth harmonics in the azimuthal 
coordinate , i.e. 

,sin,,cos,,),,,(
...5,3,1m

mm mtzrbmtzratzra  (15) 
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where Greek indices 2,1,0,...,,  are running through the coordinates (r, , z) throughout the paper. In the case 
of ideal deflection systems only odd Fourier harmonics contribute to the expansion (15). 

In the following, we confine ourselves to the case of magnetic saddle coils, although the treatment of toroidal 
coils can be handled similarly. As shown by Munro and Chu [2] and Lencova et al [3] the current density 

zr jjjj ,,  of a saddle coil can be derived from a single function zrFr ,, , which is non-vanishing only inside 
the coil windings, i.e. 
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It is now straightforward to follow the procedure outlined in our first paper of this series [1] to derive the energy 
functional mW  of the mth harmonic. 

Integrating over   and using the orthonormalization relations of the trigonometric functions we finally obtain the 
expression 
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 (17) 

where the range of integration extends over the whole region in the r-z-plane considered. The last but one term in 
the braces can be rewritten by using integration by parts. The definition of the function zrg ,  and the coefficients 
fm  are given in [1]. The coefficients fm contain the current I inside the coil, the wire thickness R  and the semi-
angle  of the saddle winding. 

4. Discretization of the r-z plane and local FEM equations 

We utilize the first order FEM method (FOFEM) and subdivide the region in the r-z-plane into quadrilaterals. 
Each quadrilateral is subdivided into a left upper triangle and right lower triangle, see Fig. 1 in [1]. The 
quadrilaterals are numbered by ii = 0…nez 2, jj = 0…ner 2, where nez is the number of mesh points in z direction 
and ner is the number of mesh points in r direction. 

We denote by lowerjjiimW ,,,  the approximate expression of the energy functional of the mth Fourier harmonic 
integrated over the right lower triangle of the quadrilateral ),( jjii . (For a left upper triangle the energy functional is 

upperjjiimW ,,, .) 

It is now again straightforward to follow the discretization procedure outlined in [1] to derive the approximate 
expression for the energy functional integrated over the right lower triangle of the quadrilateral   
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(similarly for the left upper triangle), where “stationary terms at time nt ” denotes the terms already determined for 
the stationary case [1] taken at time nt . The n

m
i ta ,  and n

m
i tb ,  are the values of the components of the vector 

potential of the mth harmonic in the ith point (node) (i=0…2) of the triangle considered. 

The calculation of the local FEM equations follows the procedure described in [1]. The local FEM equations 
stating how the value of lowerjjiimW ,,,  changes if the potential at the corners of the triangles changes are 
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(similarly for the left upper triangles). The coefficients are given by 
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(all other 
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,,, ,,,  remain unchanged compared with the stationary case) and 
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(similarly for the left upper triangles). “Stationary terms” means that we have to insert here the terms already 
calculated in [1] for the stationary field. The local FEM equations (20 a, b) are the basis for the FEM software. 
Obviously, the local FEM coefficients have the symmetry (as in the stationary case): 
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This is important, because it causes the matrix of the global FEM system of equations to be symmetric (see next 
section). Here D  is twice the area of the triangle, 

,200212210110 cbcbcbcbcbcbD  (22) 

and ii cb ,  are the coordinate differences 
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and 00 , zr , 11, zr  and 22 , zr  are the coordinates of the corners of the triangle.  cc zr ,  denotes the coordinates of 
the centroid of the triangle. 

5. Global FEM System of Equations 

The Maxwell equations are fulfilled if the energy functional is minimized. This leads to a linear system of 
equations for the unknowns. These equations can be written as 
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where p denotes a point in the finite element mesh, see Fig.1 in [1], and the mW  are the energy functionals of the 
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adjacent triangles E1…E6 of p.

The potential components 
m

ia ,  and 
m

ib ,  (  = 0…2, i = 0…nez*ner 1) are arranged in the solution vector as follows: 
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A straightforward calculation as described in [1] yields the same expressions for the matrix of the linear system of 
equations jqipM 36,36  and the right hand side ipRS 36  (p, q = 0…nez*ner 1 denote the point in the finite 
element mesh, i, j = 0, 1 correspond to the cos and sin terms,  ,  = 0…2 denote the component of the vector 
potential at a mesh point). 

6. Application

As a very simple application, Fig. 1 shows a saddle coil inside a 
metallic cylinder. The saddle coil has a radius of 10 mm, the metallic 
cylinder has a radius of 100 mm and is 1 mm thick. The relative 
permeability of the cylinder is 1, its conductivity is 65.000 A/V/mm 
(copper). At time t = 0 the current in the saddle coil is 
instantaneously switched off. The field on the axis in the centre of 
the deflection system follows a settling curve. The settling curve was 
calculated by two methods. Fig. 2a shows the settling curve 
determined with the FEM software based on the method described in 
this paper. For comparison, the settling curve was also calculated 
using formulas from ref. [7] (see Fig. 2b). For this case a deflection 
system and a cylinder of infinite length are assumed. The 1/e 
decrease of 3 ms in the first case is of quite good agreement with the 
4 ms in the latter case.  

Fig. 2.  Settling curves for the magnetic saddle coil surrounded by a metallic cylinder, depicted in Fig. 1. 
(a) Settling curve calculated with the FEM software according to the method described in this paper. 

(b) Settling curve calculated with formulas from Ref. [7].

For electron beam lithography the time until the field is decreased to one millionth of its initial value is of 

Conducting Cylinder 

Saddle Coil 

100 mm 

Fig. 1. Magnetic saddle coil surrounded by 
a metallic cylinder. 

(a) (b) 
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interest, because the typical main field deflection is on the order of magnitude of 1 mm with a desired accuracy of 
1 nm.  This can only be achieved with an acceptable settling time if several methods are combined, i.e. applying 
ferrites as well as featuring the deflection coil with additional coils for (partial) compensation of the outer field [8]. 
It is obvious that the FEM method can also be applied to this more complicated arrangement. The computation time 
(Pentium 1 GHz personal computer) for calculating the time-dependant field of a real lens with 100 time steps is 
approximately 20 h. This is more than two orders of magnitude faster than in the case of a conventional (3D) FEM 
calculation.

7. Conclusion 

The basic formulas for time dependent fields in conductive materials have been developed to be implemented in a 
FEM-program. The reduction from the 3D-case to a 2D-case gave a dramatic advantage in computing time. (A 
factor of 100 was achieved in the cases of interest.) The reduction is possible because for eddy current calculations 
only the first harmonic is of interest in electron optical tools (e.g. electron beam direct write). 

Using different sets of materials offers the opportunity to apply the FEM program to final lenses where the pole 
piece is manufactured from soft iron and a shield of ferrites is used. The FEM software was used to design a new 
column for electron beam lithography [9]. 
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