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Properties of a random walk model of an unknown function are studied. 
The model is suitable for use in the following (among others) problem. 
Given a system with a performance function of unknown, time varying, 
and possibly multipeak form (with respect to a single system parameter), 
and given that the only information available are noise perturbed samples 
of the function at selected parameter settings, then determine the suc- 
cessive parameter settings such that the sum of the values of the observa- 
tions is maximum. An attempt to avoid the optimal search problem 
through the use of several intuitively reasonable heuristics is presented. 

Problems of maximizing some function of the observations on a curve 
Xt of unknown form, where the only available information is noise 
disturbed samples at various t, are of great current interest in technology. 
Two (among many) examples are the determination of the location of the 
absolute maximum of X, and maximizing the expected value of the sum of 
N (noisy) observations on Xt. These problems may arise (for example) in the 
design of adaptive control systems or in the optimization of the performance 
of existing systems. In these cases X, will be the systems average performance 
function and t the variable parameter. 

The unknown function is generally assumed to be imbedded in a large 
class of functions. The properties of this (model) class are determined by the 
(generally analytic) restrictions placed upon the unknown function. The 
observations are generally taken sequentially and information (in reference to 
the model) from past observations is used to determine a suitable location 
for the next observation. 

There are four important ways in which assumptions that are generally 
made on the model may not correspond to the physical situation. 
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1. The unknown curve may have more than one local maximum. 
2. The form of the unknown curve may vary with time. 
3. There may be regions which are relatively flat (the plateau problem). 
4. The unknown curve may not be continuous or differentiable. 
Methods of maximum locating by gradient estimation cannot be used in 

any of these cases. Conditions 1 and 3 require a search procedure that obtains 
information on all parts of the curve (global procedure). It seems that the 
curve model must either be very complicated logically or include provisions 
for estimation of curve values at points other than those directly observed. 

An approach that we have found promising as well as interesting is to 
avoid analytic restrictions as much as possible and imbed the unknown 
regression function in a family of curves that have been generated by a 
suitable stochastic process. The admissable functions are then points (w) 
in a particular sample space (Q). The w value is determined by and deter- 
mines the particular function. The procedure is as follows. Observations are 
taken (sequentially) at selected points. The estimated curve and its variance 
(or the expected a posteriori value of an observation at any point and the 
uncertainty of the estimate) is then computed in accordance with the model. 
(In engineering terms we perform a filtering and prediction operation.) 
From this (statistical) information we determine the location of the next 
sample point (using a Bayesian or other suitable criterion). 

It has been found most convenient, from the points of view of intuitive 
relatedness to the physical functions, computational simplicity and ease 
of use of the information to assume that the (model) X, is a process of inde- 
pendent, infinitely divisible Gaussian increments. 

In Section I we discuss the important properties of the model and derive 
the forms of the expected X, and its variance conditioned upon the values 
of the (noisy) observations. Since the recurrent computation of the curve 
mean and variance requires the use of all past observations, it may rapidly 
get out of hand. We have therefore devoted section II to some techniques 
that substantially simplify the computation. 

If we have control over the location of the sample points (as in the two 
problems of the first paragraph) an optimum sampling procedure is desired. 
These are, for most useful criteria of optimality, still unobtainable. In 
Section III we advance two search policies that are especially suitable for use 
with the form in which the curve information is presented and whose “use- 
fulness” is justified on heuristic grounds. It is felt, because some of the mathe- 
matical problems remain intractable, that a simulation study is required for 
more thorough justification. Because of this, we rest (in Section III) with a 
presentation of ideas. A more complete analysis will be undertaken in the 
report on the results of the simulations. 

Sections IV and V contain some useful generalizations; e.g. the form of the 
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model for a time varying X,. Section VI contains several miscellaneous 
remarks and extensions. 

The use of the model has been emphasized for the case of noise biased 
observations. It is suitable (and much simpler to use) when we have an 
unknown, multipeak, time varying curve and observations that are unbiased 
by noise. 

I. THE CURVE MODEL 

The important properties of the model will be reviewed in this section. 
If X, is the value of the unknown function at parameter value t (t, ti E T, 
a closed bounded but not necessarily connected set on the real line), then 

x, = xt, + &l, 0 

Eh 4 - wo, c I t - t, I) 

If the intervals [tl, t2] and [t3, t4] are not disjoint, then 

4x, - XtJ (X, - Xt4) = & 5(t1, t2> L% h) 

= c I [t1, hl r-l [t3, &I I 

where [tl, t2] n [ts, t4] is the length of the overlap. Letting Y, = X, 
an observation taken at t with noise 7 t N N(0, $) we have 

cqx, - Y,,)” = c 1 t - t, 1 + fJ;,. 

(1.1) 

(1.2) 

vtbe 

U-3) 

Henceforth, it will be assumed that the observation noises are independent 
of each other and of the X,. We will determine the expectation and variance 
of X, conditioned on the observations Y,,, i = 1, e-e, n, where t,-, < ti. 
The subscript i will replace ti when a specmc t point is referred to. The 
symbol t will refer to a generic parameter point. 

Since X, is a process of independent increments, it is well defined only in 
terms of differences. It will be convenient to deal with it in terms of the 
increments AX, = X, - X,,, OY, = Yi - X,,. (X,, is at present an arbitrary 
observation at t, < tl.) Henceforth, since we will be attempting to predict 
the curve form from the observations Yi, i = 1, n, we will be interested in the 
quantities 

ox, = b(LlX, j dY,, a*., AU,) 

Var AX, = Var (dX, 1 AU,, es*, AY,) 

The entire collection AX,, AYi has a joint normal distribution. The cova- 



STOCHASTIC MODEL OF AN UNKNOWN FUNCTION 153 

riance matrix is Eq. (1.4). AX, corresponds to the zeroth row and column 
and dYi to row and column i. Let t, I t I tk+r, rii = 1 ti - tj 1, ti I ti+lp 
and Y  = t - t,. 

uot 

cro1 

2 = CyOk CrOl 

CyOk -I- cy cr,, flo2 *** crOk . . . 

(1.4) 

Letting A be the determinant of 2 and Ai. the cofactor of the ith row and 
jth column of 2 we have [l] 

TX, = -$$AYi =$At,AYi 
00 1 

(1.5) 

Var AXt = A/A,. U-6) 

Equations (1.4)-( 1.6) yield all the necessary information; however, since 
it will be more convenient to work directly in terms of X, and Y, rather than 
in terms of AX, and AY, we will proceed with the computations in an indirect 
way. If the assumption X0 = 0 is made, then AX, = X, and AYi = Yi. The 
restrictiveness of this assumption disappears, however, as to --+ - 00. This 
suggests our procedure; perform the computations, then take limits. (This 
procedure helps simplify our computations, as will be seen later.) 

Several simple properties of Xt and Var X, will now be demonstrated; 
first, that 8, is linear in t - ti in the interval [ti, ti+l] and equals Xn for 
t 2 t,. Xt is thus a piecewise linear estimate of X,, and second, that Var X, is 
quadratic in t - ti in the interval [ti, ti+l] and equals Var X, + c(t - tn) for 
t 2 t,. These results are true for finite or infinite t,,. When t,, = - 03, the 
results for t 2 t, have a counterpart for t < t,. 

The linearity property of Xt can be seen by recalling 1.5 and noticing 
(in 1.4) that Aoi is linear in r. For t 2 t,, Aoi is constant, thus 8, = Xn. 
For t, I t < t,, A is quadratic in r, thus Var X, is quadratic in this region. 
With t 2 t,, I appears only in the zero-zeroth entry of Z. Upon expanding 
about this entry we obtain 

varX,=~(r=O)+cr~_Var~~+cIt-t,,. 
00 00 

(1.7) 
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These simple properties will prove to be of great help in the computations of 
xt andVar X, and in the subsequent use of these quantities for the determina- 
tion of the next sample point and, in addition, for the ease of application of 

intuition to the results. We have this simplicity because the curve can be 
studied interval [ti, tl+i] by interval and within each interval xt is linear and 

Var xt is quadratic. 
When t, = - m, the computations of the ratios A/L&, ~&,&l, are handled 

as follows. Subtract some row (say the first) of the matrices Z and Zaoi (the 

matrix obtained from 2 by deleting the 0th row and ith column) from all 
other rows, divide all entries in this row by rol, take the ratio of the appro- 

priate determinants and let rai-+ 03. For example when t, < t 2 t,,-, we have 

rol * det. 

A 
- Z 

flit 

crlt - u: cr12 Ul,n--I 4 + *In II 

40 ~ crOl + 4 1 . . . 1 
crol 

rol * det. - cl; 
- u”, crlz a.1 d + crln 

(1.1 

The rol coefficients cancel and in the limit (crol + o$r,, equals one. 

3) 

Some formulas for the case 71 = 2, will now be given (see fig. 1). For 

t, I t 5 t,, 

xt = (0: + ui + crJ K4 + c(r12 - 6) Yl + (4 + cr) Y21 (1.9) 

Var x = c2r[r12 - fl + 44 - 41 + 44 + cr12) 
t uf + 0: + cr12 

(1.10) 

In the no noise case (CT: = 0) the curve goes through the observed values. 
A quantity of importance in the smoothing terms is c/c& The larger this 
ratio,the less the smoothing. This results since smoothing is a balance between 
two factors, the noise variations (reflected in the value of u$ and the mean 
square rate at which the curve is assumed to fluctuate. 
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Another feature of interest is the separation of noise and curve effects in the 
variance [Eq. (l.lO)]. The noise part exists as a result of measurement 
uncertainties. The curve part exists since the curve, Xi, being the sort of 
random variable that it is, can never be determined exactly at points at which 
no observations have been taken. 

If IZ observations are taken at t,, the expected results An = l/n and Var 
X = of/n are obtained. Since X, is a Brownian motion curve, almost all 
sample functions are uniformly continuous and bounded on any finite inter- 
val. Some a priori information can be added. For example, if it is known or 
estimated that the function has a particular value X, at t = t,, this informa- 
tion may be included as the result of an observation with uz = 0. 

Var X, 

I 

‘I +2 

FIG. 1. The smoothed]curve and its variance with observations at t1 and ts. 

II. COMPUTATION SIMPLIFICATIONS 

A serious drawback, from the viewpoint usage, is the vast amount of 
computation necessary to determine 8, and Var X,. These computations 
involve the evaluation of at least II determinants of order 7t, where n is the 
number of observations, in addition to much additional calculation. Clearly, 
simplification of the computational procedure is desirable. Several methods 
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of simplification are possible. We will follow the path that seems to yield the 
simplest results. First we will derive equations expressing the variances 
in terms of the AJCi and then give a simpler method of evaluating the Aki 
and Xi. 

THEOREM I. If t, is an observed point, then Var X, = aEAlck. 

Letting t = t,(k = 1) in Eq. (1.8) puts all the series in the zeroth row of 
the numerator, except - u2 i, equal to zero. Expanding the matrix about this 
term yields 

A A ,,2 -!?? = 02A 
(1,,=- l& 1 11 (2.1) 

In general, subtracting the Kth row of 2 and &, from every other row, 
letting t = t, and repeating the limiting procedure discussed in connection 
with Eq. (1.8) yields 

A A ,,2 Ok = o2A 
(1,=- kAOO k kk. (2.4 

This result has the correct intuitive properties. If the Aki are equal, then 
Var X, = 0:/n. 

THEOREM II. I f  
t - t, r 

t, < t, < t 5 tk+, 5 bz and d- 
tk+l - tk 

=-, 
Tk,k+l 

Var xt = (1 - d)2 d-&k + d2d+,&+,,,+, 

+ 41 - 4 (diAk+l,k + u:+dk,k+l) + 4 - 4 rk.k+l* (2.3) 

Evaluate A/Aoo as follows. Subtract (1 - d) times row K plus d times row 
(k + 1) from all rows except the kth and (k + 1)th. Subtract row K from 
row K + 1 (do all subtractions in .Z and 2,,,,). Take the ratio of the determi- 
nants of the resultant matrices and repeat the limiting procedure (with 
respect to r,,r) on the elements of row K of both numerator and denominator. 
The zeroth row elements of the resultant numerator matrix are 

41 - 4 Crk,k+l, 0, ***j 0, - ~$1 - d), - u;+ld, 0, ..a, 0. 

The only nonzero entries are the zeroth, kth, and (k + 1)th. A/A,, is 
determined by expanding the numerator about row zero as follows. 

A -=- 
A loo Ml - 4 Crk,k+lA, - &1 - 4 Aok - dd+,Aok+ll 

00 
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But - dOi/Aoo = Ati = (1 - d) Ai, + cIA,+,,~ since x’t linear in t in the 
interval [tk, t,,,]. Thus 

Var xt = d(l - d) crk,k+l + 02k(l - d) [(I - d) Akk + dAk+,,k] 

+ u:+&[(l - d) hoc+, + dAk+wc+ll 

which can be reordered to equal the equation in the statement. Theorem I is a 
special case of Theorem II (d = 0). 

Statement 1.7 is a simplified variance equation that may be used in the case 
t 2 t,; similarly for t 5 t, we have 

Var X, = Var X1 + c(t, - t). (2.4) 

We now consider the computation of Aki and will work from the set of 
equations determined by the linear least squares criterion 

&C?(xk --$Aki&$ =o. 
1 

Since the system is Gaussian, this set of equations (2.5) yield the desired &. 

CY 01 = A& + cyol) + &,cy,, + --- + &nCYol 

moz = &,CY,, + -‘&(u; + C’Y0-z) + “* + Akn~oz 

CY - -‘b,CYol + “’ + A&u: + cY,k) + *‘* + A&-ok Ok - 

CYOk = Ak,crO, + *** + &Pole+1 

CYOk = AkPol + ‘** + A&‘,2 + CYon) (2.5) 

First, we prove the useful relation 

Take any of the equations of (2.5), say the first, and divide both sides by rol. 

This yields 

1 = Aklcuf + “ol) + A,, + . . . + A 
flo1 

knl 

from which (2.6) follows. 
Now, commencing with the computation of Anj (t, 2 ti), we will describe 

a relatively simple method of computing all the A+ 
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THEOREM III. Anj can be written as 

Anj = bJB, (2.7) 
where 

Bj = 2 bi, b, = 1 and bj = (& + crj,Ji&‘u;. (2.8) 
1 

Letting k = 11 in (2.5) and transforming (2.5) into a new system by adding 
ri,i+l to each side of the ith equation and subtracting the ith equation from 
the (i + 1)th yields the following set of n - I equations that are independent 
of rsi. The limit condition (r,,i --f 00) is imposed by using (2.6) as the nth 
equation. 

0 = A& + ~~12) + &au,2 

0 = - Anl~rn,n--l ..a- An,n&n,n--l + &I) + And (2.9) 

z Ani = 1 

Because of (2.6), Anj may be replaced by the ratio (2.7) and we can sub- 
stitute bi for Ani in (2.9). From this new set we see that the 6, are arbitrary 
up to a multiplicative factor. Thus we may divide b, by b, (in other words set 
b, = 1). The set of equations can now be solved for the bi. 

(2.10) 

The Ali can be obtained in a similar manner. 
If we define 

c, = 1, c,+l = 2 cj and ck = (“:+lCk+l + uk,k+lCk+l)/u~ t2’11) 
i+1 

then Alj can be written as 
Ali = q/C,. (2.12) 

The smoothing coefficients Ali, Anj have now been computed. Next we 
shall show that all the A, may be computed by operations on the two sequen- 
ces bi and ci. 
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THEOREM IV. If bi and ci are defined as in (2.8) and (2.11) and Aij is 

written as 

(2.13) 

then 
Aj = b, (j I i) 

Ai = (bi/ci) cj (j > i). (2.14) 

In the set (2.5), let k = i and replace Aij by Aj. Proceeding as in Theorem 
III, add rj,j+l to each side of equation j, for j < i, and subtract that equation 
from the (j + 1)st. For j > i, subtract the (j + 1)st from the jth equation. 
The set (2.15) is obtained by this procedure. 

0 = A& - Ai+,(uf+, + CT~,~+~) - Ai+zcri,i+, **a - A,c~~,~+~ 

(2.15b) 

o= An-d.-, - 4~: + crn,n-1) 

Proceeding again as in the proof of Theorem III we set A, = 1 and solve 
the set (2.15a) for Aj (j 5 i). This yields Aj = bp 

The set (2.15b) is solved similarly to yield (in terms of A,) A, = ciA,. In 
order for the values of Ai obtained from (2.15a) and (2.15b) to be equal, we 
must have A,, = bi/ci from which follows the statement of the Theorem. 

In summary, the computational procedure for the Ai, is as follows. Let 
hi = bi/Ciy 

mi = 2 bj + hi 2 Cj 

1 i+l 

= Bi + hiCi+I (2.16) 
then 

Aij = bi,lm, (i ( i) 
= hicj/mi (i 2 i) (2.17) 

It is necessary to recompute only half of the b, ci (hence half the h,, mi, Bi 
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and CJ after each iterate. Let the (n + 1)st observation be taken between 
tj and tj+l. The situation existing before and after this observation is taken 
can be seen by referring to Fig. 2(a) and (b) respectively. 

h tz tj % tj+l 4z 

b, bj bi+1 6, 

FIG. 2(a). Notation prior to new observation at t. 

Cl c2 C?L,l 

t1 t2 

b, b, 

t j  G+l G+2 t n+1 

b n+l 

FIG. 2(b). Notation post new observation at new t,+l = t. 

For i 5 j, the new bi equals the old bi and for i 2 j + 2 the new ci equals 
the old tier. Thus the bi (i = j + 1, *e., n) and the cd (i = 1, *es, j + 1) 
must be recomputed and these are obtained from Eq. (2.8) and (2.11). 

The new b, and c( could be computed from their old values and the num- 
bers ~$1 i - ti / , 1 tj+l - i 1 [from Fig. 2(a)] but there does not appear to 
be a saving in computation. 

Some further savings are possible if the 8, are computed directly. R, is 
given by 

2 biYi + h, 2 ciYi 

XkZ 1 k+l 

*k 

With the running sums 

(2.18) 

Pk = $ biYi, 
1 

Qk,l = 2 Ci yi 

(2.18) can be written as 

;E 
k 

= p, + h&lc+l (2.19) 
*k 

Thus, to evaluate 2, we determine the recursive sequences {b, c; B, C; 

P, Q} and {m, h). Half of these 8n numbers must be recalculated after each 
sample. 
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The A,, and Ai,i+l, that are necessary for the variance calculations are 

A..=b, 
22 

mi 

A,,i-l = biel/mi 

A,,i+l = hci+&e (2.20) 

III. SAMPLING PROCEDURES 

The sampling procedures will be considered first with no observation 
noise. The usual desire is to determine a procedure that maximizes (or equi- 
valently minimizes) some function of the observations; for example, their 
sum or maximum value. This is in general notoriously difficult if the proce- 
dure involves looking ahead more than two or three sampling time units. 

A natural alternative is to use procedures that look ahead only the distance 
that can be conveniently handled. If, for example, this alternate procedure 
sampled at each instant as if to maximize the sum of the next two observations, 
it will degenerate, in many cases, to sampling the same point all the time. 
This occurs since the necessary balance between obtaining information and 
maximizing the quantity of interest is altered in favor of maximizing imme- 
diately the quantity of interest. 

A possible solution to this problem is the following. Determine the qualita- 
tive, and as much as possible the quantitative, variation in the optimum loca- 
tion of the next observation when K rather than two additional observations 
are to be taken. Sum up this information in a suitable explicit equation whose 
minimum (or maximum) will yield the sampling point, Preferably, the form 
of the equation will not depend on K or the exact form of the expected curve 
or the variance but rather will contain these as parameters. 

Several properties held by a wide variety of optimal search processes which 
a desirable approximate process should have are the following. 

1. As N (the total number of observations) tends to infinity, every region 
of greater than zero size is sampled at least once. 

2. For large N, the initial observations will tend to be information gather- 
ing (or play the long shot) and be taken near the point of maximum curve 
variance. 

3. The final observations are taken at points where the expected “pay 
off” (in whatever sense the observations pay off) will be maximum. 

Two approximations to optimum policies will now be presented. The 
definitions 

R* = my X,, X* = m;x X, and X” ==x; 

will be used. 
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A. The location of every observation is selected on the basis of a balance 
between properties 2 and 3. The simplest such balance is a linear weighing. 
We select the point at which 

2/Var Xt +f(N, 72) (R, - X*) (3-l) 

is maximum. xt, X*, and Var X, are the sample curve mean, maximum, and 
variance just prior to the nth observation andf(N, n) is a positive sequence. 
Iff(N, rz) is constant, property 1 may not hold. A sufficient condition for 
property 1 to hold is 2/f(a , n) -+ 0. 

We will not go into the details of any of the methods discussed in this 
section but plan to present them somewhat more fully in a future report 
which will include, in addition, results of computer simulations. 

Il. Sample at the t point (i) at which (6 = E(N, n) is a positive sequence) 

P(xt~x*+.)=l-@(~&) t 
is maximum. Let the absolute value of the slope of the ith interval be &, 
the width Ti, and the optimum point (measured from the endpoint of maxi- 
mum expected value) be ti. Within the ith interval, the ti maximizing (3.2) 
also minimizes the simpler quantity (3.3). 

M, = cKit + l g) z Var X, 
where 

VarX,=$(I’$-t) 
2 

Ei = E + [x* - ngjx .xJ 
* 

The sample is taken at the ii that minimizes M&), i = 1, ..a, n. 
To concentrate the samples about the location of the sample curve maxi- 

mum E = E(N, n) must tend to zero with n. If property 1 (N = 00) is to hold 
the additional restraint 

must be imposed. Under this condition, the points of observation may not be 
sufficiently concentrated about X*. It is possible, however, to select an oscil- 
lating ~(a, n) (see Fig. 3) with the property, for some subsequence n,, 
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which will guarantee 

1 n lim - 
n+m n 2 xi 2 x*, 

1 

(i.e., that the infinite procedure is consistent). 

I 
n 

FIG. 3 

This modification is useful when no N is given. The process is then unter- 
minating and oscillates between gaining information (when l (m, n) is relatively 
maximum) and concentrating the observations in the region of X*(x*2 X*). 

IV. THE CHOICE OF c 

The efficiency of use of the model is strongly dependent on the value 
selected for c. This value is the expected mean square rate of amplitude 
variation (with t) of the family of curves. It is a part of the model that must 
be determined by the experimenter on the basis of the expected system 
behavior. In the absence of information and in the event that one of the sam- 
pling procedures of Section III is used, a larger rather than a smaller value is 
desirable and the process should be run until a better idea of the system 
(or desirable sampling and smoothing procedure) behavior is obtained. 

There are some considerations that are helpful in the choice of c. Let us 
assume that we have two noise free observations (at t = 0 and t = T) 
of value zero (see Fig. 4) and that, from past experience, we expect that 
X,, will deviate from zero by less than B about half the time. 

The fact that about half the area of a normal density function lies within 
& 2/3 of a standard deviation from the mean implies that 
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A useful value of c cannot be estimated directly from experimental results 
since (following the model and locating the observations at ti where 
0 = to < t, < ‘.. < t,, = T) 

I 

-(+‘h 0 T/2 T  

FIG. 4 

which is zero if X, is of bounded variation. Thus the limit of any direct 
estimate of c will be zero. The value of c and, as a matter of fact, the entire 
Browian Motion nature of X, are artifices whose sole function is to aid the 
design of simple sampling and smoothing procedures. 

The assumption of a constant c over the entire parameter space can be 
generalized. If the assumption of a constant mean square rate of variation 
of the curve is not reasonable a process of independent increments where 

4x, - XJ2 = If(t) -f(4 I = j’ 4’) 44 
.s 

for-f(t) monotone nondecreasing and c 2 0 can be used in lieu of the process 
of Eq. (1.3). f(t) or c(t) can be chosen to obtain the desired smoothing pro- 
perties. 

The computational difficulties attendent upon this generalization (the 
expected value is not piecewise linear) can be simplified by replacing the 
variance increment mi,j+l = fF(Xj+i - XJ2 by c(t) ~~,~+i($ 5 t 5 tj+i). The 
exact value of t will not be important if dc/dt is small. 

V. TIME VARIABLE SYSTEMS 

The variation of the form of X, with time can be included in the model. A 
number of forms of this modification are possible; the central feature of all 
of them is the increase of the curve variance with time. The most convenient 
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manner of effecting this variance increase is to add a variance increment A V 
to the noise variance before each recomputation of the curve properties. 
This increase weighs an observation in accordance with the time that has 
elapsed since it was taken. (It is clear that the effect on the smoothed curve 
of an observation whose variance tends to infinity will decrease to zero.) 
This will be demonstrated below. Letting the variance at time n of a past 
observation located at ti be a:(n), we have 

u;(n) = uf(n - 1) + AV(tJ. 

If the observation was taken at n = K then a:(K) = a:, the actual noise variance 
at ti. The weighing of an observation decreases with the time that has elapsed 
since it was taken. If the properties of the time variation of X, are independent 
of t, then AV will be a constant. A useful variation occurs in the case of a 
moving maximum where we may wish to step up the rate of search in a near 
neighborhood of the current sample maximum. A AL’(t) appropriate to this 
case is drawn in Fig. 5 (tm denotes the location of the sample maximum and d 
and dVm are determined by the expected properties of the time variation). 
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Due to the increasing variances, the smoothing of the observations in a 
region is a function of the time distribution of samples in that region. The 
expected form of the curve in a region that has not been sampled for a long 
time will become independent of the observations in that region. This may 
be seen from a computation of a particular smoothing coefficient. Referring 
to Eqs. (2.10), (2.13), and (2.14) and letting only o:(n) increase as above, we 
can write a typical Aki (at time n) as 

1 j=i 
j=l 

which tends to zero with n since g:(n) + 03. 
It may be desirable to use different sampling sequences f(N, n) and 
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E(N, rz) here; however, this will not be discussed further, The sampling 
methods and rate are not necessarily determined by oV(t) and, within the 
framework of the model, all observations have useful meaning regardless 
of the value of AI’(t). We have tacitly assumed that the system remains 
nearly stationary during the taking of a single observation. This may not 
hold in certain cases. However, it will often be possible to add that non- 
stationary into the noise part of the observation. 

VI. REMARKS 

A heuristic idea inherent in the (sum maximizing) search procedures is the 
following. Let t, be the location of the sample maximum X,. Sample at the 
point that is (in some intuitive sense) the “most likely competitor” of t,. 
Considering method B in particular, the most likely competitor of t, is the t 
at which there is the greatest probability that X, 2 X, + E. We select 
E > 0 to prevent the procedure from degenerating and selecting t,. As more 
samples are taken and our confidence in the estimate of X, increases we feel 
that the most likely competitor criterion should become stricter; hence E --f 0. 

Another problem is the modification of the sampling rules when an upper 
bound (< 00) on the number of local maxima and a lower bound (> 0) on 
their separation can safely be assumed. The results that have been obtained 
to date for this case make use of restrictions (functions of the random samples) 
on the allowable sample points. 

Our assumptions of normal and uncorrelated noise may not always be 
valid. Unfortunately, correlation can so far be handled only at the expense 
of considerable complication in the computations. Normality is usually 
approximated in the large sample case but, in any case, the X, curve derived 
here is the best least squares linear smoothing. The model has been selected 
to give generally useful and simple computational and search procedures and 
the results will be useful in any case. 

Noise (or uncertainties) in the parameter settings can also be handled. 
In this case the true parameter setting will be the random variable t + 7, 
where 7 has zero mean. Neither the curve maximum nor its location are 
generally the same (as compared with the case 7 = 0) under these conditions. 
Boundedness of more moments of 77 than the second are necessary in general 
but these extra conditions will give us no trouble if the parameter range 
is finite. 

As a simple example of such a problem find the location of the minimum 
of the expected value of X = (t + 7)” where 7 is a random variable of mean 
zero and variance a2 

x = t2 + 2t7j + 7y 6-x = t-2 + d 

x = 8X + (X - 8X) = (t2 + 2) + (2ty + (772 - u”)). (6-l) 
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The first term on the right of (6.1) is the regression function to be minimized, 
the second term is the (unbiased) observation noise. 

The model is applicable to curve fitting in general and is particularly 
suitable if the curve has a complex form or is of high order or if we wish 
to trade some accuracy for computation simplification. 

If the sample locations increase with time and if we are interested in x;t 
and Var X, only in the neighborhood of the last sample point, the calcula- 
tions reduce to a very simple recursive computation. Referring to the results 
of Theorems I and III, we have, for t = t, 

for t 2 t, 
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