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Abstract

The validity of the tree-unitarity criterion for scattering amplitudes on the noncommutative space–time is consider
condition that can be used to shed light on the problem of unitarity violation in noncommutative quantum field theorie
time is noncommutative. The unitarity constraints on the partial wave amplitudes in the noncommutative space–time
derived.
 2003 Published by Elsevier B.V.

1. Introduction

Recently, quantum field theories on noncommutative (NC) space–time have received a lot of attentio
it was discovered that, in some cases, they emerge naturally as low-energy limits from string theory
antisymmetric background field [1]. On a noncommutative analog of the Minkowski space, the coordinates
nontrivial commutation relations:

(1.1)[x̂µ, x̂ν] = iθµν,

whereθµν is a constant antisymmetric matrix of dimension (length)2. The inherent non-locality and the violatio
of Lorentz invariance in NC QFT are the main causes which lead to some peculiar features in the
noncommutative models.

The question of unitarity of theories with time-space noncommutativity (θ0i �= 0) is a topical one in NC QFT
It was first shown in [2] that such theories are not perturbatively unitary when naive Feynman rules ar
but also that they cannot be obtained as low-energy limits from the underlying string theory (see also [
study of the violation of unitarity on compact space–time). The subject was approached later again in [4
light of the Yang–Feldman equation [5], thereby arriving at a manifestly Hermitian solution (hence unitary
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with θ0i �= 0). The study was further pursued in [6,7], where the Wick contraction theorem was adapted
case when time does not commute with space, hence the time-ordering procedure does not commute
star multiplication. As a result, a noncommutative extension of the time-ordered perturbation theory (TOP
formulated, which gives the same results as the standard procedure (in terms of ordinary Feynman pro
introduced in [8]) forθ0i = 0, but differs from it in the case whenθ0i �= 0. It is claimed, and checked in the fe
lowest orders, that this formulation leads to theories which are perturbatively unitary [6]. However, NC QED
according to the TOPT prescription shows a “surprising result” [7] regarding the high-energy behaviour of t
body cross-sections: it yields cross-sections, calculated in the lowest-order perturbation theory, exhibiting
linear in s.1 It is therefore of interest to apply other criteria, such as the tree-unitarity conditions and see w
they are violated. The fact that time–space NC quantum field theories, in addition to the impossibility of the
obtained from the string theory [1,2], violate causality on both the macro- and micro-scopic levels [11–13
reasons to expect that this could be the case.

The scope of this Letter is two-fold: on the one hand, we would like to check if the theories with time–
noncommutativity, treated according to the TOPT prescriptions, satisfy the tree-unitarity criterion [14,15
a consideration would be interesting, since in the past the requirement of mere tree-unitarity was succ
distinguishing among different models with respect to their unitarity/renormalizability [14,15]. One could
that the same merit would hold also in the case of NC theories.

On the other hand, we would like to derive a partial wave expansion and unitarity constraints on the
wave amplitudes in noncommutative space (actually, in any nonisotropic space–time), as tools (together
analyticity of the scattering amplitude and the dispersion relations) for the derivation of bounds on the cross
and the amplitudes themselves, analogous to the celebrated Froissart–Martin bound [9,10] in the usual Q

Notation. In the following we shall denoteεi = θ0i andβi = (1/2)εijkθjk.

2. Tree unitarity

To begin with, we shall recall the concept of tree unitarity [14]. The unitarity of theS-matrix, written in the
familiar way with respect to the transition amplitude [16]

(2.1)S = 1+ iT ,

implies the following condition on the transition amplitude:

(2.2)T − T † = iT T † = iT †T .

The on-shell transition amplitude between the initial state|i〉 and the final state|f 〉 is

(2.3)〈f |T |i〉 = (2π)4δ(P ′ − P)〈f |A|i〉,
whereP,P ′ are the initial and final four-momenta. We assume that the energy-momentum dispersion relat

takes the formE =
√�k2 +m2 in the noncommutative case. From (2.2) it follows that theA-matrix elements satisf

the unitarity relation:

(2.4)

− i

2

(〈f |A|i〉 − 〈i|A|f 〉∗) = 1

2

∑
n

(2π)4−3n
∫
d3k1

2k0
1

· · · d
3kn

2k0
n

δ

(∑
ki − P

)
〈k1 · · ·kn|A|f 〉∗〈k1 · · ·kn|A|i〉.

1 In [7] it is stated that the same phenomenon occurs when the mass of the exchanged particle is much less than the NC energ
the center-of-mass energy. However, a straightforward calculation (see Eq. (2.6)) shows that this is not true for the NCφ3 scalar theory, in
which case the two-body cross-section tends to 0 whenECM → ∞, although not as fast as when it is computed in the standard (“covari
perturbation theory.
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Fig. 1. Diagram corresponding toAs2→3.

Denote byAn→N−n anA-matrix for n incoming particles andN − n outgoing particles. In the center-of-ma
frame, one choosesfixedvalues for the incoming and outgoing momenta, so that for given values of these
variables” each four-momentumpi grows asE, as the total center-of-mass energy (E) approaches infinity. A field
theory will be calledtree unitaryif in the tree approximation all amplitudesAn→N−n grow at most likeE4−N as
E → ∞. In other words, if at high energiesAn→N−n ∼Eβ , then the requirement of tree unitarity can be expres
in the form

(2.5)β � 4−N.

In the noncommutative quantum field theory the crossing symmetry is still holds, but it is lost when one
a specific reference frame and specific initial and final states (as required by the tree-unitarity criterion), so
need to check separately if the tree unitarity is fulfilled for thes- andt-channels.

We shall begin with thes-channel. One typical tree-level scattering amplitude was obtained in the first
of [6], for a two-by-two scatteringπ(p1)π(p2)→ χ(p3)χ(p4) through the cubic scalar interactions defined
the LagrangianLint = −gππ " σ " π − gχχ " σ " χ (the fields were taken to be nonidentical in order to red
the number of channels to one). The expression for the 2→ 2 scattering amplitude, in thes-channel and in the
center-of-mass frame, can be cast into the form:

As2→2( �p; �p′)= 2gπgχ
s −m2

σ

∑
λ=±1

{
cos

[
mσ(p̃0 + λp̃′

0)
]
cos

[√
s

2
(p̃0 + λp̃′

0)

]

(2.6)+
√
s

mσ
sin

[
mσ (p̃0 + λp̃′

0)
]
sin

[√
s

2
(p̃0 + λp̃′

0)

]}
,

wherep̃0 = θ0ip
i = �ε · �p andmσ is the mass of thes-channel scalar particle.2 The second term in the bracke

proportional to
√
s = E, is an element of novelty in the TOPT as compared with the usual “covariant” appr

However, when we take the limitE → ∞, the 2→ 2 amplitude (N = 4) behaves likeE/E2 =E−1, thus fulfilling
the tree-unitarity criterion, which requires it to grow not faster thanE(N−4) =E0.

In order to be able to appreciate if the tree-unitarity criterion is satisfied in general, we shall move furthe
5-point amplitudeAs2→3.

The expression of the amplitude, according to the TOPT prescription, is (see Fig. 1):

As2→3 ∼ gπg
2
χδ(E1 +E2 −E3 −E4 −E5)

∑
λ1,λ2=±1

∫
d3p

(2π)32ωp

d3q

(2π)32ωq

(2.7)× (
2π3)δ(�k1 + �k2 + �p )(2π3)δ( �p+ �q + �k5)

(
2π3)δ(�q + �k3 + �k4)

2 To prove the affirmation of the previous footnote, one can plug the expression (2.6) into the formula of the differential cross
calculated in CMS for external particles with equal mass, i.e.,(dσ/dΩ)CM = |A|2/(64π2E2

CM). It is clear that at high energies, the different

cross-section behaves at most like 1/s2.
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× [e−i(k1+,−pλ1 ,k2+) + (k1 → k2)][e−i(k5−,pλ1,−qλ2) + (q → k5)][e−i(qλ2,k3−,k4−) + (q → k4)]
[λ1(E1 +E2)−ωp + iε][−λ2(E3 +E4)−ωq + iε] .

A typical term of the amplitude is of the form:

(2.8)
1

ωpωq

∑
λ1,λ2=±1

eiλ1a+λ2b+c

(λ1E −ωp)(−λ2E′ −ωq)
,

wherea, b andc are factors depending on the momenta of the particles involved in the interaction and
noncommutativity parameterθµν (in such a way thata = b = c = 0 for θ = 0),E = E1 +E2 andE′ = E3 +E4.
Performing the summation overλ’s, one obtains:

(2.9)

8

(E2 −ω2
p)(E

′2 −ω2
q)

[(
cosa cosb− EE′

ωpωq
sina sinb

)
cosc−

(
E

ωp
sina cosb− E′

ωq
sinb cosa

)
sinc

]
.

In the center-of-mass frameE2 = (k1 + k2)
2 = (k3 + k4 + k5)

2 and we shall fix the outgoing momenta (
the spirit of the tree-unitarity criterion) so that|�k3| = |�k4| = |�k5|. Assuming for simplicity the equality of all th
masses of the particles involved in the interaction, the following expression is obtained, for thisspecificphase-spac
configuration, in terms of the center-of-mass energyE:

(2.10)
24

E2(E2 −m2)

[(
cosa cosb− 2E

m
sina sinb

)
cosc−

(
E

m
sina cosb− 2 sinb cosa

)
sinc

]
.

TheE-dependence ofa, b andc, which is of polynomial form, is not relevant for the high-energy behaviou
the sine and cosine functions do not have a limit when their arguments are polynomials inE for E → ∞, but still
they are bounded in the interval[−1,1]. It becomes clear that for high energies, the typical term of the 5-p
amplitudeAs2→3 behaves like

E

E4 =E−3.

According to [14], the 5-point amplitude should not grow faster thenE4−N =E−1. Obviously, this requirement i
fulfilled by the amplitudeAs2→3.

We expect that, in thes-channel, the tree-amplitudesAs2→N−2 ∼ sβ/2, with N > 5, will behave well at high
energies, so thatβ < (4−N).

We shall now consider the tree-unitarity criterion in thet-channel, in which case, for afixed configuration, at
high energies,t ∼ s = E2. We have computed, according to TOPT prescriptions, the 2→ 2 scattering amplitude
in the t-channel, for an interaction Lagrangian of the formLint = −g(π " σ " χ + χ " σ " π), i.e.,

At2→2 ∼ g2
[

2 cos(k1+,−q+,−k3+)2 cos(k2+, q+,−k4+)
2ωq(E1 −E3 −ωq + iε)

(2.11)+ 2 cos(k1+,−q−,−k3+)2 cos(k2+, q−,−k4+)
2ωq(E2 −E4 −ωq + iε)

]
.

In the center-of-mass frame, and taking for simplicitymπ =mχ =m, we obtained:

(2.12)At2→2 ∼ 2g2

t −m2
σ

[
cos

(√
mσ − t θ0i (k1 + k3)

i
)
cos

(
θij k

i
1k
j

3

) + cos

(
1

2

√
s θ0i (k1 − k3)

i

)]
.

In this case, the high-energy behaviour is governed by the first factor (as the cosines are bounded whens → ∞)
and is the same like in the commutative case. The amplitudes with more legs will show the same similar
the commutative case at high energies, and we can conclude that they will satisfy the tree-unitarity criterio
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3. Partial wave expansion

In the commutative case, due to the rotational invariance, the 2→ 2 scattering amplitude depends on tw
variables:s andt , i.e., the squared center-of-mass energy and the squared transferred momentum or, equ
s and cosθ , with θ being the center-of-mass scattering angle.

The partial wave amplitudes are defined by the expansion in Legendre polynomials [16]:

(3.1)A(s,cosθ)=
∞∑
l=0

(2l + 1)al(s)Pl(cosθ), al(s)= 1

2

1∫
−1

d(cosθ)Pl(cosθ)A(s,cosθ),

whereA(s,cosθ)≡ A(s, t) is the scattering amplitude in terms of the Mandelstam variabless andt = −(s/2)×
(1− cosθ) (for the equal-mass case).

In the noncommutative case the rotational invariance is lost and as a result the number of independen
variables is increased. For the general case of space–time noncommutativity,θµν defines a plane through the vecto
εi = θ0i andβi = (1/2)εijkθjk. The only symmetry left is then a reflection in this plane. The situation is thus
to a fully anisotropic (but translationally invariant) background, and we treat this general case in the foll
The results are then generally applicable to scattering in completely anisotropic media. With respect to ar
chosen axes, the directions of the three-vectors�p1 and �p3 are each given by two angles,(θ12, φ12) and(θ34, φ34),
respectively.

However, in the case of space–space noncommutativity, whenθ0i = 0, i.e., �ε = 0 and in the case of lightlike
noncommutativity, whenθµνθµν = 0 and�ε ⊥ �β, there are only three independent angular variables, which ca

assumed to be the angleŝ( �β, �p1),
̂
( �β, �p3) and ̂( �p1, �p3). It should be emphasized, however, that only in these la

two cases (space–space noncommutativity and lightlike noncommutativity), a NC field theory can be obtain
the string theory as the low-energy limit [1,2,17].

3.1. Unitarity constraint on partial wave amplitudes

For a 2-particles initial and final states, the on-shell amplitude is:

(3.2)〈p3,p4|T |p1,p2〉 = (2π)4δ(p1 + p2 − p3 −p4)A( �p1, �p2; �p3, �p4).

Next we expandA( �p1, �p2; �p3, �p4) in partial waves, demanding that the amplitude is single-valued. The an
dependence will be taken into account through the spherical harmonicsYlm(θ12, φ12) andYl′m′(θ34, φ34), while the
dependence ons will be accounted for through the partial-wave amplitudesalm,l′m′(s), i.e.,

(3.3)A( �p; �p′)= 4π
∑

l,l′,m,m′
alm,l′m′(s)Ylm(θ12, φ12)Yl′m′(θ34, φ34).

(When there is only one preferred direction in space, e.g.,�ε = 0, �β �= 0, invariance under rotations arround th
direction implies that the scattering amplitude does not depend on, e.g.,φ12. The expansion in that situatio
becomes a special case of the general formula (3.3), with only terms withm= 0 surviving.)

The bound can be obtained using the relation between the elastic cross-section and scattering amplitu

(3.4)σel = 1

64π2s

∫
dΩ34 |A|2,

and the optical theorem for forward scattering (i.e.,p1 = p3 andp2 = p4), written in the form

(3.5)ImA(s)forward= 2
√
s pσtot,
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when the two particles in the initial state have equal masses andσtot is the total cross-section. Then, using t
expansion (3.3), the elastic cross-section becomes:

(3.6)σel = 1

4s

∑
l1,l2,l

′,m1,m2,m
′
al1,m1,l

′m′(s)a∗
l2,m2,l

′m′(s)Yl1m1(θ12, φ12)Y
∗
l2m2

(θ12, φ12)

and the r.h.s. of (3.5) will be:

(3.7)ImA(s)forward= −2πi
∑

l,l′,m,m′

[
alm,l′m′(s)− (−1)m+m′

al,−m,l′,−m′(s)
]
Ylm(θ12, φ12)Y

∗
l′m′(θ12, φ12).

Taking into account thatσel � σtot, it follows that

(−i)
∑

l,l′,m,m′

[
alm,l′m′(s)− (−1)m+m′

al,−m,l′,−m′ (s)
]
Ylm(θ12, φ12)Yl′m′(θ12, φ12)

(3.8)� p

4π
√
s

∑
l,l′,l1,m,m′,m1

(−1)m
′
a∗
l′,−m′,l1,m1

(s)al,m,l1,m1(s)Ylm(θ12, φ12)Yl′m′(θ12, φ12).

The expression (3.8) is an exact unitarity condition on the partial-wave amplitudes. As the sign between
sides is an inequality, one cannot use the orthonormality property of the spherical harmonics, because th
have a definite sign on the whole domain of their arguments.

However, for energies were elastic unitarity is exact, one can obtain approximate unitarity conditions
partial-wave amplitudes, but with an equality sign, which will make the situation easier to deal with.

With the following convention for one-particle states:

(3.9)〈p|p′〉 = (2π)32p0δ( �p− �p′), 1 =
∫

d3p

2p0(2π)3
|p〉〈p|,

we can write theelasticunitarity condition in terms ofA( �p1, �p2; �p3, �p4):

A( �p1, �p2; �p3, �p4)−A∗( �p3, �p4; �p1, �p2)

(3.10)= i

(2π)2

∫
d3k1

2k0
1

d3k2

2k0
2

δ(p1 + p2 − k1 − k2)A
∗( �p3, �p4; �k1, �k2)A( �p1, �p2; �k1, �k2).

In the center-of-mass frame, where�p1 = − �p2 = �p, �p3 = − �p4 = �p′ and�k1 = −�k2 = �k, (3.10) becomes:

A( �p; �p′)−A∗( �p′; �p)= i

(2π)2
1

8

∫
dΩ�k

∞∫
0

k2dk

k2 +m2 δ
(√
k2 +m2 −

√
p2 +m2

)
A∗( �p′; �k)A( �p; �k)

(3.11)= i

(2π)2
1

8

∫
dΩ�k

p√
p2 +m2

A∗( �p′; �k)A( �p; �k).

Taking into account that
√
p2 +m2 = √

s/2, one obtains:

(3.12)(−i)[A( �p; �p′)−A∗( �p′; �p)] = 1

16π2

p√
s

∫
dΩ�k A

∗( �p′; �k)A( �p; �k),

wherep is the magnitude of the three-momentum of the initial particles in the center-of-mass frame.
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With the expansion (3.3), the integral in the r.h.s of (3.12) becomes:
∫
dΩ�k A

∗( �p′; �k)A( �p; �k)

= (4π)2
∑

l1,l
′
1,m1,m

′
1

∑
l2,l

′
2,m2,m

′
2

a∗
l1,m1,l

′
1,m

′
1
al2,m2,l

′
2,m

′
2
Y ∗
l1m1

(θ34, φ34)Yl2m2(θ12, φ12)

×
∫
dΩ�k Y

∗
l′1m′

1
(θ�k, φ�k)Yl′2m′

2
(θ�k, φ�k)

(3.13)= (4π)2
∑

l1,l2,l
′
1,m1,m2,m

′
1

a∗
l1,m1,l

′
1,m

′
1
al2,m2,l

′
1,m

′
1
(−1)m1Yl1−m1(θ34, φ34)Yl2m2(θ12, φ12),

where we have usedY ∗
lm(θ,φ)= (−1)mYl,−m(θ,φ). Inserting (3.13) into (3.12), one obtains:

(−i)
∑

l,l′,m,m′

[
alm,l′m′(s)− (−1)m+m′

a∗
l′,−m′,l,−m(s)

]
Ylm(θ12, φ12)Yl′m′(θ34, φ34)

(3.14)= p

4π
√
s

∑
l,l′,l′1,m,m′,m′

1

a∗
l′,−m′,l′1,m′

1
(s)al,m,l′1,m′

1
(s)(−1)m

′
Ylm(θ12, φ12)Yl′m′(θ34, φ34).

As the spherical harmonics form a complete and orthonormal set, the equality of the coefficients of the exp
follows and the elastic unitarity condition finally takes the form:

(3.15)(−i)[alm,l′m′(s)− (−1)m+m′
a∗
l′,−m′,l,−m(s)

] = p

4π
√
s

∑
l1,m1

(−1)m
′
a∗
l′,−m′,l1,m1

(s)al,m,l1,m1(s).

From this expression we can get the bounds on the partial wave amplitudes. Taking, e.g., in (3.15)m′ =m= 0
andl = l′, one obtains:

(−i)[al0,l0(s)− a∗
l0,l0(s)

] = p

4π
√
s

∑
l1,m1

a∗
l0,l1m1

(s)al0,l1m1(s)

(3.16)= p

4π
√
s

∑
l1,m1

∣∣al0,l1m1(s)
∣∣2 � p

4π
√
s

∣∣al0,l0(s)∣∣2.

Thus

(3.17)Imal0,l0(s)� p

8π
√
s

∣∣al0,l0(s)∣∣2,
which is equivalent to

(3.18)

∣∣∣∣al0,l0(s)− i
8π

√
s

p

∣∣∣∣ � 8π
√
s

p
.

This is an expression of the elastic unitarity condition for the partial-wave amplitudes and it should be co
to the formula for the commutative case (the normalizations chosen in (3.1) and (3.3) correspond to each
Yl0(θ,0)= √

2l + 1/(4π)Pl(cosθ))

(3.19)Imal(s)= p

8π
√
s

∣∣al(s)∣∣2.
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4. Conclusions

We have investigated the validity of the tree-unitarity criterion [14,15] for quantum field theories with s
time noncommutativity, treated according to the noncommutative extension of the TOPT developed in
have found that the tree-unitarity condition is fullfilled by the NCφ3 scalar theory, which might have benefic
implications for its exact unitarity and renormalizability.

We have also derived the unitarity constraint on the partial wave expansion of a 2→ 2 scattering amplitude
in the general case of noncommutative space–time with a constant noncommutativity parameterθµν , which is
an essential step in deriving Froissart–Martin-type of bounds on the cross-sections and scattering ampl
noncommutative space–time.
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