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Abstract

Cauchy’s theorem on the order of finite groups is a fixture of elementary course work in abstract algebr
its proof is a straightforward exercise in the application of general mathematical tools. The initial proof by C
however, was unprecedented in its complex computationsinvolving permutational group theory and contain
an egregious error. A direct inspiration to Sylow’s theorem, Cauchy’s theorem was reworked by R. De
G.F. Frobenius, C. Jordan, and J.H. McKay in ever more natural, concise terms. Its most succinct form
just the structure lacking in Cauchy’s original proof—the wreath product.
 2003 Elsevier Inc. All rights reserved.

Résumé

Aujourd’hui le théorème de Cauchy sur l’ordre des groupes finis est énoncé dans tous les manuels d’alg
abstraite et sa démonstration se réduit à un simple exercice d’application d’outils mathématiques g
La démonstration originale donnée par Cauchy comportait, en revanche, des calculs complexes de gr
permutations et contenait au fond une erreur. Ce théorème,source directe d’inspiration pour le théorème de Syl
est énoncé en termes de plus en plus naturels par R. Dedekind, G.F. Frobenius, C. Jordan, et J.H. M
forme plus concise emploie précisément l’outil manquantdans la démonstration originale de Cauchy—le pro
en couronne.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Almost all university departments of mathematics in the U.S. require abstract algebra at a
level, and motivational sections in textbooks frequently explain how the theorems arose—Lag
theorem in the search for the solution to the fifth-degree algebraic equation, for example, or C
theorem in the effort to give an abstract definition of the concept of groups. On the other hand, C
group theorem, that to every prime numberp that divides the order of a finite group there correspon
subgroup of orderp, even though of historic importance, receives a treatment completely divorced
its original context. This paper attempts to correct and to explain that silence.

Cauchy’s original proof of his theorem contained a significant logical gap. At least one knowled
contemporary complained of the proof’s obscurity. Ludvig Sylow’s extension of it, and Georg Ferd
Frobenius’ more abstract proof, both avoided the method of Cauchy’s original proof, a method w
call the wreath product. In the 20th century, the wreath product was correctly characterized and
as the basis for the most recent proofs of Cauchy’s theorem.

It is a well-worn commonplace of the history of science that the initial statement of a scientific fi
is often partial and confused, leaving to later investigators the opportunity to clarify, generaliz
simplify. Onebon mot has it that “a mathematician’s reputation rests on the number of bad proo
has given” [Littlewood, 1953, 41], but the problem is not limited to mathematics. Sir Isaac New
original demonstration that the orbital motions of the planets of the solar system are governe
force which varies as the inverse square of distance is notorious for its obscurity, continuing to
controversy among scholars to our own day, while introductory textbooks dispose of it in a cou
pages.1 Rafael Bombelli introduced the algebra of the complex numbers in the 16th century, b
subject remained obscure until the early 19th century, with Jean Robert Argand’s and Carl Fr
Gauss’ independent graphical geometrical representation of complex numbers—and Cauchy’s ow
use of it in mathematical analysis during the 1820s. Cauchy’s theorem in permutation groups
constituted the major conclusion of the 101 pages2 of “Mémoire sur les arrangements que l’on pe
former avec des lettres données” [Cauchy, 1845], occupies a grand total of ten lines in McKay
Nil mirari, we might say. There is nothing to be wondered at here.

On the other hand, the work of which this theorem was the main result was a milestone
development of abstract algebra. You might call it the first nontrivial result in permutation gr
Cajori [1919, 352] flatly states “Cauchy has been given the credit of being the founder of gro
finite order;” according to Kiernan [1971, 97], “Here finally was a man of stature in mathematics
thought it worthwhile to publish extensively on the question of permutations.” It appeared just
the posthumous publication of Galois [1846] in Joseph Liouville’sJournal de mathématiques pures et
appliquées, and the two publications together have recently been characterized as “the two sour
introduced group theory to mathematics” [Neumann, 1989, 293].

Several recent works have disagreed on the stimulus for Cauchy’s publication. The 56-year-ol
already had hundreds of contributions, in dozens of different mathematical areas. He domina
mathematical section of the Paris Academy of Sciences, but had not discussed permutations for

1 The contrast between the original statement and modern proofs (although not the scholarly controversy) appears i
form in Pourciau [1997].

2 That was the length of the original article in a learned journal;in the 1932 edition of Cauchy’s collected works (cited here
the article occupies 111 pages. Translations in this paper not credited to other scholars are my own.
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Kiernan [1971, 97] speculated that it was in order to forestall the soon-to-be-published results of
that Cauchy brought out his prolix, inelegant, although beautiful, results.3

Against that suggestion, Dahan Dalmedico [1980] attempted by means of a painstaking s
mathematical styles to distinguish clearly between the two approaches to group theory of Gal
Cauchy. She found the former to display “a suppleness and a power of articulation and analysi
remained absolutely foreign to the point of view of Cauchy” [Dahan Dalmedico, 1980, 296]. Stil
found undeniable mathematical connections. Not only were the problems Cauchy handled at
points very close to those of Galois—Galois had specifically stated Cauchy’s theorem withou
in an unpublished manuscript. It also happened that Cauchy once where his method resembled
gave credit instead to Charles Hermite, who was at about that time attending Liouville’s lectures
Galois’ unpublished manuscripts [Cauchy, 1845/1846, IX, 459]. Citing [Dahan Dalmedico, 1980]
main source, Toti Rigatelli [1989, 46] inquired rhetorically whether Cauchy had asked Liouville to
publication of Galois’ work until he produced his own.

Such hypotheses seem to slight the fact that Cauchy gave an explicit reason for presen
results: the 23-year-old J.L.F. Bertrand had submitted to the Academy a proof of a conjecture ap
in Cauchy [1815], that the (what we would today call) order of a (nontrivial) permutation grou
n elements is at leastn. Appointed to evaluate the validity and originality of the work for the Acade
Cauchy submitted 25 separate papers of his own, between 15 September 1845 and 11 Ap
almost 300 pages in all, recording “some of the most notable propositions to which [he had] ar
in extending his 1815 result and that of Bertrand.

It was under still highly contested circumstances, then, that Augustin-Louis Cauchy, the do
French mathematician of his generation, produced hisMémoire. Let us begin with an examination o
Cauchy’s own reasoning, and then follow how the proof has changed with time. Cauchy’s theore
generalized, then made more abstract, well before it was simplified in its present form. For a long
was submerged. It has had an interesting career.

2. Cauchy’s proof

Cauchy [1845] begins with a presentation of the notation that had first appeared in Cauchy
to denote permutations, notation that has since become standard. Cauchy distinguished betw
arrangement of a set of letters and the permutations—or, synonymously, “substitutions”—which
on them. If the three letters

x, y, z

3 He has been echoed in this by other authorities, a recent example being Scholz [1990, 387]. Cauchy practiced a piou
Catholicism and held strictly legitimist monarchial views; if he did take the ideafor his theorem from Galois without attribution
he would have had a political motive for it. (Perhaps a religious motive, as well; Grattan-Guiness [2000, 482–483] presents
argument for Cauchy’s mathematics “emulating” his Christianity in its rigor and claim to absolute truth.) The Revolu
1830 that established a cadet branch of the Bourbons sent Cauchy into eight years of self-imposed exile; but it was d
by Galois because it did not abolish the monarchy altogether. The talented youth’s protests led to a prison sentence
contemporary practice of mathematics without a political impact; see Mazzotti[1998] for the situation in the Kingdom o
Naples at about this time.
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the permutation is the operation(
y z x

x y z

)
,

where the arrangement on the bottom line is replaced with the arrangement on the top line. This p
permutation, since it shifts the letters while retaining the same order, is named by Cauchycyclic and given
the alternate representation

(x, y, z).

Permutations of a set of letters have a given order; that is, a given number of repetition
generate identity. For example, by repeating our sample permutation three times the letters of th
arrangement will have returned to their starting positions. This order is written aptly as an exp
“Nothing prevents,” Cauchy [1845, 185] comments, “the representation of substitutions by simple

P,Q,R, . . . ,”

a representation which results in

(x, y, z)3 = P 3 = 1

denoting the situation succinctly and unambiguously. The permutationP is third-order.
Well aware of the great advantages of his clearer notation, Cauchy elsewhere compared

differential notation of calculus introduced by Leibniz [Cauchy, 1845/1846, 10: 35–36]. The foc
study now became permutations rather than the arrangements of letters. The permutation which
nothing is a natural identity element, and that permutation which returnsP to the identity element is
its inverse,P −1. All these results from Cauchy’s 1815 paper on permutations were reiterated w
reference to the earlier work.4

Cauchy’s theorem concerns the permutations or substitutions (Cauchy employs both terms, bu
the latter) onn letters, the composition of which generate a closed system by sequential perform
Writing down a composition repeats the order of their operation. That is, the permutationQ followed by
the permutationP—written asPQ—is again a permutation. Applying one permutation after anoth
for Cauchy a “conjugation,” a joining, so he is dealing with a “system of conjugate substitutions”
we speak of a group.5

For every prime numberp that divides the order of a system of conjugate substitutions, then, Cau
theorem states that there exists among the elements of that system at least one regular subst
orderp. Cauchy does not use the notion of a subgroup. In contrast to notation, however, since C
day the meaning of the crucial term “regular permutation” has changed: for him a regular permut

4 With respect to Galois, in contrast, both Kiernan [1971, 82–83] and van der Waerden [1985, 107] agree with
Dalmedico [1980, 286] that his inconsistent terminology made his revolutionary papers difficult for his contempor
understand.

5 Galois had used the word “group” to describe just this situation in a paper written in 1830 and being prepared for publicat
by Liouville in the period during which [Cauchy, 1845] was in preparation.
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One of the first theorems proved in the 1845Mémoire is that it is possible to write any permutation a
product of disjoint cycles; once that is done, all permutations are taken in that form.

If a permutation is of prime order, it is “primitive;” one of the first consequences of these defin
is that all primitive permutations are regular, but not conversely. Cauchy calls two permutation
given set of letters “similar” if they have the same number of cycles, with the same number of let
corresponding cycles, so that each pair of corresponding cycles have the same order. He then p
relation that, ifP andQ are related by

RP = QR

by means of a third permutationR, then they are similar. In contrast, we currently define similarity
means of the equation and then use it to prove the correspondence of disjoint cycles.

Cauchy included a variety of results about groups of permutations—conjugate systems of su
ons—in his great 1845 memoir, but he begins the section devoted to the proof of his pioneering t
with a statement of Lagrange’s theorem, that (in today’s terms) every subgroup divides the orde
group. On the very first page of his Memoir Cauchy had alluded to the fact that, in arranging a
n different letters, one would be able to make a choice amongn different letters for the first position
amongn − 1 for the second, and so on, with the result that

(n)(n − 1)(n − 2) · · · (1) = n!
would be the total number of possible arrangements ofn letters—the order of our present-day “symmet
group.” The permutations composing this conjugate system of substitutions are theoperations on an
arbitrary initial arrangement which will produce each of then! final arrangements.

Without making any direct reference to Lagrange, Cauchy [1845, 207] makes use of a
display (for the first time in the paper) in his graphic and intuitive proof.6 Given a conjugate system
of substitutions, an arbitrary subgroup of the group ofn letters, if its orderM equalsn!, we are done. If
it is less thann!, then there exist some permutations ofn letters that are not included in the system
orderM . We can write the members of the system of orderM one after another on one line,

1,P,Q,R, . . . ,

and form the multiples of each of them with the permutations that are not included, sayU,V,W, . . . .
The resulting two-dimensional array contains only distinct permutations

1 P Q R . . .

U UP UQ UR . . .

V V P V Q V R . . .

W WP WQ WR . . .

. . . . . . . . . . . . . . .

and thereforen! is a multiple ofM .

6 The first use of a complete rectangular-array proof of Lagrange’s theorem has been attributed to Pietro Abbati in
discussion of the work of Ruffini. In his 1815 paper Cauchy discussed Ruffini’s work as well, employing an array sim
Abbati’s. See Roth [2001, 103].
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Characteristically, Cauchy is careful to demonstrate that each of the permutations in the tab
indeed be distinct from any other; that the proof would also work if the order of multiplying permuta
were reversed; and that the order of any single permutation will divide the order of the group. H
step was to construct a special system of conjugate permutations, one of prime-power order; th
today’s language, to construct a Sylow subgroup of the symmetric group.

The claim is, that there exists a closed subgroup of this symmetric group, which has the orde
power of a prime number. If

. . . p is a prime number, equal to or less thann, i the greatest multiple ofp contained inn, andpf the greatest power ofp which
divides integrally the productn! = 1 · 2 · 3· · · n

[then] with the numberi of arbitrarily chosen variables one can always construct a system of conjugate substitutions of t
orderpf .

[Cauchy, 1845, 221]

We begin the construction of the special system by considering a regular permutationP of then letters
x, y, z, . . . , which means thatP contains a set of cyclical elements of the same order, let us say, of ora.
If there areb such factors, then

n = ab.

Next, let us put then letters into a two-dimensional array where each power of the reg
permutationP occupies a given point on the horizontal. The result of the operation of each power
permutationP is a new arrangement of thea letters, with each arrangement beginning with a differ
one of thea letters, and thea letters are placed one after another along the line. If instead of permuta
within each cyclic factor we permute one letter in a given set with a letter in another cyclic facto
generate a different permutation, which we can callQ. The powers of the permutationQ replace just one
of thea letters with one of the letters which are not among the original set permuted byP ; for each of
thea lettersQ can replace it withb others, distinct from the replacements generated by powers ofP . Let
us arrange the powers ofQ in the vertical direction. Then an array of all possible derived permuta
of P andQ would look like

1 P P 2 . . . P a−1

Q QP QP 2 . . . QP a−1

Q2 Q2P Q2P 2 . . . Q2P a−1

...

Qb−1 Qb−1P Qb−1P 2 . . . Qb−1P a−1

and constitute a system of conjugate substitutions of the orderab. The two permutationsP and Q

commute; that is,

PQ = QP,

since the first of these moves a given letter one space over and one space down, while the seco
the same letter one space down and one space over, which is the same operation.

At this point, as quite frequently in theMémoire, Cauchy pauses for an example, “pour fixer les idé
as he says. With six variables we have the array
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resulting in the regular permutations

P = (x, y, z)(u, v,w), Q = (x, u)(y, v)(z,w)

where, clearlyP 3 = 1 = Q2. The array of all possible derived permutations is then

1 P P 2

Q QP QP 2

which is a system of order 6.
Moreover, for any numbern = ab, wherea andb are primes, each of the derived permutationsQhP k,

where the powersh andk are integral numbers less than the ordersb (of Q) anda (of P ), is distinct from
any other derived permutation.

The next step is to generalize the procedure. If the numbern is the product ofl prime factors

n = a · b · c · · · ,
recourse to the above construction will generate permutationsP , composed ofn/a cyclic units each
of order a; R, of n/b cyclic factors each of lengthb; S . . . so that the system of all possible deriv
permutations, in the casea = b = c = · · · , has the order

n = al.

Nor need the permutations cover all of then letters with which we begin. If the numberha is a multiple
of a less than or equal ton, we can form with theha letters theh disjoint cyclic permutations

P1,P2, . . . , Ph,

each of ordera. The system of conjugate substitutions formed of these and their derived permu
will be of orderah.

If the numberh is equal to or larger than the productkb, Cauchy points out, then from theh permu-
tationsPi of the “first kind” it will be possible to constructk permutations of the “second kind”

Q1,Q2, . . . ,Qk,

each of which will consist of permutations among the cyclic factors of thePi . That is, the permutation
P may be arranged inh blocks all on a horizontal, producingah different arrangements of then letters,
while the permutationsQj each replace a letter in one of the distinct groups ofa letters by one of the
letters in another set distinct from thatPi . Such permutationsQj will have k sets of cyclic components
each of orderb. They will commute with each other and with thePi , if they behave as the permutatio
on the first array do, so that the system of conjugate substitutions will be of the order

ahbk.

From this point it should be clear that if we supposep to be a prime number less thann, andI the
multiple of p contained inn—that is, less than or equal ton—Cauchy is able, usingI variables, to
construct a system of the order

pf ,
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wherepf is the largest number which dividesn!. He is careful to clarify each of the details, but we c
already see the course of the proof.

“Pour fixer les idées,” let us use his first example [Cauchy, 1845, 222] of this theorem in action
a set of five letters, we usep = 2. The multiple ofp contained inn is 2p = i = 4, so we will be using
only four of the five letters. These may be written

x, y,

z, u,

which suggests the cyclic permutations

P1 = (x, y), P2 = (z, u)

of second order for the first kind. There are two of them (i. e.,h = 2), and their letters will be exchange
by a permutation of the second kind,

Q = (x, z)(y, u),

of which there is only one, sok = 1. The system of all possible derived permutations is

1 P1 P2 P1P2

Q QP1 QP2 QP1P2

of order eight. But 2h+k = 23 = 8 is the largest power of 2 which divides 5! = 120= (8)(5)(3).
So Cauchy argues. (Note that he changed the meaning of the permutationP in generalizing the initial,

correct result.) Suppose we ask whether thePs andQ above do in fact permute. We write

QP1 = (x, z)(y, u)(x, y)

and read off the result of the composition of permutations by starting on the right-hand side, w
elementy, and moving to the left:y becomesx, and thenx becomesz. Thus far we have

(y, z;
the repetition of this procedure shows that thez becomesx:

(y, z, x;
eventually we haveQP1 = (y, z, x, u). On the other hand,

P1Q = (x, y)(x, z)(y, u) = (u, x, z, y),

that is,not QP1.
Thus there is a serious logical gap at a crucial point in Cauchy’s proof.7 When looking for the reaso

for the failure, we see that the confusion arose from an inappropriate direct product.
Cauchy’s argument relies upon the assertion that (in modern terms) the direct product of two sub

of a group is a subgroup itself, but this assertion is only true if both are normal subgroups of the

7 The gap is passed over in silence in Dahan Dalmedico [1980, 301–303] and pointedly ignored by Waterhouse [1
note]: “The original paper has a minor slip: Cauchy was overhasty in treating the wreath product, and wrote that all e
in the group had orderp. The error is put right in the version published in theExercises = Oeuvres, (2) 13: 171–282 (see pp
221–235).” This cites the very pages (221–225) containing the specific example of noncommutingP s andQ reproduced above
In fact, two of three specific examples given by Cauchy here do not in fact commute, contrary to Cauchy’s claim.
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containing them both. It is not true in the generalization he presents here because the group gen
Q is not necessarily normal in the symmetric groupSn. That is, if all elementspi of the subgroupP and
all elementsqj of the subgroupQ of the containing groupG enjoy the property that

gp1g
−1 = p2

for all elementsg of G, then the product elementspq do generate a subgroup ofG, whose order is the
product of the orders ofP andQ.

When the question becomes, as in this case, one of finding the product of two subgroups, onl
which is known to be normal in the containing group, then the resulting subgroup, which still is
order of the product of the orders of the two subgroups, is constructed by means of a generaliz
the direct product, namely the semidirect product.

SupposeA andB two subgroups of a groupG, where onlyB is normal inG. We take each elemen
of the product of the two groups to be of the formaibj , so that the first group element comes from
normal subgroup (since we are discussing permutations of arrangements of letters, the permu
a normal subgroup of the symmetric group is applied first) and is then operated on by an elemen
other, not necessarily normal subgroup.

We proceed to multiply two elements of the product subgroup, call thema1b1 anda2b2; we want the
result to look likea3b3,

(a1b1) · (a2b2) = a1b1a2b2 = a1
(
a2a

−1
2

)
b1a2b2 = a1a2

(
a−1

2 b1a2
)
b2,

where, sinceB is normal inG, a−1
2 b1a2 is an element inB, so

= a3b3.

In taking the semidirect product, then, the element from the normal group is conjugated—(a−1
2 b1a2)—

with an element from the nonnormal group before it is multiplied. It is now no accident that theQ always
stays on the left in the table above.

Having accomplished, with deceptive clarity, the construction of a subgroup of prime-power
Cauchy proceeds to examine the characteristics of a system of conjugate substitutions of prim
order. Such groups are composed of powers of cyclic permutations, and he proves that in a cycl
of order divisible by the primep there always exists at least one element of orderp [Cauchy, 1845, 234]

When we turn to the construction of a subgroup of orderp within a not necessarily commutative grou
the proof is not at all so straightforward. Up to this point it seems reasonable to characterize C
presentation as extending Lagrange’s theorem, even if there are claims of commutative permutat
are unjustified. The remainder of the proof employs additional structure. It begins with the lemma

Let two systems of conjugate substitutions be formed from then variables

x,y, z, . . . ,

so that the first system,

1,P1,P2, . . . ,Pa−1,

is of ordera, and the second,

1,Q1,Q2, . . . ,Qb−1,
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is of orderb. Let I be the number of permutationsR which satisfy a symbolic equation of the form

RPh = QkR,

whereh, k are any given pair of integers, such that

a − 1� h � 1 and b − 1� k � 1.

Then the numberI , divided byab, will have the same remainder as the numbern! divided byab, so that

I ≡ n! (modab).

[Cauchy, 1845, 274]

The proof of this is not difficult, but seems a long way from an assertion of the existence of a su
of prime order dividing the order of the group.

At the start of the proof, Cauchy asks us to look at those permutations which cannot satisfy any
symbolic equation of similarity between permutations. Since there are onlyn! permutations in the entir
symmetric group as a whole, there are

J = n! − I

of these. The theorem is proved ifJ is a multiple ofab.
SupposeU to be a permutation of which this is true. Any combination

QkUPh

will be distinct from all other forms. If this were not the case, if there existed anyk, h, k′, andh′ such
that

QkUPh = Qk′UPh′,

then multiplying both sides by the respective inverses would give

UPhP
−1
h′ = Q−1

k Qk′U.

The PhP
−1
h′ will be one of the permutations contained within the systemPi ; and Q−1

k Qk′ within the
systemQj ; but this contradicts the assumption thatU couldnot satisfy any

UPi = QjU (unless bothP andQ are the identity).

Therefore there are no suchk, h, k′, h′. Since all of theQkUPh are distinct, there must beab such
combinations or derived permutations. SettingV as a second permutation enjoying the same prop
and using the same argument to show that allQk′V Ph′ must be distinct from allQkUPh, as well as the
fact that the total of derived permutations forV must be the same as forU , Cauchy concludes thatJ , the
total number of permutations which cannot satisfy the symbolic equation of similarity, must be a m
of ab.

This crucial step in Cauchy’s proof of his general theorem is the first appearance8 of double cosets in
mathematics. Just as we would today call the set of elements of a groupUPi , with i varying throughout
the closed subgroupP , a coset, so the structure under discussion here,PiUQj , is a double coset. Th

8 See Speiser [1937, 64], Waterhouse [1980, 282].
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lemma states that these double cosets partition a certain set of the elements of the symmetric gr
is, divide the set into distinct subsets. We have a name for the set which is partitioned, too: we s
subgroupsP andQ are conjugate if there existi, j such that

UPiU
−1 = Qj .

Were the condition on Cauchy’s system of conjugate substitutions a little stronger, that is, i
existedi, j such that

UPiU
−1 = Pj

for all elementsU in the symmetric group,P would be a normal subgroup, a concept approached
not grasped by Cauchy; it is central to, although not clearly articulated in, Galois [1846]. If Cau
suspected of making use of Galois, he has to be credited with following his own agenda.

From this lemma Cauchy can draw the logical corollary that if no such permutationR exists which
can satisfy a symbolic equation of similarity, that is, ifI = 0, thenJ = n! − I = n! andn! must now be
divisible byab.

The contrapositive of this first corollary is the second, that is, that ifn! cannot be divided by the produ
ab of the orders of two systems of conjugate substitutions (in our terms, subgroups),

P1,P2, . . . , Pa−1 and Q1,Q2, . . . ,Qb−1,

formed from subsets ofn distinct letters, then one or more of the substitutionsPh is similar to one or
more of the substitutionsQk.

We are now ready for the proof of the statement that there exists a subgroup of orderp for every
prime which divides the order of the group. Now the “first step” with which we began asserted that
always possible to form a system of conjugate substitutions—a subgroup of the symmetric gro
the orderpf , the highest power of the prime numberp which dividesn!, the order of the group. Let th
system

1,Q1,Q2, . . . ,Qb−1

be that special system whereb = pf . Let the order of the system

1,P1,P2, . . . , Pa−1

be a multiple of the prime numberp. (It is important to note here that theQ subgroup is commutative—
see above, pp. 6–7—while theP subgroup has a much less restrictive definition. Its elements do
necessarily commute.) In such a case, then, the productab of the orders of the two systems cann
divide n!, and at least one of theQs will be similar to—that is will be conjugate to, in modern terms—
least one of thePs. That two similar substitutions are the same order is so easy an inference that C
alluded to it in his definition of similarity.

Further, says Cauchy at this point, the system ofQs is a cyclic group, since it is of the order of a pow
of a prime number. Although the whole group is of the orderpf , a previous theorem [Cauchy, 1845, 23
235] had shown that at least one permutation in any cyclic group of the order of a multiple (let a
power) of a prime number will be of orderp. Therefore, he concludes, at least one of the permuta
P1,P2, . . . , Pa−1 will be a cyclic permutation of orderp.

It is in Cauchy’s final step that Dahan Dalmedico [1980, 303] detects a logical error. Although
is oneQi that is similar to a certainPj , she points out, Cauchy did not establish that particularQi was
of orderp. Still, she adds, the error was not fatal:
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But this error carries with it no consequence, since thisQi will be [of prime power order], of the orderpi , and a certain power of this
Qi will be of orderp . . .

and so will the same power of thePj which was similar toQi , be of orderp. It is this power of Pj , an
element of orderp, which can generate, in a cyclic fashion, a subgroup of orderp.

Dahan Dalmedico [1980, 303] draws attention to this seemingly minor lapse:

The indicated lack of precision may be due not only to too rapid publication, but may also testify to a certain vacillation in the
use made of global commutativity. This proof is revealing of Cauchy’s thought: in order to obtain a result regarding the system of
conjugate substitutions of orderM , he brings back the familiar symmetric groupSn, for which he now has quite a few results and
appropriate techniques. It [theproof—MM] remained in use for rather a long time, being incorporated whole into Jordan’s “Traité
des Substitutions”

and later Dahan Dalmedico [1980, 316] concludes that Cauchy’s role in the birth of group theory h
“misunderstood:” [Cauchy, 1845], stuck in the consideration of the special case of the symmetric
never examining the nature of subgroups or of the normality of a subgroup to the group containing
only influential in subsequent mathematics by the use to which it was put in Jordan [1870]. Citing
Dalmedico, Belhoste [1985, 207] judges that “Cauchy remained a prisoner of his calculation techn

3. Richard Dedekind

Thanks to a happy confluence of a high regard for the life of the mind and a metropolitan educ
establishment of a number of national engineering schools, Paris in the first half of the 19th c
served as the “mathematical capital of the world.” By the late 1840s, however, the best mathe
research had become more widely distributed.

A student of Gauss while an undergraduate (1850–1852) at Göttingen, Richard Dedekind was
to broaden his mathematical skills after taking a degree. He worked closely with Dirichlet when th
arrived in 1855, and this may have put Dedekind in touch with Liouville’sJournal. In any case, during
the winter 1857–1858 he gave a course on the Galois theory of the solubility of equations by m
finite groups.9

The manuscript pages of Dedekind’s writings of this period, published 16 years after his de
his Gesammelte mathematische Werke [Dedekind, 1932, 3: 439–445], attracted the attention of b
Nicholson [1993], for its pioneering enunciation of the concept of quotient group, and Water
[1980], for its statement of an original, abstract, proof of Cauchy’s theorem.

Dedekind marked his statement: Given a groupG of orderg, in which the prime numberp divides
g, there exists at least one element of orderp in G, with a question mark.10 He remarks that were th
theorem false, it would have to be so only forg � 6, so he proceeds by induction, making the assump
that the theorem is true for all groupsK of orderk < g. He observed next that the order ofG could be

9 This course was published in Scharlau [1981, 59–100], with explanatory notes by Scharlau (pp. 101–108). I th
anonymous referee for bringing this reference to my attention.

10 Waterhouse [1980, 288] considers this and the headline “Attempt at a proof” persuasive that Dedekind was not p
acquainted with Cauchy’s theorem. This would be unusual, given the immediate relevance of [Cauchy, 1845] to grou
Cauchy’s personal eminence, and Dedekind’s effort to become familiar with the most recent French work.
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g = pωn,

n not divisible byp, and wheren cannot be set equal to one, since clearly (einleuchtet) a group of prime
power order is going to have a subgroup of order of that prime. Recall, in comparison, that this is
sort of thing Cauchy took the trouble to prove in detail.

This subgroupK must be of order prime top, given the induction supposition. We next look at the
H of all elementsφ of G such that

φ−1Kφ = K,

noting thatH includes all ofG if K is a “proper” subgroup, a designation which echoes Galois’ t
“décomposition propre,” but is today a “normal” subgroup. ThisH is itself a group, and its order divide
the order ofG.11 Its degree must also be a multiple ofK , since we definedK as a normal subgroup ofH .
Dedekind writes

g = µh

h = νk

to denote the multiples of the orders of the groupsK andH . Either there exists a normal subgroup ofG

(and we will chooseK to be that one), orG contains no nontrivial normal subgroups.
SupposingK normal toG, g = h = νk. By the use of the fundamental concept of quotient gr

developed in the previous couple of pages,K partitionsG into ν distinct sets,

G = K0 + K1 + · · · + Kν−1,

each of which has the property of combining (that is,KαKβ = Kγ ), and so forms a group of orderν.
Sinceν = g/k = pω · n/k, wherek is prime top, the numberν must be divisible by a power ofp.
We then have a group of order less thang whose order is divisible byp, and which by the induction
hypothesis must have at least one element of orderp. Call it K1, which by definition is equal toφK ,
whereφ is some element ofG. K1 raised to thepth power recovers the identity element, which in t
case isK ,

(φK)p = K,

whenceφp is an element ofK , and the order to whichφ itself must be raised to recover the identity ofG

must consequently be a multiple ofp. By the induction hypothesis, the cyclic subgroup generatedφ
contains at least one element of orderp.

Alternatively, we may suppose thatG contains no nontrivial normal subgroup. Dedekind at this p
uses the fact that the order of every element of a group divides the order of the group.K can be a cyclic
subgroup, of orderd, let us say, containingφ(d) generators. All of thed ’s in the groupG must dividen,
and the product of the number of cyclic groups of orderd times the number of generators of orderd,
must equal the number of distinct elements in the group. Callψ(d) the number of cyclic subgroups o

11 Dedekind proved neither of these trivial statements, illustrating his awareness of the theorem of Lagrange. The setH , today
in general use in abstract group theory, is the “normalizer” of a group.
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orderd. Then, summing over all possible values ofd,

g =
∑

ψ(d)φ(d).

The subgroupH formed fromK is a proper subgroup ofG,12 and its orderh must be prime top. Since
g = µh, Dedekind concludes thatµ is always divisible bypω, no matter what the size ofK . Everything
done to this point is true, but then Dedekind’s notation fails him. He implicitly identified the indµ

of the normalizerH with the number of generators of cyclic groups of orderd, ψ(d). The unit elemen
being unique, and the only cyclic group of order one, he then rewrites the above, summing o
d ′ > 1,

(∗)g = 1+
∑

ψ
(
d ′)φ(

d ′)
or, substituting the values above,

pωn = 1+ pωm,

which is impossible. Thus there must be at least one nontrivial normal subgroup ofG, and the proof is
done.

Waterhouse [1980, 288] described this “strange but ingenious” proof as “of course never p
for publication,” but it is fairer to point out that there is no connection between the true statement
divisibility of µ by pω and its application to the right-hand side of (∗). The set of all elements ofG which
conjugateK do indeed form a partition ofG, but not necessarily into so many cyclic groups. We
this partition ofG by means of the normalizerH of K the “class equation,” using the term introduced
Frobenius [1887a]. The similarity of this classic presentation (discussed below in the section on
Miller) to that of Dedekind is striking. On 8 February 1895 Dedekind himself wrote to Frobenius

I have been quite taken (sehr gespannt) with your work on groups, especially with the simplicity of your methods, among others your
proof that every group whose degree is divisible by the primep contains an element of orderp. In the first years of my own study of
groups (1855–1858) I arrived at it by a much more complicated (umständlicheren) path [Dedekind, 1932, 2, 419].

Notice that even here Dedekind does not refer to what Frobenius had called Cauchy’s theorem
name. As shown above, Dedekind’s attempt at a proof is actually far from complicated; rather,
the final step contained in Frobenius’ presentation.

Dedekind does not mention it, but (as pointed out by Scharlau [1988, 44]) he proceeded dire
derive one of Sylow’s theorems in the same manuscript. He speaks throughout of groups in com
abstract terms, and has no need for a subgroup of the symmetric group in order to realize what
is.

4. Ludvig Sylow

The diffusion of mathematical research in group theory from Paris into Scandinavia also intim
involved Cauchy’s theorem, to some extent because so few mathematicians were doing researc

12 If H were not a proper subgroup ofG, thenK would be a normal subgroup, which was excluded.
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area, and they were virtually all known to one another.13 Of course, the logical connection was a
strong. In a marginal note not published in Galois [1846], Galois himself had written

Theorem. If the number of permutations of a group is divisible bypn (p being prime), the group will have, for a divisor, a group of
pn permutations (cited in Dieudonné [1978, 1: 117])

—the first of the three generalizations of Cauchy’s theorem proved in 1872 by the remarkable Nor
high-school teacher, Ludvig Sylow [Sylow, 1872], and now named after him.

Acquaintance with Cauchy’s theorem, and more generally with the Paris group of mathema
stimulated Sylow to his discoveries. Sylow started his mathematical career with the study of the
of equations in the unpublished works of his deceased countryman, Niels Henrik Abel, a study
led Sylow to the closely related work of Galois. It is of note that Galois himself referred to A14

in a passage in the unpublished “Preface” (to Galois [1846]) which has been interpreted by m
condemning Cauchy:

I must tell you [the reader] how manuscripts go astray in the portfolios of the members of the Institute, although I cannot in truth
conceive of such carelessness on the part of those who already have the death of Abel on their consciences. I do not want to co
myself with that illustrious mathematician but, suffice to say, I sent my memoir on the theory of equations to the Academy in Febru
of 1830 (in a less complete form in 1829) and it has been impossible to find them or get them back.

Sylow’s selection of Galois theory as a discipline within which to concentrate his efforts was con
by his 1861–1862 trip to Paris and Berlin. Cauchy had died four years before, but Sylow repo
the ministry which funded his trip that he had attended lectures by Liouville and had “made [hi
acquainted with newer works, particularly in the theory of equations” [Birkeland, 1996, 185]. Upo
return to Norway Sylow gave a lecture course at the University of Oslo on the central parts of Abe
Galois’ theory of equations.

The manuscript lecture notes, in Sylow’s own hand, contain the inquiry, right after the statem
Cauchy’s theorem, “What ifg is divisible bypn? Can the above be extended?” [Birkeland, 1996, 1
(we use letters for the variables corresponding to ones used above). While Sylow examined group
were of mathematical significance solely as Galois groups of a certain equation, as Scharlau
emphasizes, still Cauchy’s result appears as an explicit stimulus. In addition, Sylow operated
a subgroup of the symmetric group—just as Cauchy had—both in stating the special-case
theorems in 1867 and, in 1872, in his proof of the general ones. Tellingly, Sylow spoke not of a “gro
Galois’ word—but of a “system of conjugate substitutions”—Cauchy’s.

The story of how Sylow’s generalizations of Cauchy’s theorem came to be published at all
the direct influence of Paris mathematicians. Sylow had proved his theorems as early as 1870

13 In at least one case personal intervention brought notice of Cauchy [1845] to the attention of a creative contr
Galois theory. Beginning in 1852, complaining that Liouville had not provided the commentary he had promised in his 18
publication of Galois, Enrico Betti published a series of proofs of theorems enunciated there without proof. Betti cited a
[Cauchy, 1815] in 1852 but not [Cauchy, 1845];only in 1855, after a visit by J.J. Sylvester to Italy, did Betti, citing “the advic
of a great geometer who has honored me with his friendship,” make note of the more recent work of Cauchy, so close
to his own. See Toti Rigatelli [1989, 59–61].

14 Galois refers to an 1826 manuscript of Abel’s notoriously ignored by Cauchy, who also received Galois’ 1829 man
This English translation of the “Preface” is from Rothman [1982, 97]. Andrea Del Centina [2002] has just located the
pages of Abel’s original manuscript.



M. Meo / Historia Mathematica 31 (2004) 196–221 211

the
re both

ses of
is did.
tions
s, and
usible
d about
Cauchy

is worry
f Sylow
te as
roof of

utation
o other
a form
, 1984,
uchy

[Dahan

erful

to

870 Sylow
time but
withheld them from publication for at least two years until one of Liouville’s former students from
École Polytechnique, Camille Jordan, on a visit to Norway, assured Sylow that the theorems we
new and significant.15

Especially with respect to Sylow’s work, but also with respect to Dedekind’s, the question ari
why the techniques of Cauchy [1845] did not lead to the Sylow subgroups, but the work of Galo
To the insightful comments of Scharlau [1988, 43] that Galois’ project of the solubility of equa
by radicals led Sylow to a wide-ranging and penetrating study of the structure of finite group
therefore to a predominant role in the development of 19th-century group theory, I believe it pla
to add that the logical gap in Cauchy [1845] hindered advance by that avenue. Sylow wondere
generalizing Cauchy’s theorem as early as 1863; yet he did not construct Sylow subgroups as
had attempted. Sylow’s hesitations to publish may have arisen from modesty, but the fact is that h
that someone else had found a proof may easily have originated from the incorrect construction o
subgroups inSn in Cauchy [1845]. Qualified mathematicians considered the proof difficult. “As la
1878,” comments Waterhouse [1980, 281], “Netto could begin a paper with the remark that the p
Cauchy’s theorem was as recondite as that of Lagrange was simple.”

5. Camille Jordan

When the Paris mathematical school in the person of Camille Jordan synthesized perm
theory and Galois’ theory of equations and articulated the result in terms comprehensible t
mathematicians, the proof of Cauchy’s theorem was incorporated into the new structure, but in
that silently corrected its error. Dahan Dalmedico agrees with earlier writers (e.g., [Wussing, 1969
141–142]) on the history of group theory on the direct line of mathematical affiliation from Ca
[1845] and Galois [1846] to Jordan [1870]. Speaking of Jordan’s 1861 thesis, she notes:

Thus in this thesis and its appendix we find for the first time a comparative presentation of the two contributions, the two points of
view, of E. Galois and of A.-L. Cauchy [Dahan Dalmedico, 1980, 314–315]

and of an 1866 textbook presentation of the theory of permutations by Serret, she concludes
Dalmedico, 1980, p. 316]:

In fact, this edition of 1866 marks a sort of apogee for Cauchy’s studies on substitutions. Beginning with 1870, they only appear as
mediated by the work of Jordan. Although that scholar had at onetime relied upon the mathematical techniques devised by Cauchy
with considerable success, nevertheless the intellectual re-creation of the originality of Galois by Camille Jordan proved so pow
that it absorbed Cauchy and all other protagonists.

The picture resembles Euclid’sElements in its ability to erase the memory of previous contributions
the mathematical theory of groups.

15 See Lutzen [1992, 442–443, 446], where in a letter to his Danish colleague Julius Petersen dated 13 September 1
stated, “I am able to prove this using a theorem from the theory of substitutions which I have already known for a long
I have not published.”
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Engaged as we have seen in a much larger enterprise than simply combining the ideas of Ga
Cauchy, Jordan does not hesitate to improve the proof of Cauchy’s theorem. “This beautiful theor
announces “is due to Cauchy, who proved it pretty much as follows:. . .” [Jordan, 1870, 26].

Given any two groups (let us call them, recalling Cauchy,P andQ) contained in a third groupJ , of
ordersM , N , andO, respectively; then Jordan’s “Lemma I” states that the number of substitutioU

which satisfy no relation of the form

PhU = UQk

is either zero or a multiple ofMN . Just as Cauchy had, so Jordan showed that any permutatiU

fulfilling the condition generatedMN “derived” permutations of the form

PhUQk

(as the indicesh andk run through theM andN possibilities) is distinct from all others of that form. F
if, for someh, h′, k, k′,

PhUQk = Ph′UQk′

were true, then multiplication by inverses would give

P −1
h Ph′U = UQkQ

−1
k′ ,

which is of the form

PiU = UQj

for somei, j ; a form impossible by supposition. A second permutationV which can satisfy the sam
condition, if such a permutation exists and is distinct fromU , will also generate a group of orderMN ,
distinct from each other and from the group generated byU .

Thus Jordan’s proof for this lemma is indeed “pretty much” the same as Cauchy’s, althoug
deployed in order to prove the relationship directly, without the use of modular arithmetic with w
Cauchy graced his statement of the original theorem. Jordan draws the same corollary from this le
that if no permutation ofQ is “similar” to any permutation ofP , then the orderO of the containing group
is divisible byMN .

Jordan’s second lemma also looks familiar: ifp is a prime number andpf the highest power ofp
which dividesn!, then one can construct a subgroup of orderpf from the group of permutations amon
n letters. His proof, however, differs substantially from Cauchy’s construction of permutations o
first kind,” of “the second kind,” and the resulting sum resulting from reindexing. Rather, it both side
the erroneous assurance of commutative permutations and introduces a semidirect product in
which employs the use of induction onf .

Supposen < p. The highest power ofp that dividesn! isp0 = 1. This subgroup is the identity elemen
and its existence satisfies the lemma forf = 0. From now on we must haven > p.

Now let us suppose that the lemma is true for all powers ofp less thanpf ; we will show it true forpf .
Note that any whole numbern which is larger thanpf yet smaller thanpf+1 can be written as

n = qp + r,

whereq < pf andr < p. Let us then focus on theq · p of the givenn letters and partition them int
q sets(a, b, c, . . . , a1, b1, c1, . . .) of p letters each.
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Call P the permutation that circulates the lettersa, b, c, . . . , without displacing any;P1 is the cyclic
permutation ofa1, b1, c1, . . . , and so on. (These correspond to the “first kind” of Cauchy.) We
have the groupT (= ta, tb, tc, . . .) composed of the circular replacements among theq systems of
the corresponding letters. (These are Cauchy’s “second kind.”) The groupG derived from all possible
combinations of theseP,P1, . . . , and ofT will have, Jordan asserts, elements of the form

tµP αP
β

1 · · · .
Suppose this were not so, and there were an elementP αtµP βP

γ

1 · · · , that is, an element which did no
have its element ofT written on the left and could be written in no other way. This would equal

tµt−1
µ P αtµP βP

γ

1 · · ·
with [t−1

µ P αtµ] equivalent to someP α
i . This fact follows from what has been proved previously, but

reader gets a concrete example “pour fixer les idées”: iftµ replaces each of the lettersa, b, c, . . . , with
the lettersa1, b1, c1, . . . , then (proceeding from the left, following Jordan)

t−1
µ replacesa1 with a;
P replacesa with b;
tµ replacesb with b1;

which of course equals the action ofP1 (a1 → b1).
Now, how many distinct elements are there in the groupG of the formtµP αP

β

1 · · ·? If M is the order
of the groupT , the order ofG = Mpq ; and since one can construct, by the induction hypothesis, fo
largest powerpσ contained inq! (where we selectedq < pf ) a groupT of orderpσ , the total comes to

pσ+q = pf ,

which was to be proved.
With these two lemmas Jordan proceeded to the proof of Cauchy’s theorem, that there exist

group of orderp for every prime numberp dividing the order of the group. He did not construct suc
subgroup of orderp, however; rather, he consideredH , defined as that subgroup of the symmetric gro
of n letters which contains no permutation of orderp. Nor can any be a multiple ofp, for a permutation
of orderλp, raised to the powerλ, would be of orderp, excluded by hypothesis.

All of the permutations of the subgroupG, the existence of which has just been demonstrated, mu
contrast dividepf , the order of the group,16 and so be a power ofp. None of the permutations containe
in G, therefore, are similar to any of the permutations inH .

By the corollary to Lemma I, the product of the orders ofG andH must now divide the order of th
group containing both of them. Since the symmetric group ofn letters is of ordern!, we have that the
order ofH divides

1 · 2 · 3· · ·n
pf

,

16 This is true by the theorem of Lagrange, that the order of a subgroup must divide the order of the group, which imm
precedes Cauchy’s theorem in Jordan [1870]. Ironically, the circumstance that Jordan titled the section “The theorems of
Lagrange and Cauchy” led Kiernan [1971, 96] to state erroneously that Jordan attributed Lagrange’s theorem jointly to L
and Cauchy.
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and so contains no factor ofp.
With such a statement, Jordan’s proof is complete: the statement that all groups which con

element of orderp have orders that are prime top is the contrapositive of the statement that all gro
whose order is divisible byp contain at least one element (and therefore a cyclic subgroup) of ordep.

With its use of the subgroups of the symmetric group of permutations onn arbitrary letters, its
deployment of double cosets and its general strategy, [Jordan, 1870] resembles Cauchy’s p
circumvents the logical gap pointed out above, since Jordan’s process of correction circumvented
section of Cauchy’s proof. From the point of view of Sylow (or of Dedekind) hypothetically attem
to modify [Cauchy, 1845] just enough to obtain Sylow’s result as an extension of it, it is interestin
Jordan’s silent emendation of 1870 did not lead him, more than a year after publication, to tell
that his first theorem was contained in Jordan’s second lemma cited above. This suggests to me
preference for Galois theory over permutation group theory is not the only reason [Cauchy, 1845]
lead directly to Sylow’s theorems; the logical tangle in the proof was substantial.

6. George A. Miller

Cauchy’s theorem went into eclipse with the arrival of the abstract conception of group t
Once Walther Dyck’s work [Dyck, 1882] enunciated with precision ideas which were already w
shared, it was only two years until Georg Frobenius found a proof of Sylow’s first theorem which
neither the subgroups of the symmetric group nor Cauchy’s theorem nor his construction of a
case of Sylow subgroups. That “class-equation” proof of Frobenius became standard, so much
subsequent textbooks on group theory, since Sylow’s theorems have far more mathematical cons
than Cauchy’s theorem, typically relegated the latter to a footnote.

Scharlau [1988, 49] warns us of the danger of an overemphasis on the mutual incompre
between the permutation-theoretic view of groups and the abstract view; nevertheless, Wussing’s
of a reworking of permutation-theoretic results within the framework of the abstract group t
[Wussing, 1984, 243–244] goes far to answer Waterhouse’s [1980, 279] question of what Froben
up to when in 1884 he reproved Sylow’s theorem. Thomas Hawkins [1981] adds explanatory powe
he displays Frobenius as a member of the “Berlin School” of mathematics, producing proofs in a
without appeal to “generic” argument.17 Hawkins refers to the example of Karl Weierstrass, who
acted as Frobenius’ thesis advisor and in 1868 carried out an exhaustive study of the elementary
in quadratic and bilinear forms. He quotes Leopold Kronecker in disapproval of “generic” reas
Frobenius cites Kronecker prominently in both [Frobenius, 1887a, 1887b] of the papers he dev
reproving Sylow’s theorem, papers which appeared in a journal edited, in Berlin, by Kroneck
Weierstrass.

William Waterhouse’s penetrating study [Waterhouse, 1980] of the early proofs of Sylow’s the
develops all the major lines of mathematical argument in Frobenius; it is of note here that those lin

17 As a possible example of what style of algebra was to be avoided, I propose E.E. Kummer, who retired from the
mathematics in Berlin only in 1884, and who, to quote Edwards [1977, 382], “was chronically optimistic. He attacked pr
by means of “induction,” that is, by extensive numerical computations of specific examples, from which he would then
the theorems to be proved; once he became convinced that a particular statement was true, he was prone to overlook deficien
in his proof of it.”
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implicitly demonstrate Cauchy’s theorem. Frobenius mentions Cauchy only to specify what he w
banish from his assumptions.

The implicit inclusion was clear enough for Dedekind to compare the line of proof to his own wo
Cauchy’s theorem in the letter to Frobenius cited above,18 and it was also clear enough for the Americ
mathematician George A. Miller to elaborate into a proof specifically of Cauchy’s theorem, noting
main features of this method of proof are due to Frobenius” [Miller, 1898, 323]. It is Miller’s exp
application of Frobenius which appears in, among others, the textbooks of Hall [1959, 43–44], H
[1964, 74], and Birkhoff and Mac Lane [1967, 468], but we must note that, with Frobenius’ p
Cauchy’s theorem had entered the ranks of elementary results, of interest only to beginners i
theory and those who teach them.

Miller himself inserted the proof at the beginning of a paper “On an Extension of Sylow’s Theo
with the laconic comment that “Since we shall employ Cauchy’s theorem in what follows it s
desirable to give a simple proof of it.”

Suppose the groupG, whose order is divisible by a prime numberp, is Abelian. If this group is
generated by a single element of ordernp, then that single element(s)np = (sn)p = 1, and the elementsn

is of orderp, as desired. An Abelian group generated by a set of elementss1, s2, . . . , sr cannot have an
order which is divisible byp unless some one of the commuting elements is of an order divisiblep.
Some power of that element will then be of orderp.

So suppose thatG is non-Abelian. Then make the induction assumption that the theorem is true
groups of order less thannp, and proceed to prove it true for a group of ordernp.

Following Frobenius, Miller forms what we now call the normalizer ofG: “the largest subgroup ofG
that transforms a given [element] into itself,” that is,{g ∈ G | gag−1 = a} ≡ N(a). The index ofN(a)

in G, in modern notation|G|/|N(a)|, Miller states without proof, is the number of conjugates of t
elementa. In his proof, Frobenius devoted a few sentences to persuade his reader of this result, n
so that the proof could stand alone. The normalizer was as we have seen important in the elabo
Galois theory, and it had been in use since Jordan’s day. Almost 30 years later Miller feels that
take its partitioning ofG for granted.

The order ofG is then equal to the sum of all the classes—the word was introduced by Frobeniu
the elements ofG,

|G| = |G|/|N(e)| + |G|/|N(a)| + · · · ;
in Miller’s notation,

(∗)g = g/g1 + g/g2 + · · · + g/gk.

Miller points out thatg1, certainly, and perhaps other normalizers have an index of 1. That is, a
elements ofG which commute with all the elements ofG, a set which we now term the center ofG,
form an Abelian subgroup ofG. “If the order of this subgroup is not divisible byp somegβ < g must be
divisible byp, since the second member of (∗) must be divisible by this number,” concludes Miller. H
then goes on with the first theorem of his own.

18 Hawkins [1971, 143] credits this same letter of 8 February 1895 from Dedekind to Frobenius with stimulating the
develop his theory of group characters.
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As with Cauchy, as with Dedekind, the last sentence of Miller’s proof glides over a step. Let u
at it more closely. We have a series of ones on the right-hand side of the class equation (∗),

g = 1+ 1+ · · · + 1+ g/gm+1 + · · · + g/gk,

let us saym of them, and the question is whether the sum of these ones is divisible byp. By hypothesis
the orders of the normalizers

gm+1, . . . , gk

are none of them divisible byp (else the theorem would be proved), so each of the quotients

g/gm+1, . . . , g/gk

has a numerator divisible byp and a denominator which is not. Each quotient must therefore be div
by p, and the sum of all the nonunit quotients must also be divisible byp. With g itself divisible byp,
and all the nonunit quotients divisible byp, we must have acenter divisible byp. It is therefore possible
to find in the Abelian subgroup an element of orderp, as already shown.

In contrast to those of Cauchy and of Dedekind, one senses that the minor slip in Miller’s prese
has nothing to do with a struggle with inadequate notation or novel mathematical structures; the p
Cauchy’s theorem has become a preliminary to be disposed of on the way to something of more p
interest. A reader of Weber’s influential textbook [Weber, 1894, second ed. 1898] or that of Bu
[1897, second ed. 1911] finds Sylow’s theorems proved, in each case with full credit to Froben
his class equation, but Cauchy’s theorem mentioned only in a footnote or in a corollary to the first
theorem. Indeed, in Miller’s own monograph on the theory of finite groups [Miller et al., 1916], w
with frequent historic asides Sylow’s theorem is proved twice, once with double cosets and onc
a class equation, Cauchy’s theorem is mentioned once in passing and its proof is never adduced19

7. James H. McKay

In an unusually discursive “Preface” to an undergraduate textbook, Saunders Mac Lane and
Birkhoff [1967, v–ix], both of whom have had distinguished research and pedagogical careers,
the history, not so much of algebra as of its instruction in U.S. universities. Axiomatic modern al
which unifies so many branches of higher mathematics, made its way into the graduate curriculu
B.L. van der Waerden’s influentialModerne Algebra during the 1930s. Undergraduate instruction in
same subject followed during the ‘40s and ‘50s.

As noted above, Cauchy’s theorem only reappears in the last of those decades, for the reason,
that the undergraduate instruction of abstract algebra has the need to develop an appreciatio
better the capacity to construct, a mathematical proof. The presentation of a proof for Cauchy’s th
followed by a separate proof for the related generalization Sylow’s theorem, helps to develop this
in stages.

19 This in spite of the fact that Cajori’s evaluation of Cauchy as the founder of the theory of finite groups cites Miller as it
source.
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Textbook writers tend to take ideas from one another without attribution much more frequentl
researchers do, and I have not yet found the route from Miller’s formulation of the Frobenius
equation proof to its use in the undergraduate textbooks of the 1950s. On the other hand, there i
trail for the beautifully compact proof now most commonly used [McKay, 1959]. It went from an ori
version which displayed a maximum of simplicity, to a graduate student version which recast it in
modern mathematical tools, to an undergraduate version. The audience is now the university stud
the form of proof changes according to the pedagogical purpose at hand.

In polished, lapidary form—nine sentences, of an average of 11 words each—McKay [1959
made use of a special class equation. Given the groupG of orderg, divisible by the primep; we want to
show that there arekp elements ofG satisfying the equationxp = 1.

Form thenS, the set ofp-tuples of elements ofG which have the property that, when all multiplie
together, they equal the identity

S = {
(a1, . . . , ap) | a1a2 · · ·ap = 1

}
.

The firstp − 1 members of thisp-tuple can be any elements, but the last one is fixed; it has to b
inverse of that element which is the product of the firstp−1 components. The setS, as a result, can hav
at mostgp−1 members.

Define an equivalence relation onS by saying twop-tuples are equivalent if one is a cyclic permutation of the other. If all components
of a p-tuple are equal then its equivalence class contains only one member. Otherwise, if two components of ap-tuple are distinct,
there arep members in the equivalence class.

More than two components can be different, of course; there are justp distinguishable circula
permutations ofp elements, at least two of which are distinct.

Thep-tuples composed of all the same element are solutions to the equationxp = 1. Let us suppose
there arer of those. Of thep-tuples with at least two distinct elements, let us say there ares. That of
course exhausts the possibilities, so, using these two equivalence classes as a way to count the n
p-tuples which are members of the setS,

r + sp = gp−1.

Sincep dividesg, it divides the right-hand side; in order to divide the left-hand side we must hap

dividesr . Thus there arekp = r elements ofG for which xp = 1.
Thereis a class equation, with the same bunch of ones on one side and a number divisible byp on the

other, but we do not have to form a normalizer or quotient groups or talk about abstract congruen
Abelian special case, no reduction of the general case to the special—this is probably the simples
form of the proof of Cauchy’s theorem.

Introductory mathematical pedagogy at the university level, however, is not characterized com
by the effort to make it easily digestible. As Thomas Kuhn [1970] emphasized, textbook writers p
the student for autonomous problem-solving as quickly as possible. A shift of point of view at the re
level requires the introduction of the new “paradigm” down to the entry level. “Recent years hav
striking developments in the conceptual organization of Mathematics,” begin Mac Lane and B
[1967] in the preface previously cited, with a somewhat pretentious capital letter. They continue
specifying the developments,

This book proposes to present algebra for undergraduates on the basis of these new insights. In order to combine the standard material
with the new, it seemed best to make a wholly new start. [Mac Lane and Birkhoff, 1967, vi]



218 M. Meo / Historia Mathematica 31 (2004) 196–221

ng ago,
, 410].

ntations
matical
nique of
e

e,

g
is

bits.
rms,

ed

ll.

not

c

t
e

ly a si-
s well.
auchy.
and an

t use of
As another distinguished mathematician and pedagogue, Anthony W. Knapp, indicated not lo
group representations “play a critical role” in many areas of modern mathematics [Knapp, 1996
The classic work of Frobenius initiated modern study of the topic, but we express group represe
today in terms of group action on a vector space. In short, in order to employ the current mathe
tools as soon as possible, McKay’s proof of Cauchy’s theorem has been rewritten using the tech
group action, first at the graduate level [Hungerford, 1974, 93]20 and then, with explicit citation of th
filiation, at the undergraduate [Fraleigh, 1989, 190–203]. Here is how the latter does this.

We begin with the definition. IfX is any set andG is a group, the group action ofG onX is a map from
X to X such that the group identity makes no change in any element ofX and the action is associativ
that is,

(g1g2)(x) = g1(g2x)

for all g in G andx in X. We show that the group action partitionsX into equivalence classes, callin
the class containing a particularx its “orbit,” denotedGx. We then rewrite the class equation in th
notation. The number of elements in the setX equals the sum of the number of elements in the or
Some orbits, like the identity element inG, have one-element orbits. Separate the orbits into two te
then, the number of one-element orbitsXG and the orbits with more than one element, designatedGxi :

|X| = |XG| +
∑

|Gxi |.
If now the prime numberp divides the groupG, then it will divide the number of elements contain

in a single nonunit orbit,Gxi for any particular value ofi (sinceGxi runs through all ofG). It will
thus divide the sum of such numbers, the second term on the right-hand side. If ever we have ap which
divides|X|, the order of the set, it will thus have to divide the number of one-element orbits as we

The translation of McKay [1959] is now straightforward. The setX is the set ofp-tuples, on which
the “group action” is the cyclical permutation of thep components of eachp-tuple. This group action
represents a group of orderp, each of which shifts thep-tuple by one place. The group identity does
shift anything at all. The machinery clanks and squeaks a little, since ouroriginal group, which we have
always designatedG and which we are assuming has an order divisible byp, is quite distinct from the
group which in our proof forms the group action. Fraleigh uses the Greek letterσ to designate the cycli
permutation of orderp.

All we have to do is set up the class equation in the new terms.|X| is divisible by p—it is a set
of p-tuples. The number of one-element orbits|XG| is thus also divisible byp. It is nonzero, since i
includes the identity element. So there are elementsa �= e such that(a)p = e or identity; that is, there ar
subgroups of orderp.

Our exercise at translation is not without its merit, since the patient reader will agree how easi
milar translation into group action terms could be accomplished for the Frobenius–Miller proof a
However, such a translation is not possible, it seems to me, for the original double-coset proof of C
That proof contains no class equation and, after all, relies upon properties of the symmetric group
especially-constructed subgroup of order the highest power ofp which will divide n factorial (just the
“generic reasoning” Weierstrass opposed). The original proof of Cauchy, however, is also the firs

20 In a footnote Hungerford credits R.J. Nunke for the line of proof, so I believe Nunke suggested the rewriting.
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the wreath product, named and popularized in 1937 by the Hungarian–American mathematician
Pólya.21

At the end of our transit of the mathematical life of Cauchy’s theorem, then, reflecting on the
surprises therein—the sensational suspicion of plagiarism at its birth, the foreshadow of Frobeniu
in the unpublished papers of Dedekind, the near-disappearance of the theorem and its resuscita
vehicle to teach undergraduates how to prove a result—perhaps the greatest one of all is the fac
56-year-old baron, “writing his mathematics during one week, giving his manuscript to the secr
of the Academy at the Monday meeting the next week, and seeing his notes published the next
after that” [Neumann, 1989, 296], retains his unique originality of method after 150 years.
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