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Abstract

Cauchy’s theorem on the order of finite groups is a fixture of elementary course work in abstract algebra today:
its proof is a straightforward exercise in the application of general mathematical tools. The initial proof by Cauchy,
however, was unprecedented in its complex computationdving permutational group theory and contained
an egregious error. A direct inspiration to Sylow’s theorem, Cauchy’s theorem was reworked by R. Dedekind,
G.F. Frobenius, C. Jordan, and J.H. McKay in ever more natural, concise terms. Its most succinct form employs
just the structure lacking in Cauchy’s original proof—the wreath product.
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Résumé

Aujourd’hui le théoreme de Cauchy sur 'ordre desupes finis est énoncé dans tous les manuels d’algébre
abstraite et sa démonstration se réduit a un simple exercice d’application d'outils mathématiques généraux.
La démonstration originale donnée par Cauchy comportait, en revanche, des calculs complexes de groupes de
permutations et contenait au fond une erreur. Ce théorgmoece directe d’inspiration pour le théoréme de Sylow,
est énoncé en termes de plus en plus naturels par R. Dedekind, G.F. Frobenius, C. Jordan, et J.H. McKay. Sa
forme plus concise emploie précisément I'outil manquiarts la démonstration originale de Cauchy—Ie produit
en couronne.
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1. Introduction

Almost all university departments of mathematics in the U.S. require abstract algebra at an entry
level, and motivational sections in textbooks frequently explain how the theorems arose—Lagrange’s
theorem in the search for the solution to the fifth-degree algebraic equation, for example, or Cayley’s
theorem in the effort to give an abstract definition of the concept of groups. On the other hand, Cauchy’s
group theorem, that to every prime numbethat divides the order of a finite group there corresponds a
subgroup of ordep, even though of historic importance, receives a treatment completely divorced from
its original context. This paper attempts to correct and to explain that silence.

Cauchy’s original proof of his theorem contained a significant logical gap. At least one knowledgeable
contemporary complained of the proof’s obscurity. Ludvig Sylow’s extension of it, and Georg Ferdinand
Frobenius’ more abstract proof, both avoided the method of Cauchy’s original proof, a method we now
call the wreath product. In the 20th century, the wreath product was correctly characterized and served
as the basis for the most recent proofs of Cauchy’s theorem.

It is a well-worn commonplace of the history of science that the initial statement of a scientific finding
is often partial and confused, leaving to later investigators the opportunity to clarify, generalize, and
simplify. Onebon mot has it that “a mathematician’s reputation rests on the number of bad proofs he
has given” [Littlewood, 1953, 41], but the problem is not limited to mathematics. Sir Isaac Newton’s
original demonstration that the orbital motions of the planets of the solar system are governed by a
force which varies as the inverse square of distance is notorious for its obscurity, continuing to evoke
controversy among scholars to our own day, while introductory textbooks dispose of it in a couple of
pages- Rafael Bombelli introduced the algebra of the complex numbers in the 16th century, but the
subject remained obscure until the early 19th century, with Jean Robert Argand’s and Carl Friedrich
Gauss’ independent graphical geometrical representation of complex numbers—and Cauchy’s own fertile
use of it in mathematical analysis during the 1820s. Cauchy’s theorem in permutation groups, which
constituted the major conclusion of the 101 p&ges“Mémoire sur les arrangements que l'on peut
former avec des lettres données” [Cauchy, 1845], occupies a grand total of ten lines in McKay [1959].
Nil mirari, we might say. There is nothing to be wondered at here.

On the other hand, the work of which this theorem was the main result was a milestone in the
development of abstract algebra. You might call it the first nontrivial result in permutation groups.
Cajori [1919, 352] flatly states “Cauchy has been given the credit of being the founder of groups of
finite order;” according to Kiernan [1971, 97], “Here finally was a man of stature in mathematics who
thought it worthwhile to publish extensively on the question of permutations.” It appeared just before
the posthumous publication of Galois [1846] in Joseph Liouvillesrnal de mathématiques pures et
appliquées, and the two publications together have recently been characterized as “the two sources that
introduced group theory to mathematics” [Neumann, 1989, 293].

Several recent works have disagreed on the stimulus for Cauchy’s publication. The 56-year-old baron
already had hundreds of contributions, in dozens of different mathematical areas. He dominated the
mathematical section of the Paris Academy of Sciences, but had not discussed permutations for 30 years.

1 The contrast between the original statement and modern proofs (although not the scholarly controversy) appears in succinct
form in Pourciau [1997].

2 That was the length of the original article in a learned jourimathe 1932 edition of @uchy’s collected works (cited here)
the article occupies 111 pages. Translations in this paper not credited to other scholars are my own.



198 M. Meo / Historia Mathematica 31 (2004) 196221

Kiernan [1971, 97] speculated that it was in order to forestall the soon-to-be-published results of Galois
that Cauchy brought out his prolix, inelegant, although beautiful, re$ults.

Against that suggestion, Dahan Dalmedico [1980] attempted by means of a painstaking study of
mathematical styles to distinguish clearly between the two approaches to group theory of Galois and
Cauchy. She found the former to display “a suppleness and a power of articulation and analysis which
remained absolutely foreign to the point of view of Cauchy” [Dahan Dalmedico, 1980, 296]. Still, she
found undeniable mathematical connections. Not only were the problems Cauchy handled at several
points very close to those of Galois—Galois had specifically stated Cauchy’s theorem without proof
in an unpublished manuscript. It also happened that Cauchy once where his method resembled Galois’
gave credit instead to Charles Hermite, who was at about that time attending Liouville’s lectures about
Galois’ unpublished manuscripts [Cauchy, 1845/1846, X, 459]. Citing [Dahan Dalmedico, 1980] as her
main source, Toti Rigatelli [1989, 46] inquired rhetorically whether Cauchy had asked Liouville to delay
publication of Galois’ work until he produced his own.

Such hypotheses seem to slight the fact that Cauchy gave an explicit reason for presenting his
results: the 23-year-old J.L.F. Bertrand had submitted to the Academy a proof of a conjecture appearing
in Cauchy [1815], that the (what we would today call) order of a (nontrivial) permutation group on
n elements is at least. Appointed to evaluate the validity and originality of the work for the Academy,
Cauchy submitted 25 separate papers of his own, between 15 September 1845 and 11 April 1846,
almost 300 pages in all, recording “some of the most notable propositions to which [he had] arrived,”
in extending his 1815 result and that of Bertrand.

It was under still highly contested circumstances, then, that Augustin-Louis Cauchy, the dominant
French mathematician of his generation, producedvidsire. Let us begin with an examination of
Cauchy’s own reasoning, and then follow how the proof has changed with time. Cauchy’s theorem was
generalized, then made more abstract, well before it was simplified in its present form. For a long time it
was submerged. It has had an interesting career.

2. Cauchy’s proof

Cauchy [1845] begins with a presentation of the notation that had first appeared in Cauchy [1815]
to denote permutations, notation that has since become standard. Cauchy distinguished between the
arrangement of a set of letters and the permutations—or, synonymously, “substitutions”—which operate
on them. If the three letters

X, ¥, Z

3 He has been echoed in this by other authorities, a recemy@rabeing Scholz [1990, 387].aDchy practiced a pious
Catholicism and held strictly ggtimist monarchial views; if he did take the id&a his theorem from Galis without attribution
he would have had a political motive for it. (Perhaps a felig motive, as well; GratteGuiness [2000, 482—-483] presents an
argument for Cauchy’s mathematics “emulating” his Christianity in its rigor and claim to absolute truth.) The Revolution of
1830 that established a cadet branch of the Bourbons sent Cauchy into eight years of self-imposed exile; but it was denounced
by Galois because it did not abolish the monarchy altogether. The talented youth’s protests led to a prison sentence. Nor was
contemporary practice of mathematiwithout a political impact; see Mazzofti998] for the situation in the Kingdom of
Naples at about this time.
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are rearranged as

y’va’

the permutation is the operation

y z X
x vy z)

where the arrangement on the bottom line is replaced with the arrangement on the top line. This particular
permutation, since it shifts the letters while retaining the same order, is named by Cgelohgnd given
the alternate representation

(x,y,2).

Permutations of a set of letters have a given order; that is, a given number of repetitions will
generate identity. For example, by repeating our sample permutation three times the letters of the initial
arrangement will have returned to their starting positions. This order is written aptly as an exponent.
“Nothing prevents,” Cauchy [1845, 185] comments, “the representation of substitutions by simple letters

P,O,R,...
a representation which results in
(x.y.2°=P°=1

denoting the situation succinctly and unambiguously. The permut&tisrthird-order.

Well aware of the great advantages of his clearer notation, Cauchy elsewhere compared it to the
differential notation of calculus introduced by Leibniz [Cauchy, 1845/1846, 10: 35-36]. The focus of
study now became permutations rather than the arrangements of letters. The permutation which changes
nothing is a natural identity element, and that permutation which retBris the identity element is
its inverse,P~1. All these results from Cauchy’s 1815 paper on permutations were reiterated without
reference to the earlier wofk.

Cauchy’s theorem concerns the permutations or substitutions (Cauchy employs both terms, but prefers
the latter) o letters, the composition of which generate a closed system by sequential performance.
Writing down a composition repeats the order of their operation. That is, the permutafmowed by
the permutationP—uwritten asP Q—is again a permutation. Applying one permutation after another is
for Cauchy a “conjugation,” a joining, so he is dealing with a “system of conjugate substitutions” where
we speak of a group.

For every prime numbep that divides the order of a system of conjugate substitutions, then, Cauchy’s
theorem states that there exists among the elements of that system at least one regular substitution of
order p. Cauchy does not use the notion of a subgroup. In contrast to notation, however, since Cauchy’s
day the meaning of the crucial term “regular permutation” has changed: for him a regular permutation is

4 With respect to Galois, in contrast, both Kiernan [1971, 82-83] and van der Waerden [1985, 107] agree with Dahan
Dalmedico [1980, 286] that his inconsistent terminology made his revolutionary papers difficult for his contemporaries to
understand.

5 Galois had used the word “group” to dedijust this situation in a per written in 1830 and being prepared for publication
by Liouville in the period during whih [Cauchy, 1845] was in preparation.
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cyclic, either of a single component or a product of several disjoint components, all of the same order.
One of the first theorems proved in the 184Bmaire is that it is possible to write any permutation as a
product of disjoint cycles; once that is done, all permutations are taken in that form.

If a permutation is of prime order, it is “primitive;” one of the first consequences of these definitions
is that all primitive permutations are regular, but not conversely. Cauchy calls two permutations on a
given set of letters “similar” if they have the same number of cycles, with the same number of letters in
corresponding cycles, so that each pair of corresponding cycles have the same order. He then proves the
relation that, ifP and Q are related by

RP=QR

by means of a third permutatioR, then they are similar. In contrast, we currently define similarity by
means of the equation and then use it to prove the correspondence of disjoint cycles.

Cauchy included a variety of results about groups of permutations—conjugate systems of substituti-
ons—in his great 1845 memoir, but he begins the section devoted to the proof of his pioneering theorem
with a statement of Lagrange’s theorem, that (in today’s terms) every subgroup divides the order of the
group. On the very first page of his Memoir Cauchy had alluded to the fact that, in arranging a set of
n different letters, one would be able to make a choice amodifferent letters for the first position,
amongn — 1 for the second, and so on, with the result that

(m(n-D(n—-2)---(1) =n!

would be the total number of possible arrangementslefters—the order of our present-day “symmetric
group.” The permutations composing this conjugate system of substitutions appetfations on an
arbitrary initial arrangement which will produce each of thdinal arrangements.

Without making any direct reference to Lagrange, Cauchy [1845, 207] makes use of a tabular
display (for the first time in the paper) in his graphic and intuitive pfoGfiven a conjugate system
of substitutions, an arbitrary subgroup of the groum détters, if its orderM equals:!, we are done. If
it is less tham!, then there exist some permutationsnoletters that are not included in the system of
order M. We can write the members of the system of ortleone after another on one line,

17P,Q,R,---a

and form the multiples of each of them with the permutations that are not included],saw, . ...
The resulting two-dimensional array contains only distinct permutations

1 P 0 R
U UP UQ UR
1% VP VO VR
W WP WQ WR

and therefore:! is a multiple ofM.

6 The first use of a complete rectangular-array proof of Lagrange’s theorem has been attributed to Pietro Abbati in 1802, in
discussion of the work of Ruffini. In his 1815 paper Cauchy discussed Ruffini’'s work as well, employing an array similar to
Abbati’s. See Roth [2001, 103].
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Characteristically, Cauchy is careful to demonstrate that each of the permutations in the table must
indeed be distinct from any other; that the proof would also work if the order of multiplying permutations
were reversed; and that the order of any single permutation will divide the order of the group. His next
step was to construct a special system of conjugate permutations, one of prime-power order; that is, in
today’s language, to construct a Sylow subgroup of the symmetric group.

The claim is, that there exists a closed subgroup of this symmetric group, which has the order of the
power of a prime number. If

... p is a prime number, equal to or less than the greatest multiple of contained inz, and p/ the greatest power gf which
divides integrally the produet! =1-2-3---n
[then] with the numbet of arbitrarily chosen variables one can always construct a system of conjugate substitutions of the

orderp/.
[Cauchy, 1845, 221]

We begin the construction of the special system by considering a regular permutatidher letters
x,¥,2,..., whichmeans thaP contains a set of cyclical elements of the same order, let us say, oforder
If there areb such factors, then

n=ab.

Next, let us put then letters into a two-dimensional array where each power of the regular
permutationP occupies a given point on the horizontal. The result of the operation of each power of the
permutationP is a new arrangement of theletters, with each arrangement beginning with a different
one of theu letters, and the letters are placed one after another along the line. If instead of permutations
within each cyclic factor we permute one letter in a given set with a letter in another cyclic factor, we
generate a different permutation, which we can ¢allThe powers of the permutatiad replace just one
of the a letters with one of the letters which are not among the original set permutéd foy each of
thea lettersQ can replace it witlb others, distinct from the replacements generated by powePs loét
us arrange the powers @f in the vertical direction. Then an array of all possible derived permutations
of P and Q would look like

1 P p? pa-t

0 QP QP? Qpet

QZ QZP Q2P2 QZPa—l
Qb—l Qb—lP Qb—lPZ . . Qb—lPa—l

and constitute a system of conjugate substitutions of the arbleiThe two permutation® and QO
commute; that is,

PQ=QP,

since the first of these moves a given letter one space over and one space down, while the second moves
the same letter one space down and one space over, which is the same operation.

At this point, as quite frequently in tHdémoire, Cauchy pauses for an example, “pour fixer les idées,”
as he says. With six variables we have the array
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x’ ya Z
u, v, w

resulting in the regular permutations

P=(x,y,2)(u,v,w), 0= (x,u)(y,v)(z, w)
where, clearlyP® = 1 = Q2. The array of all possible derived permutations is then

1 P P?
0 opP QP?

which is a system of order 6.

Moreover, for any number = ab, wherea andb are primes, each of the derived permutatigiisP*,
where the powers andk are integral numbers less than the ordefsf Q) anda (of P), is distinct from
any other derived permutation.

The next step is to generalize the procedure. If the numliethe product of prime factors

n:a.b.c...’

recourse to the above construction will generate permutattansomposed of:/a cyclic units each
of ordera; R, of n/b cyclic factors each of length; S... so that the system of all possible derived
permutations, in the cage=b =c =---, has the order

n = al.
Nor need the permutations cover all of thietters with which we begin. If the numbeéu is a multiple
of a less than or equal te, we can form with theia letters theh disjoint cyclic permutations

P17P27""Ph7

each of order. The system of conjugate substitutions formed of these and their derived permutations
will be of ordera”.

If the number# is equal to or larger than the produdi, Cauchy points out, then from thiepermu-
tations P; of the “first kind” it will be possible to construdt permutations of the “second kind”

Ql’ Q27 AR Qk’

each of which will consist of permutations among the cyclic factors offfh& hat is, the permutations
P may be arranged ia blocks all on a horizontal, producing: different arrangements of theletters,
while the permutationg); each replace a letter in one of the distinct groups t¢étters by one of the
letters in another set distinct from thAt. Such permutation® ; will have k sets of cyclic components,
each of ordeb. They will commute with each other and with tlig, if they behave as the permutations
on the first array do, so that the system of conjugate substitutions will be of the order

a"b*.

From this point it should be clear that if we suppgséo be a prime number less thanand! the
multiple of p contained inn—that is, less than or equal i—Cauchy is able, using variables, to
construct a system of the order

pf"
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wherep/ is the largest number which divides. He is careful to clarify each of the details, but we can
already see the course of the proof.

“Pour fixer les idées,” let us use his first example [Cauchy, 1845, 222] of this theorem in action. With
a set of five letters, we use = 2. The multiple ofp contained i is 2p =i = 4, so we will be using
only four of the five letters. These may be written

X, Y,
Z! u7

which suggests the cyclic permutations

P1=(x,)’), P2=(Z,M)

of second order for the first kind. There are two of them (ikes 2), and their letters will be exchanged
by a permutation of the second kind,

0= (x,2)(y,u),
of which there is only one, sb= 1. The system of all possible derived permutations is
1 Pl P2 PlPZ

Q QPl QPZ QP]_PZ
of order eight. But 2% = 23 = 8 is the largest power of 2 which divide$5 120= (8)(5)(3).
So Cauchy argues. (Note that he changed the meaning of the permtatigieneralizing the initial,
correct result.) Suppose we ask whether BgeandQ above do in fact permute. We write
QP1=(x,2)(y, w)(x,y)
and read off the result of the composition of permutations by starting on the right-hand side, with the
elementy, and moving to the lefty becomest, and thent becomesg. Thus far we have
. z;
the repetition of this procedure shows that tHeecomes:

v, z, x;
eventually we have) P, = (y, z, x, u). On the other hand,

PlQ = (x’y)(x’ Z)(y’u) = (M,X,Z, )’),

that is,not Q P;.

Thus there is a serious logical gap at a crucial point in Cauchy’s prédtien looking for the reason
for the failure, we see that the confusion arose from an inappropriate direct product.

Cauchy’s argument relies upon the assertion that (in modern terms) the direct product of two subgroups
of a group is a subgroup itself, but this assertion is only true if both are normal subgroups of the group

7 The gap is passed over in silence in Dahan Dalmedico [1980, 301-303] and pointedly ignored by Waterhouse [1980, 282
note]: “The original paper has a minor slip: Cauchy was overhasty in treating the wreath product, and wrote that all elements
in the group had ordep. The error is put right in the version published in tBeercises = Oeuvres, (2) 13: 171-282 (see pp.
221-235).” This cites the very pages (221-225) containing the specific example of noncomAgiindQ reproduced above.

In fact, two of three specific examples given by Cauchy here do not in fact commute, contrary to Cauchy'’s claim.
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containing them both. It is not true in the generalization he presents here because the group generated by
Q is not necessarily normal in the symmetric graijp That is, if all elementg, of the subgroupP and
all elementsz; of the subgroup) of the containing grou enjoy the property that

gp1g ' =p2

for all elementsg of G, then the product elemenjs; do generate a subgroup 6f, whose order is the
product of the orders af and Q.

When the question becomes, as in this case, one of finding the product of two subgroups, only one of
which is known to be normal in the containing group, then the resulting subgroup, which still is of the
order of the product of the orders of the two subgroups, is constructed by means of a generalization of
the direct product, namely the semidirect product.

SupposeA and B two subgroups of a grou@, where onlyB is normal inG. We take each element
of the product of the two groups to be of the fotb;, so that the first group element comes from the
normal subgroup (since we are discussing permutations of arrangements of letters, the permutation of
a normal subgroup of the symmetric group is applied first) and is then operated on by an element of the
other, not necessarily normal subgroup.

We proceed to multiply two elements of the product subgroup, call thémanda,b,; we want the
result to look likeazba,

(a1by) - (azbp) = arbrarzby = ay(azay *)brazby = araz(ay *biaz)by,
where, sinceB is normal inG, az_lblaz is an element iB, so
= a3b3.

In taking the semidirect product, then, the element from the normal group is conjugatgtiyrea,)—
with an element from the nonnormal group before it is multiplied. It is now no accident théx éheays
stays on the left in the table above.

Having accomplished, with deceptive clarity, the construction of a subgroup of prime-power order,
Cauchy proceeds to examine the characteristics of a system of conjugate substitutions of prime-power
order. Such groups are composed of powers of cyclic permutations, and he proves that in a cyclic group
of order divisible by the prime there always exists at least one element of opdgauchy, 1845, 234].

When we turn to the construction of a subgroup of orgerithin a not necessarily commutative group,
the proof is not at all so straightforward. Up to this point it seems reasonable to characterize Cauchy’s
presentation as extending Lagrange’s theorem, even if there are claims of commutative permutations that
are unjustified. The remainder of the proof employs additional structure. It begins with the lemma

Let two systems of conjugate substitutions be formed froruthariables

XV Zenns

so that the first system,
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is of orderb. Let I be the number of permutatiomswhich satisfy a symbolic equation of the form

RPp = QkR,

whereh, k are any given pair of integers, such that

a—1>h>1 and b—1>k>1

Then the number, divided byab, will have the same remainder as the numbedivided byab, so that

I=n! (modab).

[Cauchy, 1845, 274]

The proof of this is not difficult, but seems a long way from an assertion of the existence of a subgroup
of prime order dividing the order of the group.

At the start of the proof, Cauchy asks us to look at those permutations whiciotcsatisfy any
symbolic equation of similarity between permutations. Since there arezbplgrmutations in the entire
symmetric group as a whole, there are

J=n!—1

of these. The theorem is provedijifis a multiple ofab.
SupposdJ to be a permutation of which this is true. Any combination

OrU Py,

will be distinct from all other forms. If this were not the case, if there existedkarty k', andh’ such
that

QU P, = QpUPy,
then multiplying both sides by the respective inverses would give
UP,P =0 ouU.

The P, P! will be one of the permutations contained within the syst&mand Qk‘le/ within the
systemQ;; but this contradicts the assumption tliatould not satisfy any

UP;=Q;U (unless both? andQ are the identity)

Therefore there are no suéh#n, k', h’. Since all of theQ, U P, are distinct, there must h& such
combinations or derived permutations. Settiigas a second permutation enjoying the same property,
and using the same argument to show thagallv P,, must be distinct from alp, U P,,, as well as the
fact that the total of derived permutations férmust be the same as for, Cauchy concludes thdt, the
total number of permutations which cannot satisfy the symbolic equation of similarity, must be a multiple
of ab.

This crucial step in Cauchy’s proof of his general theorem is the first appeéraindeuble cosets in
mathematics. Just as we would today call the set of elements of a §rBypvith i varying throughout
the closed subgroup, a coset, so the structure under discussion hRi€Q ;, is a double coset. The

8 See Speiser [1937, 64], Waterhouse [1980, 282].
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lemma states that these double cosets partition a certain set of the elements of the symmetric group, that
is, divide the set into distinct subsets. We have a name for the set which is partitioned, too: we say that
subgroupsP and Q are conjugate if there exist j such that

UPU'=0;.

Were the condition on Cauchy’s system of conjugate substitutions a little stronger, that is, if there
existedi, j such that

UPU =P,

for all elementslU in the symmetric groupP would be a normal subgroup, a concept approached but
not grasped by Cauchy; it is central to, although not clearly articulated in, Galois [1846]. If Cauchy is
suspected of making use of Galois, he has to be credited with following his own agenda.

From this lemma Cauchy can draw the logical corollary that if no such permutatiexists which
can satisfy a symbolic equation of similarity, that is/ i 0, thenJ = n! — I = n! andn! must now be
divisible byab.

The contrapositive of this first corollary is the second, that is, thdtdannot be divided by the product
ab of the orders of two systems of conjugate substitutions (in our terms, subgroups),

P, P, ...,P,_1 and Q1,0Q02,...,Qp_1,

formed from subsets of distinct letters, then one or more of the substitutidtsis similar to one or
more of the substitutiong,.

We are now ready for the proof of the statement that there exists a subgroup ofpofdleevery
prime which divides the order of the group. Now the “first step” with which we began asserted that it was
always possible to form a system of conjugate substitutions—a subgroup of the symmetric group—of
the orderp/, the highest power of the prime numbemhich dividesn!, the order of the group. Let the
system

1,01,02 ..., Qb1
be that special system whele= p/. Let the order of the system

15P15P27“"Pa—1

be a multiple of the prime number. (It is important to note here that th@ subgroup is commutative—
see above, pp. 6-7—while the subgroup has a much less restrictive definition. Its elements do not
necessarily commute.) In such a case, then, the pradudf the orders of the two systems cannot
divide n!, and at least one of th@s will be similar to—that is will be conjugate to, in modern terms—at
least one of thePs. That two similar substitutions are the same order is so easy an inference that Cauchy
alluded to it in his definition of similarity.

Further, says Cauchy at this point, the systensefis a cyclic group, since it is of the order of a power
of a prime number. Although the whole group is of the orgéra previous theorem [Cauchy, 1845, 234—
235] had shown that at least one permutation in any cyclic group of the order of a multiple (let alone a
power) of a prime number will be of order. Therefore, he concludes, at least one of the permutations
Py, P, ..., P,_q, will be a cyclic permutation of ordes.

It is in Cauchy’s final step that Dahan Dalmedico [1980, 303] detects a logical error. Although there
is one Q; that is similar to a certairP;, she points out, Cauchy did not establish that particglawas
of order p. Still, she adds, the error was not fatal:
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But this error carries with it no consequence, since ghiswill be [of prime power order], of the ordgr’, and a certain power of this
Q; will be of orderp...

and so will the same power of th®, which was similar toQ;, be of orderp. It is this power of P;, an
element of ordep, which can generate, in a cyclic fashion, a subgroup of opder
Dahan Dalmedico [1980, 303] draws attention to this seemingly minor lapse:

The indicated lack of precision may be due not only to too rapidigatipn, but may also testify to a certain vacillation in the
use made of global commutativity. This proof is revealing elu€hy’s thought: in order to obtain a result regarding the system of
conjugate substitutions of ord@f, he brings back the familiar symmetric groSp, for which he now has quite a few results and
appropriate techniques. It [tiroof—MM] remained in use for rather a long time, i@ incorporated whole into Jordan’s “Traité
des Substitutions”

and later Dahan Dalmedico [1980, 316] concludes that Cauchy'’s role in the birth of group theory has been
“misunderstood:” [Cauchy, 1845], stuck in the consideration of the special case of the symmetric group,
never examining the nature of subgroups or of the normality of a subgroup to the group containing it, was
only influential in subsequent mathematics by the use to which it was put in Jordan [1870]. Citing Dahan
Dalmedico, Belhoste [1985, 207] judges that “Cauchy remained a prisoner of his calculation techniques.”

3. Richard Dedekind

Thanks to a happy confluence of a high regard for the life of the mind and a metropolitan educational
establishment of a number of national engineering schools, Paris in the first half of the 19th century
served as the “mathematical capital of the world.” By the late 1840s, however, the best mathematical
research had become more widely distributed.

A student of Gauss while an undergraduate (1850-1852) at Géttingen, Richard Dedekind was pressed
to broaden his mathematical skills after taking a degree. He worked closely with Dirichlet when the latter
arrived in 1855, and this may have put Dedekind in touch with Liouvillelsrnal. In any case, during
the winter 1857-1858 he gave a course on the Galois theory of the solubility of equations by means of
finite groups’

The manuscript pages of Dedekind’s writings of this period, published 16 years after his death in
his Gesammelte mathematische Werke [Dedekind, 1932, 3. 439-445], attracted the attention of both
Nicholson [1993], for its pioneering enunciation of the concept of quotient group, and Waterhouse
[1980], for its statement of an original, abstract, proof of Cauchy’s theorem.

Dedekind marked his statement: Given a graupf order g, in which the prime numbep divides
g, there exists at least one element of orgein G, with a question mark® He remarks that were the
theorem false, it would have to be so only fok 6, so he proceeds by induction, making the assumption
that the theorem is true for all grougs of orderk < g. He observed next that the order @fcould be

9 This course was published in Scharlau [1981, 59-100], with explanatory notes by Scharlau (pp. 101-108). | thank the
anonymous referee for bringing this reference to my attention.
10 waterhouse [1980, 288] considers this and the headline “Attempt at a proof” persuasive that Dedekind was not previously
acquainted with Cauchy’s theorem. This would be unusual, given the immediate relevance of [Cauchy, 1845] to group theory,
Cauchy’s personal eminence, and Dedekind’s effort to become familiar with the most recent French work.
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written as

g§=p°n,
n not divisible byp, and where: cannot be set equal to one, since cleagiyléuchtet) a group of prime
power order is going to have a subgroup of order of that prime. Recall, in comparison, that this is just the
sort of thing Cauchy took the trouble to prove in detail.

This subgroupk must be of order prime tp, given the induction supposition. We next look at the set
H of all elementsp of G such that

¢ 'Kop=K,

noting thatH includes all ofG if K is a “proper” subgroup, a designation which echoes Galois’ term
“décomposition propre,” but is today a “normal” subgroup. THiss itself a group, and its order divides
the order ofG.!! Its degree must also be a multiple 5f since we define& as a normal subgroup &f .
Dedekind writes

g =nph
h=vk

to denote the multiples of the orders of the grokpand H . Either there exists a normal subgroup®f
(and we will choose&X to be that one), 06 contains no nontrivial normal subgroups.

SupposingK normal toG, g = h = vk. By the use of the fundamental concept of quotient group
developed in the previous couple of pag&spartitionsG into v distinct sets,

G=Ko+Ki+--+K,1,

each of which has the property of combining (thatks,Ks = K, ), and so forms a group of ordet
Sincev = g/k = p® - n/k, wherek is prime to p, the numben must be divisible by a power gb.
We then have a group of order less thamvhose order is divisible by, and which by the induction
hypothesis must have at least one element of opdetall it K;, which by definition is equal t¢ K,
where¢ is some element of;. K, raised to thepth power recovers the identity element, which in this
case isk,

(Px)" =K,

whencegp? is an element oK, and the order to which itself must be raised to recover the identity@f
must consequently be a multiple pf By the induction hypothesis, the cyclic subgroup generated by
contains at least one element of orger

Alternatively, we may suppose th&t contains no nontrivial normal subgroup. Dedekind at this point
uses the fact that the order of every element of a group divides the order of the graap. be a cyclic
subgroup, of orded, let us say, containing (d) generators. All of thel’s in the groupG must dividen,
and the product of the number of cyclic groups of orddimes the number of generators of order
must equal the number of distinct elements in the group. €&ll) the number of cyclic subgroups of

11 pedekind proved neither of these trivial statements, illustrating his awareness of the theorem of LagrangeH Ttuelagt
in general use in abstract group theory, is the “normalizer” of a group.
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orderd. Then, summing over all possible valuesiof

g=> Y(d¢(d).

The subgroupH formed fromK is a proper subgroup a,*? and its ordet: must be prime tg. Since

g = uh, Dedekind concludes that is always divisible byp®, no matter what the size & . Everything

done to this point is true, but then Dedekind’s notation fails him. He implicitly identified the ipdex

of the normalizerH with the number of generators of cyclic groups of ordei) (d). The unit element

being unique, and the only cyclic group of order one, he then rewrites the above, summing over all
d>1,

g=1+> v(d)¢(d) (%)
or, substituting the values above,
pn=1+ p®m,

which is impossible. Thus there must be at least one nontrivial normal subgratipawfd the proof is
done.

Waterhouse [1980, 288] described this “strange but ingenious” proof as “of course never polished
for publication,” but it is fairer to point out that there is no connection between the true statement of the
divisibility of u by p® and its application to the right-hand side 8j.(The set of all elements @ which
conjugatek do indeed form a partition of;, but not necessarily into so many cyclic groups. We call
this partition ofG by means of the normalizéf of K the “class equation,” using the term introduced by
Frobenius [1887a]. The similarity of this classic presentation (discussed below in the section on George
Miller) to that of Dedekind is striking. On 8 February 1895 Dedekind himself wrote to Frobenius

| have been quite takeseghr gespannt) with your work on groups, especially with the simplicity of your methods, among others your
proof that every group whose degree is divisible by the prime®ntains an element of order In the first years of my own study of
groups (1855-1858) | arrived at it by a much more complicatieaitéindlicheren) path [Dedekind, 1932, 2, 419].

Notice that even here Dedekind does not refer to what Frobenius had called Cauchy’s theorem by that
name. As shown above, Dedekind’s attempt at a proof is actually far from complicated; rather, it lacks
the final step contained in Frobenius’ presentation.

Dedekind does not mention it, but (as pointed out by Scharlau [1988, 44]) he proceeded directly to
derive one of Sylow’s theorems in the same manuscript. He speaks throughout of groups in completely
abstract terms, and has no need for a subgroup of the symmetric group in order to realize what a group
is.

4. Ludvig Sylow

The diffusion of mathematical research in group theory from Paris into Scandinavia also intimately
involved Cauchy’s theorem, to some extent because so few mathematicians were doing research in this

12\f H were not a proper subgroup 6f, thenk would be a normal subgroup, which was excluded.
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area, and they were virtually all known to one anotffe®f course, the logical connection was also
strong. In a marginal note not published in Galois [1846], Galois himself had written

Theorem. If the number of permutations of a group is divisible p¥ (p being prime), the group will have, for a divisor, a group of
p"t permutations (citechi Dieudonné [1978, 1: 117])

—the first of the three generalizations of Cauchy’s theorem proved in 1872 by the remarkable Norwegian
high-school teacher, Ludvig Sylow [Sylow, 1872], and now named after him.

Acquaintance with Cauchy’s theorem, and more generally with the Paris group of mathematicians,
stimulated Sylow to his discoveries. Sylow started his mathematical career with the study of the theory
of equations in the unpublished works of his deceased countryman, Niels Henrik Abel, a study which
led Sylow to the closely related work of Galois. It is of note that Galois himself referred to*Abel
in a passage in the unpublished “Preface” (to Galois [1846]) which has been interpreted by many as
condemning Cauchy:

I must tell you [the reader] how manuscripts go astray in théfglays of the members of the Institute, although | cannot in truth
conceive of such carelessness on the part of those who already have the death of Abel on their consciences. | do not want to compare
myself with that illustrious mathematician but, suffice to say, | sent my memoir on the theory of equations to the Academy in February

of 1830 (in a less complete form in 1829) and it has been impossible to find them or get them back.

Sylow’s selection of Galois theory as a discipline within which to concentrate his efforts was confirmed
by his 1861-1862 trip to Paris and Berlin. Cauchy had died four years before, but Sylow reported to
the ministry which funded his trip that he had attended lectures by Liouville and had “made [himself]
acquainted with newer works, particularly in the theory of equations” [Birkeland, 1996, 185]. Upon his
return to Norway Sylow gave a lecture course at the University of Oslo on the central parts of Abel’'s and
Galois’ theory of equations.

The manuscript lecture notes, in Sylow’s own hand, contain the inquiry, right after the statement of
Cauchy’s theorem, “What i is divisible by p"? Can the above be extended?” [Birkeland, 1996, 191]
(we use letters for the variables corresponding to ones used above). While Sylow examined groups which
were of mathematical significance solely as Galois groups of a certain equation, as Scharlau [1988]
emphasizes, still Cauchy’s result appears as an explicit stimulus. In addition, Sylow operated within
a subgroup of the symmetric group—just as Cauchy had—both in stating the special-case Sylow
theorems in 1867 and, in 1872, in his proof of the general ones. Tellingly, Sylow spoke not of a “group”—
Galois’ word—but of a “system of conjugate substitutions™—Cauchy’s.

The story of how Sylow’s generalizations of Cauchy’s theorem came to be published at all recalls
the direct influence of Paris mathematicians. Sylow had proved his theorems as early as 1870, but he

13 In at least one case personal intervention brought notice of Cauchy [1845] to the attention of a creative contributor to
Galois theory. Beginning in 1852, compiang that Liouville had not provided thcommentary he had promised in his 1846
publication of Galois, Enrico Betti published a series of proofs of theorems enunciated there without proof. Betti cited and used
[Cauchy, 1815] in 1852 but not [Cauchy, 1848hly in 1855, after a visit by.J. Sylvester to Italy, did Betti, citing “the advice
of a great geometer who has honored me with his friendship,” make note of the more recent work of Cauchy, so close in spirit
to his own. See Toti Rigatelli [1989, 59—-61].

14 Galois refers to an 1826 manuscript of Abel’s notoriously ignored by Cauchy, who also received Galois’ 1829 manuscript.
This English translation of the “Preface” is from Rothman [1982, 97]. Andrea Del Centina [2002] has just located the missing
pages of Abel’s original manuscript.
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withheld them from publication for at least two years until one of Liouville’s former students from the
Ecole Polytechnique, Camille Jordan, on a visit to Norway, assured Sylow that the theorems were both
new and significant®

Especially with respect to Sylow’s work, but also with respect to Dedekind’s, the question arises of
why the techniques of Cauchy [1845] did not lead to the Sylow subgroups, but the work of Galois did.
To the insightful comments of Scharlau [1988, 43] that Galois’ project of the solubility of equations
by radicals led Sylow to a wide-ranging and penetrating study of the structure of finite groups, and
therefore to a predominant role in the development of 19th-century group theory, | believe it plausible
to add that the logical gap in Cauchy [1845] hindered advance by that avenue. Sylow wondered about
generalizing Cauchy’s theorem as early as 1863; yet he did not construct Sylow subgroups as Cauchy
had attempted. Sylow’s hesitations to publish may have arisen from modesty, but the fact is that his worry
that someone else had found a proof may easily have originated from the incorrect construction of Sylow
subgroups inS, in Cauchy [1845]. Qualified mathematicians considered the proof difficult. “As late as
1878, comments Waterhouse [1980, 281], “Netto could begin a paper with the remark that the proof of
Cauchy’s theorem was as recondite as that of Lagrange was simple.”

5. Camille Jordan

When the Paris mathematical school in the person of Camille Jordan synthesized permutation
theory and Galois’ theory of equations and articulated the result in terms comprehensible to other
mathematicians, the proof of Cauchy’s theorem was incorporated into the new structure, but in a form
that silently corrected its error. Dahan Dalmedico agrees with earlier writers (e.g., [Wussing, 1969, 1984,
141-142]) on the history of group theory on the direct line of mathematical affiliation from Cauchy
[1845] and Galois [1846] to Jordan [1870]. Speaking of Jordan’s 1861 thesis, she notes:

Thus in this thesis and its appendix we find for the first time a coatpe presentation of the two contributions, the two points of
view, of E. Galois and of A.-L. @uchy [Dahan Dalmedico, 1980, 314—-315]

and of an 1866 textbook presentation of the theory of permutations by Serret, she concludes [Dahan
Dalmedico, 1980, p. 316]:

In fact, this edition of 1866 marks a sort of apogee for Cauchyidiss on substitutions. Beginning with 1870, they only appear as
mediated by the work of Jordan. Although that scholar had atiomerelied upon the mathematical techniques devised by Cauchy
with considerable success, nevertheless the intellectual re-creation of the originality of Galois by Camille Jordan proved so powerful
that it absorbed Cauchy and all other protagonists.

The picture resembles EuclidEements in its ability to erase the memory of previous contributions to
the mathematical theory of groups.

15 See Lutzen [1992, 442-443, 446], where in a letter to his Danish colleague Julius Petersen dated 13 September 1870 Sylow
stated, “l am able to prove this using a theorem from the theory of substitutions which | have already known for a long time but
I have not published.”
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Engaged as we have seen in a much larger enterprise than simply combining the ideas of Galois and
Cauchy, Jordan does not hesitate to improve the proof of Cauchy’s theorem. “This beautiful theorem,” he
announces “is due to Cauchy, who proved it pretty much as followsfJordan, 1870, 26].

Given any two groups (let us call them, recalling CaucPyand Q) contained in a third grougd, of
ordersM, N, and O, respectively; then Jordan’s “Lemma |” states that the number of substitutions
which satisfy no relation of the form

P,U=UQy

is either zero or a multiple oM N. Just as Cauchy had, so Jordan showed that any permutdtion
fulfilling the condition generated? N “derived” permutations of the form

P,U Qy

(as the indiceg& andk run through theMl and N possibilities) is distinct from all others of that form. For
if, for somenh, 1, k, k',

PUQr = PyUQp

were true, then multiplication by inverses would give
PPyU =UQr Q"

which is of the form
PU=UQ;

for somei, j; a form impossible by supposition. A second permutafiomhich can satisfy the same
condition, if such a permutation exists and is distinct froimwill also generate a group of ordéf N,
distinct from each other and from the group generated by

Thus Jordan’s proof for this lemma is indeed “pretty much” the same as Cauchy’s, although it is
deployed in order to prove the relationship directly, without the use of modular arithmetic with which
Cauchy graced his statement of the original theorem. Jordan draws the same corollary from this lemma—
that if no permutation of) is “similar” to any permutation o, then the orde© of the containing group
is divisible by M N.

Jordan’s second lemma also looks familiarpifis a prime number ang/ the highest power of
which dividesn!, then one can construct a subgroup of orgérfrom the group of permutations among
n letters. His proof, however, differs substantially from Cauchy’s construction of permutations of “the
first kind,” of “the second kind,” and the resulting sum resulting from reindexing. Rather, it both sidesteps
the erroneous assurance of commutative permutations and introduces a semidirect product in a proof
which employs the use of induction gh

Suppose: < p. The highest power g that divides:! is p° = 1. This subgroup is the identity element,
and its existence satisfies the lemma foe 0. From now on we must have> p.

Now let us suppose that the lemma is true for all powers lafss tharp/; we will show it true forp/.
Note that any whole numberwhich is larger tharp/ yet smaller tharp/** can be written as

n=gqp-+r,

whereq < p/ andr < p. Let us then focus on the - p of the givenn letters and partition them into
q sets(a, b, c,...,a1,bq,c1,...) of pletters each.
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Call P the permutation that circulates the lettetsd, c, ..., without displacing anyp; is the cyclic
permutation ofaq, by, c1, ..., and so on. (These correspond to the “first kind” of Cauchy.) We also
have the grougl’ (= ta,tb,tc,...) composed of the circular replacements amongdghgystems of
the corresponding letters. (These are Cauchy’s “second kind.”) The groderived from all possible
combinations of thes®, Py, ..., and of T will have, Jordan asserts, elements of the form

g
1, PPl ...

Suppose this were not so, and there were an ele®entP? P} - - -, that is, an element which did not
have its element of written on the left and could be written in no other way. This would equal

tut, Pt PPP] ..
with [t;lP“tﬂ] equivalent to someé*. This fact follows from what has been proved previously, but the
reader gets a concrete example “pour fixer les idées); ieplaces each of the letteass, c, ..., with
the lettersuy, b1, c1, ..., then (proceeding from the left, following Jordan)

t;l replaces:; with a;
P replaces: with b;
t,  replaces with by;

which of course equals the action Bf (a; — by).

Now, how many distinct elements are there in the grauef the formz, P¢ Pf ---? If M is the order
of the groupT, the order ofG = Mp?; and since one can construct, by the induction hypothesis, for any
largest powep? contained ing! (where we selecteg < p/) a groupT of order p?, the total comes to

p’r=p/,

which was to be proved.

With these two lemmas Jordan proceeded to the proof of Cauchy’s theorem, that there exists a sub-
group of orderp for every prime numbep dividing the order of the group. He did not construct such a
subgroup of ordep, however; rather, he considerétl defined as that subgroup of the symmetric group
of n letters which contains no permutation of orgeNor can any be a multiple gf, for a permutation
of orderip, raised to the powex, would be of ordemp, excluded by hypothesis.

All of the permutations of the subgroup, the existence of which has just been demonstrated, must by
contrast dividep/, the order of the grouf and so be a power gf. None of the permutations contained
in G, therefore, are similar to any of the permutationgdin

By the corollary to Lemma I, the product of the orderstbind H must now divide the order of the
group containing both of them. Since the symmetric group tdtters is of orden!, we have that the
order of H divides

1.2.3.--n
I

’

16 This is true by the theorem of Lagrange, that the order of a subgroup must divide the order of the group, which immediately
precedes Cauchy’s theorem in Jordan [187@jnically, the circumstance that rdtan titled the sectio “The theorems of
Lagrange and Cauchy” led Kiernan [1971, 96] to state erroneously that Jordan attributed Lagrange’s theorem jointly to Lagrange
and Cauchy.
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and so contains no factor of.

With such a statement, Jordan’s proof is complete: the statement that all groups which contain no
element of ordep have orders that are prime ois the contrapositive of the statement that all groups
whose order is divisible by contain at least one element (and therefore a cyclic subgroup) of prder

With its use of the subgroups of the symmetric group of permutationa arbitrary letters, its
deployment of double cosets and its general strategy, [Jordan, 1870] resembles Cauchy’s proof but
circumvents the logical gap pointed out above, since Jordan’s process of correction circumvented just that
section of Cauchy’s proof. From the point of view of Sylow (or of Dedekind) hypothetically attempting
to modify [Cauchy, 1845] just enough to obtain Sylow’s result as an extension of it, it is interesting that
Jordan’s silent emendation of 1870 did not lead him, more than a year after publication, to tell Sylow
that his first theorem was contained in Jordan’s second lemma cited above. This suggests to me that the
preference for Galois theory over permutation group theory is not the only reason [Cauchy, 1845] did not
lead directly to Sylow’s theorems; the logical tangle in the proof was substantial.

6. George A. Miller

Cauchy’s theorem went into eclipse with the arrival of the abstract conception of group theory.
Once Walther Dyck’s work [Dyck, 1882] enunciated with precision ideas which were already widely
shared, it was only two years until Georg Frobenius found a proof of Sylow’s first theorem which used
neither the subgroups of the symmetric group nor Cauchy’s theorem nor his construction of a special
case of Sylow subgroups. That “class-equation” proof of Frobenius became standard, so much so that
subsequent textbooks on group theory, since Sylow’'s theorems have far more mathematical consequence
than Cauchy’s theorem, typically relegated the latter to a footnote.

Scharlau [1988, 49] warns us of the danger of an overemphasis on the mutual incomprehension
between the permutation-theoretic view of groups and the abstract view; nevertheless, Wussing’s picture
of a reworking of permutation-theoretic results within the framework of the abstract group theory
[Wussing, 1984, 243-244] goes far to answer Waterhouse’s [1980, 279] question of what Frobenius was
up to when in 1884 he reproved Sylow’s theorem. Thomas Hawkins [1981] adds explanatory power when
he displays Frobenius as a member of the “Berlin School” of mathematics, producing proofs in algebra
without appeal to “generic” argumeht.Hawkins refers to the example of Karl Weierstrass, who had
acted as Frobenius’ thesis advisor and in 1868 carried out an exhaustive study of the elementary divisors
in quadratic and bilinear forms. He quotes Leopold Kronecker in disapproval of “generic” reasoning;
Frobenius cites Kronecker prominently in both [Frobenius, 1887a, 1887b] of the papers he devoted to
reproving Sylow’s theorem, papers which appeared in a journal edited, in Berlin, by Kronecker and
Weierstrass.

William Waterhouse’s penetrating study [Waterhouse, 1980] of the early proofs of Sylow’s theorem
develops all the major lines of mathematical argument in Frobenius; it is of note here that those lines only

17 As a possible example of what style of algebra was to be avoided, | propose E.E. Kummer, who retired from the chair of
mathematics in Berlin only in 1884, and who, to quote Edwards [1977, 382], “was chronically optimistic. He attacked problems
by means of “induction,” that is, by extensive numerical computations of specific examples, from which he would then abstract
the theorems to be proved; once he became convinced that aifzartitatement was true, he was prone to overlook deficiencies
in his proof of it.”
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implicitly demonstrate Cauchy’s theorem. Frobenius mentions Cauchy only to specify what he wants to
banish from his assumptions.

The implicit inclusion was clear enough for Dedekind to compare the line of proof to his own work on
Cauchy’s theorem in the letter to Frobenius cited abéwamd it was also clear enough for the American
mathematician George A. Miller to elaborate into a proof specifically of Cauchy’s theorem, noting “[t]he
main features of this method of proof are due to Frobenius” [Miller, 1898, 323]. It is Miller's explicit
application of Frobenius which appears in, among others, the textbooks of Hall [1959, 43—-44], Herstein
[1964, 74], and Birkhoff and Mac Lane [1967, 468], but we must note that, with Frobenius’ proof,
Cauchy’s theorem had entered the ranks of elementary results, of interest only to beginners in group
theory and those who teach them.

Miller himself inserted the proof at the beginning of a paper “On an Extension of Sylow’s Theorem,”
with the laconic comment that “Since we shall employ Cauchy’s theorem in what follows it seems
desirable to give a simple proof of it.”

Suppose the grou, whose order is divisible by a prime numbgr is Abelian. If this group is
generated by a single element of order, then that single elemeiit)”” = (s")” = 1, and the element
is of orderp, as desired. An Abelian group generated by a set of elemenis . .., s, cannot have an
order which is divisible by unless some one of the commuting elements is of an order divisib}e by
Some power of that element will then be of orger

So suppose that is non-Abelian. Then make the induction assumption that the theorem is true for all
groups of order less thatp, and proceed to prove it true for a group of ordet

Following Frobenius, Miller forms what we now call the normalizetaf‘the largest subgroup ai
that transforms a given [element] into itself,” that g, G | gag™* = a} = N(a). The index ofN (a)
in G, in modern notationG|/|N (a)|, Miller states without proof, is the number of conjugates of this
elementa. In his proof, Frobenius devoted a few sentences to persuade his reader of this result, no doubt
so that the proof could stand alone. The normalizer was as we have seen important in the elaboration of
Galois theory, and it had been in use since Jordan’s day. Almost 30 years later Miller feels that he can
take its partitioning ofG for granted.

The order ofG is then equal to the sum of all the classes—the word was introduced by Frobenius—of
the elements of;,

|G| =I|G|/IN(e)| +|G|/IN(@)| +---;

in Miller’s notation,

g=g/81+g/g+" " +8&/&- (%)

Miller points out thatg,, certainly, and perhaps other normalizers have an index of 1. That is, all the
elements ofG which commute with all the elements 6f, a set which we now term the center Gf
form an Abelian subgroup af. “If the order of this subgroup is not divisible hysomegs < ¢ must be
divisible by p, since the second member &) (nust be divisible by this number,” concludes Miller. He
then goes on with the first theorem of his own.

18 Hawkins [1971, 143] credits this same letter of 8 February 1895 from Dedekind to Frobenius with stimulating the latter to
develop his theory of group characters.
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As with Cauchy, as with Dedekind, the last sentence of Miller’'s proof glides over a step. Let us look
at it more closely. We have a series of ones on the right-hand side of the class egkjation (

g=1+1+-+1+g/gmu1t+---+g/s;

let us saym of them, and the question is whether the sum of these ones is divisigle By hypothesis
the orders of the normalizers

8m+1s -+ 8k

are none of them divisible by (else the theorem would be proved), so each of the quotients

8/8m+1s---» 8/ 8k

has a numerator divisible by and a denominator which is not. Each quotient must therefore be divisible
by p, and the sum of all the nonunit quotients must also be divisiblg .Byith g itself divisible by p,

and all the nonunit quotients divisible y we must have aenter divisible by p. It is therefore possible

to find in the Abelian subgroup an element of orgeias already shown.

In contrast to those of Cauchy and of Dedekind, one senses that the minor slip in Miller's presentation
has nothing to do with a struggle with inadequate notation or novel mathematical structures; the proof of
Cauchy’s theorem has become a preliminary to be disposed of on the way to something of more pertinent
interest. A reader of Weber’s influential textbook [Weber, 1894, second ed. 1898] or that of Burnside
[1897, second ed. 1911] finds Sylow’s theorems proved, in each case with full credit to Frobenius and
his class equation, but Cauchy’s theorem mentioned only in a footnote or in a corollary to the first Sylow
theorem. Indeed, in Miller's own monograph on the theory of finite groups [Miller et al., 1916], where
with frequent historic asides Sylow’s theorem is proved twice, once with double cosets and once with
a class equation, Cauchy’s theorem is mentioned once in passing and its proof is never &tduced.

7. JamesH. McKay

In an unusually discursive “Preface” to an undergraduate textbook, Saunders Mac Lane and Garrett
Birkhoff [1967, v—ix], both of whom have had distinguished research and pedagogical careers, discuss
the history, not so much of algebra as of its instruction in U.S. universities. Axiomatic modern algebra,
which unifies so many branches of higher mathematics, made its way into the graduate curriculum with
B.L. van der Waerden'’s influentidloderne Algebra during the 1930s. Undergraduate instruction in the
same subiject followed during the ‘40s and ‘50s.

As noted above, Cauchy’s theorem only reappears in the last of those decades, for the reason, | believe,
that the undergraduate instruction of abstract algebra has the need to develop an appreciation for, or
better the capacity to construct, a mathematical proof. The presentation of a proof for Cauchy’s theorem,
followed by a separate proof for the related generalization Sylow’s theorem, helps to develop this ability
in stages.

19 This in spite of the fact that Qari’s evaluation of Cauchy as the founddrtbe theory of finite groups cites Miller as its
source.
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Textbook writers tend to take ideas from one another without attribution much more frequently than
researchers do, and | have not yet found the route from Miller's formulation of the Frobenius class-
eqguation proof to its use in the undergraduate textbooks of the 1950s. On the other hand, there is a clear
trail for the beautifully compact proof now most commonly used [McKay, 1959]. It went from an original
version which displayed a maximum of simplicity, to a graduate student version which recast it in more
modern mathematical tools, to an undergraduate version. The audience is now the university student, and
the form of proof changes according to the pedagogical purpose at hand.

In polished, lapidary form—nine sentences, of an average of 11 words each—McKay [1959, 119]
made use of a special class equation. Given the géboporderg, divisible by the primep; we want to
show that there arkp elements of5 satisfying the equation? = 1.

Form thensS, the set ofp-tuples of elements of; which have the property that, when all multiplied
together, they equal the identity

S = {(al,...,ap) |aiaz---a, :l}.
The first p — 1 members of thig-tuple can be any elements, but the last one is fixed; it has to be the

inverse of that element which is the product of the first components. The sét as a result, can have
at mostg”~! members.

Define an equivalence relation 8rby saying twop-tuples are equivalent if one is a cyclic paration of the other. If all components
of a p-tuple are equal then its equivalee class contains only one memb@therwise, if two components of @tuple are distinct,
there arep members in the equivalence class.

More than two components can be different, of course; there are pjudistinguishable circular
permutations op elements, at least two of which are distinct.

The p-tuples composed of all the same element are solutions to the equétierl. Let us suppose
there arer of those. Of thep-tuples with at least two distinct elements, let us say there afdat of
course exhausts the possibilities, so, using these two equivalence classes as a way to count the number of
p-tuples which are members of the $gt

r+sp=g’ -1
Since p dividesg, it divides the right-hand side; in order to divide the left-hand side we must have
dividesr. Thus there arép = r elements of5 for whichx? = 1.

Thereisa class equation, with the same bunch of ones on one side and a number divigita ltlye
other, but we do not have to form a normalizer or quotient groups or talk about abstract congruences. No
Abelian special case, no reduction of the general case to the special—this is probably the simplest known
form of the proof of Cauchy’s theorem.

Introductory mathematical pedagogy at the university level, however, is not characterized completely
by the effort to make it easily digestible. As Thomas Kuhn [1970] emphasized, textbook writers prepare
the student for autonomous problem-solving as quickly as possible. A shift of point of view at the research
level requires the introduction of the new “paradigm” down to the entry level. “Recent years have seen
striking developments in the conceptual organization of Mathematics,” begin Mac Lane and Birkhoff
[1967] in the preface previously cited, with a somewhat pretentious capital letter. They continue, after
specifying the developments,

This book proposes to present algebra for undergraduates on thefithsiseonew insights. In ordes tombine the standard material
with the new, it seemed best to make a wholly new start. [Mac Lane and Birkhoff, 1967, vi]
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As another distinguished mathematician and pedagogue, Anthony W. Knapp, indicated not long ago,
group representations “play a critical role” in many areas of modern mathematics [Knapp, 1996, 410].
The classic work of Frobenius initiated modern study of the topic, but we express group representations
today in terms of group action on a vector space. In short, in order to employ the current mathematical
tools as soon as possible, McKay’s proof of Cauchy’s theorem has been rewritten using the technique of
group action, first at the graduate level [Hungerford, 19742°&)d then, with explicit citation of the
filiation, at the undergraduate [Fraleigh, 1989, 190-203]. Here is how the latter does this.

We begin with the definition. IX is any set and; is a group, the group action 6f on X is a map from
X to X such that the group identity makes no change in any elemekitafd the action is associative,
that is,

(8182)(x) = g1(g2x)

for all g in G andx in X. We show that the group action partitiofsinto equivalence classes, calling
the class containing a particularits “orbit,” denotedGx. We then rewrite the class equation in this
notation. The number of elements in the ¥eequals the sum of the number of elements in the orbits.
Some orbits, like the identity element @&, have one-element orbits. Separate the orbits into two terms,
then, the number of one-element orbitg and the orbits with more than one element, designéted

X|=|X¢l+ ) _IGx;].

If now the prime numbep divides the groug’, then it will divide the number of elements contained
in a single nonunit orbitGx; for any particular value of (sinceGx; runs through all ofG). It will
thus divide the sum of such numbers, the second term on the right-hand side. If ever wephaich
divides|X|, the order of the set, it will thus have to divide the number of one-element orbits as well.

The translation of McKay [1959] is now straightforward. The Xeis the set ofp-tuples, on which
the “group action” is the cyclical permutation of tipecomponents of eacp-tuple. This group action
represents a group of ordgr each of which shifts the-tuple by one place. The group identity does not
shift anything at all. The machinery clanks and squeaks a little, sinceriginal group, which we have
always designated and which we are assuming has an order divisibleobis quite distinct from the
group which in our proof forms the group action. Fraleigh uses the Greekdettedesignate the cyclic
permutation of ordep.

All we have to do is set up the class equation in the new tefsis divisible by p—it is a set
of p-tuples. The number of one-element orhik;| is thus also divisible by. It is nonzero, since it
includes the identity element. So there are elemests such thatla)? = e or identity; that is, there are
subgroups of ordep.

Our exercise at translation is not without its merit, since the patient reader will agree how easily a si-
milar translation into group action terms could be accomplished for the Frobenius—Miller proof as well.
However, such atranslation is not possible, it seems to me, for the original double-coset proof of Cauchy.
That proof contains no class equation and, after all, relies upon properties of the symmetric group and an
especially-constructed subgroup of order the highest powgrwhich will divide »n factorial (just the
“generic reasoning” Weierstrass opposed). The original proof of Cauchy, however, is also the first use of

20 | a footnote Hungerford credits R.J. Nunke for the lifigpof, so | believe Nunk suggested the rewriting.
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the wreath product, named and popularized in 1937 by the Hungarian—American mathematician George
Polya?t

At the end of our transit of the mathematical life of Cauchy’s theorem, then, reflecting on the many
surprises therein—the sensational suspicion of plagiarism at its birth, the foreshadow of Frobenius’ proof
in the unpublished papers of Dedekind, the near-disappearance of the theorem and its resuscitation as a
vehicle to teach undergraduates how to prove a result—perhaps the greatest one of all is the fact that our
56-year-old baron, “writing his mathematics during one week, giving his manuscript to the secretaries
of the Academy at the Monday meeting the next week, and seeing his notes published the next Monday
after that” [Neumann, 1989, 296], retains his unique originality of method after 150 years.
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