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Abstract

A billiard path on a manifoldM embedded in Euclidean space is a series of line segments
connecting reflection points onM . In a generalized billiard path we also allow the path to pass
throughM . The two segments at a ‘reflection’ point either form a straight angle, or an angle whose
bisector is normal toM . Our goal is to estimate the number of generalized billiard paths connecting
fixed points with a given number of reflections.

We begin by broadening our point of view and allowing line segments that connect any sequence of
points onM . Since this sequence is determined by its ‘reflection’ points, the length of such a sequence
with k reflections may be thought of as a function onMk . Generalized billiard paths correspond to
critical points of this length function. The length function is not smooth onMk , having singularities
along some of its diagonals. Following the procedure of Fulton and MacPherson we may blow up
Mk to obtain a compact manifold with corners to which the length function extends smoothly.

We develop a version of Morse theory for manifolds with corners and use it to study this length
function. There are already versions of Morse theory that may be used in this case, but ours is
a generalization of the work of Braess, retaining both a global ‘gradient’ flow and the intrinsic
stratification of a manifold with corners.

We find that the number of generalized billiard paths withk reflections connecting two points in
R
N can be estimated in terms of the homology of the manifoldM . In part, we show the number of

these paths is at least

n−1∑
j=0

∑
i1+···+ik=j

bi1(M) · · ·bik (M)
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1. Introduction

1.1. A motivational example

Imagine that we have a glass surface which has been half-silvered. Any time a beam of
light struck the surface, half of the light would reflect off the surface and half would pass
through.

One of the questions this article seeks to answer is: given two points in the vicinity of
such a model, how many paths may a beam of light travel connecting one point to the other,
with a given number of reflections?

Since the beam of light travels in a straight line between reflections, such a path can
be described by listing the sequence of reflection points. Moreover, all of these paths have
the property that wherever a reflection occurs, the angle of incidence is equal to the angle
of reflection. This can be stated equivalently by saying that the bisector of the angle is
perpendicular to the surface.

1.2. The general problem

This same question can be posed in more general terms. LetM ↪→ R
N be a smoothn-

manifold embedded in Euclidean space of dimensionN . We can choose pointsp,q ∈R
N

and consider ordered sequences of pointsα1, . . . , αk ∈M.

Definition (Definition9). A sequenceP = {α1, . . . , αk} connectingp= α0 to q = αk+1 is
a generalized billiard pathwith k-reflections if for eachi one of the following is true:

(1) The bisector of�αi−1αiαi+1 is normal toTαiM.
(2) �αi−1αiαi+1 is a straight angle.

Note that this definition allows the line segmentαiαi+1 to intersect the manifold. IfM
happens to be a convex hypersurface, however, the definition reduces to the usual notion
of a billiard path. This situation is addressed in [3]. The task at hand now may be thought
of as counting generalized billiard paths.

The space of all sequences can be thought of as the productMk =M×· · ·×M. We can
define the length of a sequenceP = {α1, . . . , αk} to be the sum of the Euclidean distances
between consecutive reflections:

Lk(P )=
k∑
i=0

dEuc(αi , αi+1).

This function will be central to our arguments, because of

Lemma (Lemma 10).A sequenceP = {α1, . . . , αk} with αi 
= αi+1 for 0 � i � k satisfies

∇Lk(P )= 0

if and only if it is a generalized billiard path.
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Unfortunately, the functionLk has a serious drawback. Wherever consecutive reflec-
tions coincide,Lk has a singularity that looks like|x − y|.

In Section 3.3 we describe how to ‘blow up’Mk . The blow up we use was developed by
Fulton and MacPherson [4], and allows us to remove fromMk the diagonals{αi = αi+1}
that are causing difficulty and replace them with something that is easier for us to deal
with. The result is a manifold with corners,Xk .

We will use the versions of Morse theory developed in Sections 2 and 4 to study the
critical points ofLk onXk . In doing so, we define a modified gradient flow. An essential
critical point is defined to be a stationary point of that flow. In Section 2.7, we prove the
Morse theorems in this setting:

Theorem (Theorem 7).Letf :M→R be a Morse function on a manifold with cornersM.
If a < b andf−1([a, b]) contains no essential critical points, thenMa is a deformation
retract ofMb, so the inclusion mapMa ↪→Mb is a homotopy equivalence.

Theorem (Theorem 8).Letf :M→R be a Morse function on a manifold with cornersM.
Let p be an essential critical point with indexλ. Setf (p) = c. Suppose that, for some
ε > 0, f−1([c− ε, c+ ε]) contains no essential critical points other thanp. ThenMc+ε is
homotopy equivalent toMc−ε with aλ-cell attached.

These theorems imply the Morse Inequalities, which we will use to deduce lower
bounds for the number of generalized billiard paths.

In Section 3.4, we show that for a smooth embeddingM ↪→ R
N , most choices of

endpointsp andq result in a length function that satisfies the definition of a Morse function
(Definitions 4 and 6):

Lemma (Lemma 19).For any embedded manifoldM ↪→ R
N , pointsp,q ∈ R

N and

ε > 0, there are pointsp′ ∈Bε(p) andq ′ ∈ Bε(q) such that−L(p′,q ′)k is a Morse function.

Section 3.5 applies the results of Section 2 to the function−Lk on Xk . The result is
given by

Theorem (Theorem 21).The number of generalized billiard paths withk reflections is at
least

kn∑
i=0

bi(Xk),

wherebi(Xk) denotes theith Betti number ofXk .

In Section 4 we show that a stratified space structure can be imposed onMk and that
−Lk is a then Morse function onMk . A comparison of the critical points ofLk :Xk→ R

with those of−Lk :Mk→R allows us, in Section 5, to conclude
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Theorem (Theorem 30).The number of generalized billiard paths connectingp to q with
k reflection is at least

n−1∑
j=0

∑
i1+···+ik=j

bi1(M) · · ·bik (M).

1.3. A brief history of Morse theory

The foundations of Morse theory were laid in the 1920s by Marston Morse [8]. His
original work relates information about the critical points of a smooth function on a
smooth manifold to information about the topology of the manifold. This relationship was
presented at that time as a collection of inequalities, known as the Morse Inequalities.

By the late 1940s, the gradient flow of the function was coming into the picture more
forcefully. Once a Riemannian metric has been chosen, each point in the manifold lies in
exactly one gradient flow line, and each such flow line begins and ends at a critical point.
Thom noticed that by bundling together all the flow lines having the same initial point, the
manifold can be decomposed into a collection of ‘descending cells’—one for each critical
point [9]. The dimension of the cell associated to a critical point is equal to the index of
that critical point.

In 1959, Smale showed that if the ‘ascending cell’ of each critical point intersect
transversely with each descending cell it meets, then the descending cells form a CW-
complex.

Morse theory has been generalized to deal with a large number of situations which
are not addressed by the classical theory. The direction with the most direct relevance to
this work, though, is treating functions on spaces other than smooth manifolds. Braess
presented a version for manifolds with boundary in 1974 [2]. The most remarkable
achievement in this area, though, is Goresky and MacPherson’s stratified Morse theory.
This version applies to a class called Whitney stratified spaces, which include manifolds
with boundary and manifolds with corners [5]. Some of the proofs of Goresky and
MacPherson’s theorems have recently been simplified by Hamm in [6]. Vakhremeev has
also proven the Morse theorems for the case of Manifolds with corners [10].

In Vakhrameev’s work and the stratified Morse theory of Goresky and MacPherson,
however, the gradient flow does not appear as prominently as it does in other versions.
Indeed, the functions on these spaces may not even allow a gradient flow to be defined
globally. My intention in the first part of this work is to produce a Morse theory for
manifolds with corners, a type of stratified space, that retains the point of view developed
by Thom and Smale. A more thorough history of Morse theory may be found in [1].

2. Morse theory for manifolds with corners

2.1. Manifolds with corners

Let {e1, . . . , ej } denote the standard basis vectors inR
n. DefineH

n
j to be the set

H
n
j =

{
w ∈R

n: w · ei � 0 for all 1� i � j
}
,
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where· denotes the standard inner product onR
n.

Definition 1. An n-dimensional manifold with corners,M, is a topological space together
with an atlas,A, of chartsxa :Ua→H

n
ja

such that
⋃
a∈AUa =M.

If p ∈M, we will say acoordinate chart atp is a chartxp ∈A such thatxp(p)= 0∈
H
n
j . In this case, the numberj is uniquely determined by the pointp. Thus we can write

j = j (p).
The tangent space of a manifold with corners can be defined as equivalence classes of

Cp(M)=
{
(x,v): x is a coordinate chart atp ∈M andv ∈R

n
}
,

where(x,v)∼ (y,w) if D(x ◦ y−1)(w)= v. If p ∈ ∂M then some of the vectors inTpM
point away from the manifold with corners.

Definition 2. A tangent vector inTpM pointsoutward if some representative(x,v) has
v /∈H

n
j (p). A tangent vector isTpM pointsinward (or into M) if some representative(x,v)

hasv ∈H
n
j (p).

Note that the definition of an inward pointing vector includes those vectors which are
tangent to the boundary ofM. These terms are well defined, since for any two coordinate
charts atp, the transition functions preserveH

n
j (p).

2.2. Stratified spaces

There are a number of different notions of what constitutes a stratified space. We will
not be using any results pertaining any particular theory of stratified spaces, but we will
find the language to be convenient. Consequently, we will use a fairly general definition of
‘stratified space’.

Definition 3. A stratified spaceconsists of a topological spaceX, a partially ordered setS
and a collection{Hi}i∈S of subspaces ofX satisfying

(1) EachHi is a manifold.
(2) X =⋃

i∈S Hi .
(3) Hi ∩Hj 
= ∅⇔Hi ⊆Hj ⇔ i � j . In this case we also writeHi �Hj .

Each of the manifoldsHi is astratumof X.

For us, the most important example of a stratified space is a manifold with corners. For
a manifold with cornersM, let Ej (M)= {p ∈M: j (p)= j }. It is not difficult to see that
Ej (M) is a manifold of dimensionn− j . We may think of each connected component of
Ej (M) as a stratum with dimensionn− j .
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2.3. Morse functions on manifolds with corners

Let f :M→R be a smooth function. IfH is a stratum ofM, andp ∈H , we sayp is a
critical point of f wheneverp is a critical point off |H .

If p ∈H is in the closure of another stratum,K, we can define the generalized tangent
space

TpK =
{
w ∈ TpM: w = lim

i→∞vi ∈ TqiK for some sequence{qi}→ p
}
.

We may also write this asTpK = limq→p TqK.

Definition 4. For a manifold with cornersM, we say a smooth functionf :M→ R is a
Morse function if it has the following properties:

(1) If H is a stratum ofM, andp ∈H is a critical point off |H :H →R, then either
(a) p is a non-degenerate critical point off |H :H →R, i.e., the Hessian has non-zero

determinant, or
(b) the vector−∇f (p) points intoM.

(2) If p ∈ H is a critical point, then for any stratumK 
=H with p in the closure ofK,
dfp is not identically zero onTpK.

Notice that this definition involves only the first and second derivatives off . In fact a
Morse function need only beC2 in a neighborhood of each critical point in the interior of
M and each critical point such that−∇f (p) points outward. It need only beC1 elsewhere.

2.4. Modifying the gradient vector field

In classical Morse theory, a Morse functionf :M → R is studied by choosing a
Riemannian metric onM and examining the flow induced by the vector field−∇f . When
we allow the manifoldM to have corners (or even just a boundary) a difficulty arises. If
−∇f points outward from any point in∂M, the vector field cannot produce a flow that
carriesM to M. As a result, we must modify the gradient vector field to produce a new
vector field that does induce such a flow. As we do this, we must keep in mind the two
properties this flow must have. First, it must be continuous, and second, the value of the
functionf must decrease along the flow lines.

The point of view we will take is that we want to follow the gradient vector field as
closely as possible. What we must do is project the vector−∇f (p) onto the maximal
stratum such that the resulting vector does not point outward fromM.

At first sight, is makes no sense to talk about−∇(f |H )(p), whenp /∈H . Whenp ∈H ,
however, this can be reasonably defined. The approach requires us to remember thatf |Up
can be thought of asf ◦ x−1

p :xp(Up)→R and extended to a functioñf :Rn→R. Thus
we can extend the stratumH to a manifoldH̃ ⊃H that containsp. Then we can define

−∇(f |H)(p)=−∇(f |H̃ )(p).
Since−∇f̃ is continuous onH̃ , this procedure provides a continuous extension of
−∇(f |H) to H̃ .
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How do we know there must be a maximal stratumK such that−∇(f |K)(p) does
not point outward fromM? Suppose we have two strata,H1 andH2, such thatH1 
= H2
and−∇(f |Hi )(p) points inward towardHi for i = 1,2. Choose a standard coordinate
chart x :Up → H

n
j (p) at p. Then the coordinatexi will be non-negative wheneveri >

n − j (p). Let Ai = {' ∈ {1, . . . , n}: e' points intoHi}. Then x(Hi ∩ Up) is an open
subset of span{e'}'∈Ai . Since−∇(f |Hi )(p) points intoM, we must havee'[f ]� 0 when
'� n− j (p) and' ∈Ai . (Recall that according to Definition 2 vectors tangent to a stratum
in ∂M are considered inward pointing.)

Let B = A1 ∪ A2. Then span{e'}'∈B ∩ Up = K ∩ Up for some stratumK, and
−∇(f |K)(p) points intoM.

Then either dim(K) > dim(Hi) for i = 1,2, or one of the two strata is contained in
the boundary of the other. Consequently for each pointp ∈M, there is a unique maximal
stratumKp such that−∇(f |Kp)(p) points intoM. This allows us to make

Definition 5. At each pointp ∈M, letKp be the unique maximal stratum such thatp ∈Kp
and−∇(f |Kp)(p) does not point outward fromM. SetG(p)=−∇(f |Kp)(p).

ThenG is a well defined vector field onM. From the above construction we see that the
directional derivativeG(p)[f ]� 0, so the value off will decrease along the flow lines of
any flow induced byG. What we must show is that such a flow exists and is continuous.

2.5. The modified gradient vector field induces a continuous flow

First we will show that even though the modified gradient vector fieldG is not
continuous, it does induce a flow. TheG-flow will follow the −∇f -flow until it hits a
stratumH in the boundary. It then follows the−∇(f |H)-flow until it either hits a lower-
dimensional stratum, or flows back into the interior. To ensure uniqueness, we must impose
another condition on our Morse functions.

Definition 6. We say that a Morse functionf :M → R satisfies Property (3) if for any
standard coordinate chartx, whenever−∇f (p) is tangent to a stratumH ⊆ ∂M with
ei ⊥ H and ∂f

∂xi
(p) = 0, the directional derivative of∂f

∂xi
in the direction−∇f (p) is not

zero, i.e.,(−∇f (p))[ ∂f
∂xi

]
=

n∑
j=1

− ∂f

∂xj

∂2f

∂xj∂xi

= 0.

This is equivalent to the statement−∇f (p) is not tangent to the set{q ∈M: ∂2f

∂xi
2 = 0}.

Lemma 1. If f :M→ R is a function satisfying Property(3), then the modified gradient
vector fieldG induces a flowϕ :M × [0,∞)→M satisfying

ϕ( · ,0)= identity

∂

∂t
ϕ(p, t)|t=t0 =G

(
ϕ(p, t0)

)
.
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Proof. Recall that in Definition 5 we selected at each pointp in a stratumS ⊂M a stratum
Kp and definedG(p) = −∇(f |Kp)(p). Sincef |S is a smooth function, the vector field
−∇f |S induces a continuous flowϕS on S. We can use this flow to define a stratum
Hp = limt→0KϕS(t,p). In general we will find thatHp =Kp , but if ∂f

∂xi
(p)= 0 for somei,

this may not be the case.
We can solve the initial value problemσ ′p(t) = −∇(f |Hp)(σp(t)), σp(0) = p. The

solutionσp lies inHp. Let t1 be given by

t1= sup
{
t ∈R+: σ ′p(t)=G

(
σp(t)

)}
.

Then fort � t1, we setϕ(t,p)= σp(t). For t > t1, we must repeat this procedure starting
from σp(t1), and flowing for timet − t1. ✷

This shows that the vector fieldG induces some flow onM. Our goal now is to show
that this flow is continuous.

Lemma 2. If f :M→R is a function satisfying Property(3), then the flow induced by the
modified gradientG is continuous.

Near a pointp ∈ M, there is a coordinate systemx :Up → Vp ⊆ H
n
j such that

x(q) = (x1(q), . . . , xn(q)). As usual, the coordinates are chosen so thatxi ∈ (−∞,∞)
for i � n− j , xi ∈ [0,∞) for i > n− j , andx(p)= (0, . . . ,0).

Choose anR > 0 such thatBR(p) ⊂ Up. Let µ = supq∈M ‖G(q)‖. Then we can
chooser and τ0 such thatµτ0 < R − r. Then ϕ(t,Br(p)) ⊂ BR(p) for every t <
τ0. Consequently, it is sufficient to view the situation in terms of the coordinate
systemx.

Define a projectionπ :Rn→H
n
j by π(v)= (π1(v1), . . . , πn(vn)), where

πi(vi)=
{
vi, if 1 � i � n− j or vi � 0
0, else.

Note thatπ is a continuous map anddEuc(π(x), y)� dEuc(x, y).
We have a vector field̃G = x∗(G) on Vp. There is also another vector fieldF =

x∗(−∇f ). ExtendF to all of π−1(Vp) by settingF̃ to be “constant” (i.e., parallel in
the Euclidean metric) along each preimage,π−1(q) for q ∈ Vp . The extended vector field
F̃ is Lipschitz, and so induces a continuous flow, denoted byψ .

Next, we want to define mapsTi :π−1(V )→ {0,1} for i = n− j + 1, . . . , n. The idea
is thatTi will be zero where the flowϕ stays within a stratum wherexi = 0. Ti changes to
1 when the flow enters a higher-dimensional stratum wherexi > 0.

Ti(q)=
{

0, if yi(q)� 0 and
〈−G̃(q), ∂

∂yi

〉
� 0

1, else.

Definition 7. Say thatψ( · , q) has anuptickat timet if for somei ∈ {n− j + 1, . . . , n},
lim
s→t−

Ti
(
ψ(s, q)

)
< lim
s→t+

Ti
(
ψ(s, q)

)
.
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Lemma 3.

(1) If q ∈ Vp andψ(·, q) has no upticks in(0, τ ), then

ϕ(τ, q)= π ◦ψ(τ, q).
(2) If ψ(·, q) has an uptick in(0, τ ), then

dEuc
(
ϕ(τ, q),π ◦ψ(τ, q))< 2µτ.

Proof. Sinceµ is the maximal speed for both flows, the farthest they can diverge in time
τ is 2µτ . That proves the second part of the Lemma.

Now suppose thatψ(·, q) has no upticks in(0, τ ). Let ϕ(t, q)= (x1(t), . . . , xn(t)) and
ψ(t, q)= (y1(t), . . . , yn(t)). It is sufficient to consider the case where the flowϕ remains
in a single stratum, sayH ⊂ Ej (M).

Thexi ’s satisfy the system of differential equations

dxi
dt
= gi(x1, . . . , xn)= gi(x1, . . . , xj ,0, . . . ,0).

We are able to setxj+1= · · · = xn = 0, since this flow remains inH .
Theyi ’s, on the other hand, are determined by the system

dyi
dt
= fi(y1, . . . , yn)= fi(y1, . . . , yj ,0, . . . ,0).

Here, we replaceyj+1, . . . , yn with 0, because thefi are constant on

π−1(y1, . . . , yj ,0, . . . ,0).

Moreover, for 1� i � j ,

fi(y1, . . . , yj ,0, . . . ,0)= gi(y1, . . . , yj ,0, . . . ,0).

Consequently for 1� i � j , yi(t)= xi(t).
For i > j , πi(yi)= 0. Sincexj+1= · · · = xn = 0, it follows that

π
(
y1(t), . . . , yn(t)

)= (
x1(t), . . . , xn(t)

)
.

It follows then, thatπ ◦ψ(τ, q)= ϕ(τ, q). ✷
Lemma 4. For q ∈U and a suitably chosenτ there is a finite upper limit,N , to the number
of upticks alongψ(·, q) : [0, τ ]→M.

Proof. The set f−1((−∞, f (q)) is compact and contains the image of the curve
ψ(·, q) : [0, τ ] →M. Suppose that the set{pi} of points whereψ(·, q) : [0, τ ] →M has
an uptick is infinite. Then some subsequence of{pi} has a limit pointp0.

Property (3), however, ensures that there is a neighborhood ofp0 that contains no other
upticks, deriving a contradiction. This shows that each such curve has a finite numberNq
of upticks. We need to show that there is a finite upper bound for{Nq : q ∈ M}.

Suppose there is no such upper bound. Then choose a sequence{qi} so thatNqi > i.
Finally, choose a pair{ai = ψ(τai , qi), bi = ψ(τbi , qi)} so that|τai − τbi | is minimized
along the curveψ(·, q) : [0, τ ]→M. Then|τai − τbi | → 0 asi→∞.
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Using compactness again, we can find a subsequence of pairs{ai, bi} so thatai→ p0
and bi → p0 as i → ∞. It follows that in a standard coordinate system, for some
n− j (p0) < i � n,

∂f

∂xi
(p0)= 0

sincep0 is a limit of upticks, and∂f
∂xi

is continuous. Moreover, becausep0 is the limit of

two consecutive upticks, the directional derivative of∂f
∂xi

in the−∇f (p0) direction satisfies

(−∇f (p0)
)[ ∂f
∂xi

]
= 0.

But this contradicts the fact thatf satisfies Property (3).✷

Proof of Lemma 2. We can define a family of mapsψk : [0, τ0)×M→M by

ψk(τ, q)=
[
π ◦ψ

(
τ

k
, ·

)]k
(q).

Fig. 1 shows an example wherek = 3. If ψ(τ, q) has upticks at timest1, . . . , tn, we may
write this as

ψk(τ, q) =
[
π ◦ψ

(
τ

k
, ·
)]Nn

◦
[
π ◦ψ

(
τ

k
, ·
)]
◦
[
π ◦ψ

(
τ

k
, ·
)]Nn−1

◦ · · ·

◦
[
π ◦ψ

(
τ

k
, ·
)]N1

◦
[
π ◦ψ

(
τ

k
, ·
)]
◦
[
π ◦ψ

(
τ

k
, ·
)]N0

(q)

=
[
π ◦ψ

(
Nn
τ

k
, ·
)]
◦
[
π ◦ψ

(
τ

k
, ·
)]
◦
[
π ◦ψ

(
Nn−1

τ

k
, ·
)]
◦ · · ·

◦
[
π ◦ψ

(
N1
τ

k
, ·
)]
◦
[
π ◦ψ

(
τ

k
, ·
)]
◦
[
π ◦ψ

(
N0
τ

k
, ·
)]
(q),

whereti ∈
( τMi−1

k
,
τ(Mi−1+1)

k

)
. Using the first part of the lemma, we can write

Fig. 1. The solid line shows the path fromq to ϕ(τ, q). The dotted line shows the path fromq to
ψ3(q)= [π ◦ψ( τ3 , · )]3(q).
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ψk(τ, q) =
[
ϕ

(
Nn
τ

k
, ·
)]
◦
[
π ◦ψ

(
τ

k
, ·
)]
◦
[
ϕ

(
Nn−1

τ

k
, ·
)]
◦ · · ·

◦
[
ϕ

(
N1
τ

k
, ·
)]
◦
[
π ◦ψ

(
τ

k
, ·
)]
◦
[
ϕ

(
N0
τ

k
, ·
)]
(q).

Now, [0, τ ] ×M is compact, so there is a constantK > 0 such that

dEuc
(
ψ(t,p),ψ(s, q)

)
�K

(
dEuc(p, q)+ ‖t − s‖

)
.

Combining this estimate with the fact thatπ does not increase distances and the lemma,
we get the estimate

dEuc
(
ψk(τ, q),ϕ(τ, q)

)
� 2µ

τ

k

n∑
i=1

Ki � 1

k

(
2µτ0

N∑
i=1

Ki

)
.

This bound is independent ofτ and q , so ask →∞, ψk converges uniformly toϕ.
Since the mapsψk are all continuous it follows thatϕ : [0,∞)×M→M is a continuous
flow. ✷
2.6. Essential critical points

In classical Morse theory, critical points of a Morse functionf appear as stationary
points of the−∇f -flow. Analyzing the behavior of the flow near these points allows one
to prove the Morse theorems. In Section 1.2 we defined a critical point to be any pointp

such that−∇(f |S)(p) = 0, whereS is the stratum containingp. Which of these critical
points are stationary points of the modified gradient flow?

A point p in the stratumS ⊆M will be a stationary point ifG(p) = 0. This means
that the projection of−∇f (p) onto any stratum other thanS must point outward fromM.
This is equivalent to saying that ifx :Up→H

n
j is a standard coordinate chart nearp, then

ei [f ](p) > 0 for i > n− j .

Definition 8. An essential critical pointis a pointp ∈M satisfyingG(p)= 0.

In classical Morse theory, a critical point off is labeled with a number called its
index. The indexλ of a critical pointp is the number of negative eigenvalues of the
Hessian matrixH(p) of second partial derivatives off at p. The lemma of Morse tells
us that near such a critical point, there is a system of local coordinatesxp such that
f = f (p)− x2

1 − · · · − x2
λ + x2

λ+1+ · · · + x2
n. Our situation requires a slight modification

of this lemma.

Lemma 5. Let p be an essential critical point of a Morse functionf which satisfies
Property (3), and suppose thatp is contained in a stratumS having dimensionn − j .
Then there is a local coordinate systemxp :Up→H

n
j such that the identity

f = f (p)− x2
1 − · · · − x2

λ + x2
λ+1+ · · · + x2

n−j + x1
n−j+1+ · · · + x1

n

holds throughoutUp .
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Proof. We may assume without loss of generality thatf (p) = 0. Sincep is a non-
degenerate critical point off |S , we can choose coordinates(u1, . . . , un−j ) atp such that

f |S =−u2
1− · · · − u2

λ + u2
λ+1+ · · · + u2

n−j ,
and extend this to a standard coordinate chartu onM.

We can expressf as a Taylor series in these coordinates:

f = −u2
1− · · · − u2

λ + u2
λ+1+ · · · + u2

n−j

+
n∑

i=n−j+1

ui

[
fui +

1

2

n∑
j=1

fuiuj uj + · · ·
]
,

then setxi = ui for 1 � i � n− j and fori > n− j define

xi = ui
[
fui +

1

2

n∑
j=1

fuiuj uj + · · ·
]
.

Then for eachi, xi(u1, . . . , un) is a smooth function. Leth be the map that carries
(u1, . . . , un) to x(u1, . . . , un). Thenh is smooth and

det
(
Dh(0)

)= det



1
. . . 0

1
fun−j+1

0
. . .

fun


.

Sincep is an essential critical point,fui > 0 for all i > n − j . Thus det(Dh(0)) 
= 0.
It follows from the Implicit Function Theorem that on some neighborhood ofp, x is a
coordinate system, compatible withu.

Moreover, it is clear from the definition ofxi that in the domain of the coordinate chart
x, xi = 0 if and only if ui = 0. Further,xi > 0 if and only if ui > 0. Consequently,x is a
standard coordinate system. In this coordinate system,f is given by

−x2
1 − · · · − x2

λ + x2
λ+1+ · · · + x2

n−j + x1
n−j+1+ · · · + x1

n

as required. ✷
We will call the numberλ theindexof p, and we will take this lemma to be the definition

of the index of an essential critical point. The coordinate systemx in the lemma induces a
coordinate system̃x = (x1, . . . , xn−j ) onS. From this it is clear thatλ is the index ofp as
a critical point off |S .

2.7. The Morse theorems

In this section we see how the number and type of essential critical points a function on
a manifold with corners may have is governed by the topology of the domain. We will use
the following notation:Ma = f−1((−∞, a]). We will assume thatMa is compact for each
a ∈R.
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Lemma 6. If a < b, andf−1([a, b]) contains no essential critical points, then there is a
timeτ > 0 such thatϕ(τ,Mb)⊂Ma .

Proof. Suppose that there is a pointq ∈ f−1([a, b]) such thatϕ(t, q) /∈ f−1((−∞, a]) for
all t > 0. Let {qi}i>0 be the sequenceϕ(i, q). Then{qi} is contained in the compact set
f−1([a, b]). Consequently, there is a subsequence of{qi} that converges to a limitq0 ∈
f−1([a, b]). We must havef (ϕ(t, q)) > f (q0) for all t and limt→∞ f (ϕ(t, q))= f (q0).

Sinceq0 is not an essential critical point,G(q0) is non-zero. We can choose some
time t0 such thatf (ϕ(t0, q0)) < f (q0). Let U be a neighborhood ofϕ(t0, q0) such that
f (U) < f (q0). Sinceϕ(t0, · ) is continuous,ϕ(t0, · )−1(U) is an open set containingq0.
It follows that there is somei such thatf (ϕ(i + t0, q)) < f (q0) which contradicts the
assumption that{qi} ⊂ f−1([a, b]). ✷

We are now in a position to prove three of the central theorems of Morse theory.

Theorem 7. Let f :M → R be a Morse function satisfying Property(3) on a manifold
with cornersM. If a < b andf−1([a, b]) contains no essential critical points, thenMa is
a deformation retract ofMb, so the inclusion mapMa ↪→Mb is a homotopy equivalence.

Proof. Since there are no essential critical points inf−1([a, b]) and the value off
decreases along the flow lines ofϕ, for each pointp ∈ Mb there is a timet such that
ϕ(t,p) ∈Ma . Let tp = inf{t ∈R+: ϕ(t,p) ∈Ma}.

Now we can define a homotopyH :Mb × [0,1]→Ma by

H(p, s)=
{
ϕ(p, s

1−s ), if s
1−s � tp,

ϕ(p, tp), if s
1−s � tp. ✷

Theorem 8. Let f :M → R be a Morse function satisfying Property(3) on a manifold
with cornersM. Letp be an essential critical point with indexλ. Setf (p) = c. Suppose
that, for someε > 0, f−1([c− ε, c+ ε]) contains no essential critical points other thanp.
ThenMc+ε is homotopy equivalent toMc−ε with aλ-cell attached.

Fig. 2. The arrows illustrate the homotopy fromMb toMa .
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Proof. Choose a coordinate systemx :Up→R
n−j × [0,∞)j in which we can write

f = f (p)− x2
1 − · · · − x2

λ + x2
λ+1+ · · · + x2

n−j + x1
n−j+1+ · · · + x1

n.

Then chooseε > 0 sufficiently small so thatf−1[c− ε, c+ ε] contains no essential critical
points other thanp, and the imagex(Up) contains the closed ‘ball’{

(x1, . . . , xn):
n−j∑
i=1

x2
i +

n∑
i=n−j+1

x1
i � 2ε

}
.

The proof from here will consist of the following three steps:

(1) Define a regionH , as shown in Fig. 3.
(2) ShowMc−ε ∪H  Mc+ε .
(3) ShowMc−ε ∪ eλ  Mc−ε ∪H .

We begin by tweaking the functionf a bit. Choose aC∞ function µ :R→ R that
satisfies

µ(0) > ε,

µ(r)= 0, for r > 2ε,

−1<µ′ � 0.

If we write

ξ = x2
1 + · · · + x2

λ,

η= x2
λ+1+ · · · + x2

n−j ,
ζ = x1

n−j+1+ · · · + x1
n,

then we can writef = c− ξ + η+ ζ .
Define a new functionF by

F = f −µ(ξ + 2η+ 2ζ )= c− ξ + η+ ζ −µ(ξ + 2η+ 2ζ ).

Fig. 3. Mb is the shaded region.Ma is the darkly shaded region. The heavy outline shows the set
{ξ + 2η+ 2ζ = ε}, and the medium shaded region isH .
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We will use this function (and its level sets) to define the regionH .

Claim 1. The essential critical points ofF andf are identical.

Outside our ‘ball’ of ‘radius’ 2ε, F = f and so any critical points there must coincide.
Inside, the functionf has a single essential critical point atp. To find the essential critical
points ofF we must compute dF .

dF = (−1−µ′)dξ + (1− 2µ′)dη+ (1− 2µ′)dζ.

The coefficients(−1 − µ′) and (1 − 2µ′) are nowhere zero and dξ and dη are
simultaneously zero only atp. Thus p is an essential critical point provided that
ei [F ](p) > 0 for i > n− j . A computation shows that

ei[F ](p)= dF(ei )(p)= (1− 2µ′)dζ(ei )(p)= (1− 2µ′)(1) > 0,

sop is indeed an essential critical point ofF .

Claim 2. F−1(−∞, c+ ε)= f−1(−∞, c+ ε).

Outside the set{ξ + 2η+ 2ζ � 2ε} we know thatµ= 0, soF = f . Inside this set, we
see that

F � f = c− ξ + η+ ζ.
Equality holds on the boundary of the ‘ball’. Also,

c− ξ + η+ ζ � c+
(

1

2
ξ + η+ ζ

)
.

Here equality holds whenξ = 0. Finally, we note that

c+
(

1

2
ξ + η+ ζ

)
� c+ ε.

Here, again, equality holds on the boundary of the ‘ball’. So we see that within this set,
F � c+ ε andf � c+ ε unlessξ = 0 andη+ ζ = ε, in which caseF = f = c+ ε.

Claim 3. F−1(−∞, c− ε] is a deformation retract ofMc+ε .

Consider the regionF−1[c − ε, c + ε]. It is compact, but does it contain any critical
points? The only possibility isp, but

F(p)= c−µ(0) < c− ε,
sop /∈ F−1[c− ε, c+ ε] and Theorem 7 applies:F−1(−∞, c− ε] is a deformation retract
of

F−1(−∞, c+ ε] = f−1(−∞, c+ ε] =Mc+ε.

Define the regionH by

H = F−1(−∞, c− ε] −Mc−ε.
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Recall that we have defined theλ-cell eλ such thateλ = {q: ξ(q) < ε, η(q)= ζ(q)= 0}.
Note thateλ ⊆H , since∂F

∂ξ
=−1−µ′ < 0 implies forq ∈ eλ,

F(q) < F(p) < c− ε.
Note also thateλ ∩Mc−ε = ∂eλ.

Claim 4. Mc−ε ∪ eλ is a deformation retract ofMc−ε ∪H .

For eacht ∈ [0,1] we define a maprt :Mc−ε ∪H →Mc−ε ∪H as follows:

Case 1. If q ∈Mc−ε , setrt (q)= q for all t .

Case 2. If q ∈H andξ(q) < ε, then set

rt (x1, . . . , xn)=
(
x1, . . . , xλ, (1− t)xλ+1, . . . , (1− t)xn

)
.

Case 3. If ε � ξ(q)� η(q)+ ζ(q)+ ε, then definert by

rt (x1, . . . , xn)= (x1, . . . , xλ, st xλ+1, . . . , stxn),

where

st = (1− t)+ t
[
ξ − ε
η+ ζ

]1/2

.

Thenr0 is the identity map, andr1 :Mc−ε ∪H →Mc−ε ∪ eλ. Moreover,rt (q) ∈ eλ for
eacht , because∂F

∂η
> 0 and∂F

∂ζ
> 0. (Moving towardeλ decreasesF .)

We must show that the functionsst xi are continuous asξ → ε, η→ 0, ζ → 0. Since
xi→ 0 asη+ ζ → 0,

lim
η+ζ→0

[
ξ − ε
η+ ζ

]1/2

xi =
[

lim
η+ζ→0

ξ − ε
η+ ζ

]1/2

(0).

Since

0= (ε)− ε
η+ ζ � ξ − ε

η+ ζ � (η+ ζ + ε)− ε
η+ ζ = 1,

the limit is zero, and it follows that eachstxi is continuous.
Note that this definition agrees with Case 1 whenξ = ε and with Case 2 when

ξ − η − ζ = ε. Thus r provides a deformation retraction ofMc−ε ∪ H to Mc−ε ∪ eλ.
This concludes the proof of Theorem 8.✷

Theorems 7 and 8 together imply

Theorem 9 (Main Theorem).If M is a manifold with corners,f :M→R a Morse function
onM which satisfies Property(3) andf−1(−∞, c] is compact for eachc, thenM has the
homotopy type of a CW complex with one cell of dimensionλ for each essential critical
point with indexλ.
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Finally, because the homology groups are a homotopy invariant, the Morse inequalities
hold for a Morse function on a manifold with corners,f :M→R. If bi(M) is theith Betti
number ofM, andmi(f ) is the number of essential critical points off with indexi, then

k∑
i=0

(−1)k+ibi(M)�
k∑
i=0

(−1)k+imi(f ).

These are the Strong Morse Inequalities. It is a simple matter to deduce from these the
Weak Morse Inequalities:

mk(f )� bk(M) for eachk � 0.

3. Generalized billiard paths

3.1. Statement of the problem

We now return to the problem posed in Section 1.1. We have a compactn-manifold
embedded in some Euclidean space,M ↪→ R

N . Givenp,q ∈ R
N we wish to count the

number of generalized billiard paths fromp to q :

Definition 9. A sequenceP = {α1, . . . , αk} connectingp = α0 toq = αk+1 is ageneralized
billiard path with k-reflections if for eachi one of the following is true:

(1) The bisector of�αi−1αiαi+1 is normal toTαiM.
(2) �αi−1αiαi+1 is a straight angle.

3.2. The length of a sequence

We can define the length of a sequenceP = {α1, . . . , αk} connectingp andq to be

L
(p,q)
k (P )=

k∑
i=0

dEuc(αi , αi+1),

and think ofL(p,q)k as a function

L
(p,q)
k :M × · · · ×M︸ ︷︷ ︸

k copies

→R.

When there is no confusion regarding the endpoints, we will writeLk for L(p,q)k .
This length function has one bad property. Wherever consecutive points of a sequence

coincide,Lk has a singularity that looks like|x − y|. It has another property, though, that
makes us willing to put up with this. Away from this bad set, we can compute∇Lk . Paths
for which∇Lk = 0 will be of special interest, as shown by the following

Lemma 10. A sequenceP = {α1, . . . , αk} with αi 
= αi+1 for 0 � i � k satisfies

∇Lk(α1, . . . , αk)= 0

if and only if it is a generalized billiard path.
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Proof. ∇Lk = 0 if an only if the directional derivativev[Lk] = 0 for all v ∈ T (Mk). Since
we can identifyT (Mk) with TM⊕· · ·⊕TM, we can writev = v1⊕· · ·⊕vk . Then, since
(v1⊕ · · · ⊕ vk)[Lk] = v1[Lk] + · · · + vk[Lk], it is sufficient to show that∇Lk = 0 if and
only if vi [Lk] = 0 for any choice ofvi .

Now, vi[Lk] = vi[∑k
j=0dEuc(αj ,αj+1)]. Only two of the terms on the right are non-

zero:

vi[Lk] = vi
[
dEuc(αi−1, αi)

]+ vi
[
dEuc(αi , αi+1)

]
.

In order to computevi [dEuc(αi−1, αi)] we can choose a curve inM (which we will also
call αi ) satisfying

αi(0)= αi and α′i (0)= vi .

In this way, we think ofαi as varying along the curve, rather than as a fixed point. Then

vi
[
dEuc(αi−1, αi)

]= d

dt
Lk

(
α1, . . . , αi(t), . . . , αk

)|t=0.

Then we can compute

vi
[
dEuc(αi−1, αi)+ dEuc(αi , αi+1)

]
= ∂

∂t

[(
αi−1− αi(t)

) · (αi−1− αi(t)
)]1/2+ [(

αi(t)− αi+1
) · (αi(t)− αi+1

)]1/2

= −α′i (t) · (αi−1− αi(t))
[(αi−1− αi(t)) · (αi−1− αi(t))]1/2 +

α′i (t) · (αi(t)− αi+1)

[(αi(t)− αi+1) · (αi(t)− αi+1)]1/2

= α′i (t) ·
(
αi−1− αi(t)
‖αi−1− αi(t)‖ +

αi(t)− αi+1

‖αi(t)− αi+1‖
)
.

Evaluating att = 0 we find

vi
[
dEuc(αi−1, αi)+ dEuc(αi , αi+1)

]= vi ·
(
αi−1− αi
‖αi−1− αi‖ +

αi − αi+1

‖αi − αi+1‖
)
.

This will be zero for allvi provided that the vector(
αi−1− αi
‖αi−1− αi‖ +

αi − αi+1

‖αi − αi+1‖
)

is either normal toTαiM or zero. When this vector is non-zero it is a bisector of the angle
�αi−1αiαi+1. When it is zero,�αi−1αiαi+1 is a straight angle. Thus the gradient is zero
exactly when the sequence is a generalized gradient path.✷

Having established thatLk is a function worth considering, let’s look more closely at its
behavior near the diagonals{αi = αi+1}. Consider a sequence{α,β, γ } whereα = β . If β
moves slightly toβ ′, as in Fig. 4, the triangle inequality tells us that we have increased the
length of the sequence.

We know that the vector field−∇Lk points in the direction of decreasing length.
Consequently, under any modified gradient flow, nearby consecutive reflections would tend
to flow toward each other. We will define such a flow in Section 4.2, but for now we are
interested in generalized billiard paths withk distinct reflections. Consequently we will
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Fig. 4. Whenβ is moved away fromα the length of the path increases.

instead look at the function−Lk . It has the same critical points, but the∇Lk -flow tends
away from the diagonals. Then we will ‘blow up’ the productMk along the appropriate
diagonals.

3.3. The blow up space

This notion of blowing up was introduced by Fulton and MacPherson in [4]. To
understand what is meant by blow up, let’s think about a simple example. TakeM = S1

andk = 2. Assume thatp,q /∈M. Then−L2 is a function on the torus which is singular
along the diagonal∆⊂ S1× S1.

As (α,β)→ (α,α) the limit of −∇L2 depends on the direction of approach. The
gradient vector−∇Lk(α,β) consists of a vector inTαM pointing away fromβ and a
vector inTβM pointing away fromα. If β is allowed to approachα from the opposite side,
the gradient vector is reversed.

We need to produce a closure ofS1×S1−∆ on which we can extend∇L2 continuously.
Consequently, as(α,β) approaches∆, we keep track not only of the limiting point, but also
of the relative positions ofα andβ . The result is shown in Fig. 5.

Now lets consider a path withk reflections on ann-manifoldM. Fig. 6 shows the
situation when two consecutive points coincide. This collision is described by the limiting
point and aninfinitesimal tangent space diagram. This diagram shows pointsvα andvβ in
the tangent space of the limiting point. Two such diagrams are equivalent if they differ by
translation and multiplication by a positive constant. We can translate the diagram so that
vα is at the origin, and then scale it sovβ is on the unit circle. This shows that each such
point will be blown up into a copy ofSn−1.

Fig. 7 shows what may happen whenα, β , and γ coincide at a pointθ ∈ M. The
situation is a bit more complicated now. Again, we can translate the diagram so thatvα
is at the origin, and then scale it sovγ is on the unit circle. The pointvβ now may lie
anywhere inTθM ∪∞. It would seem that each such pointθ is blown up to a copy of
Sn−1× Sn. In fact this is not the case. Whenevervβ = vα or vβ = vγ the resulting double
point must also be blown up. On the other hand, if scaling the diagram so thatvγ is on the
unit circle pushesvβ off to infinity, we would do better to scale the diagram so thatvβ is on
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Fig. 5. The pointδ ∈∆ is blown up to the two pointsδ′ andδ′′.

Fig. 6. The infinitesimal tangent space diagram for two consecutive reflections colliding inM .

the unit circle. (We are free to choose, since all these diagrams are equivalent.) When we
rescale in this fashion, we will find thatvγ = vα . This point need not be blown up further,
becauseα andγ are not consecutive reflections. All of these special situations correspond
to a situation where two of the points approach each other much more quickly than they
approach the third.

When more points collide, there will be more of these cascading diagrams. In addition,
two collections of points may collide independently at different points in the manifold. In
this case we have two separate collections of infinitesimal diagrams corresponding to the
two collections of points. We will denote the space that results from blowing upMk in this
way byXk = Xk(M). The spaces that result are somewhat difficult to describe. There is
one thing we can say about these spaces which is of particular importance to us.

Lemma 11. For any smooth manifoldM, the spaceXk = Xk(M) is a manifold with
corners.

Proof. It is shown in [4] that the result of blowing up all the diagonals is a manifold
with corners. In our case, we are only concerned with the diagonals corresponding to the
collision of consecutive reflections. Here we show that blowing up only these diagonals
also leads to a manifold with corners.

First, we define some convenient notation for referring to a stratum of the blow upXk .
When we write(

α1, . . . , αi−1, {αi, . . . , αi+j }, . . . , αk
)
,
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Fig. 7. Possible infinitesimal tangent space diagrams for three consecutive reflections colliding inM . In (a),α, β
andγ all approach each other at approximately the same rate. In (b),β andγ approach each other much faster
then they approachα. In (c),α andβ approach each other much faster than they approachγ . The situation where
α andγ approach each other faster than they approachβ need not be considered separately, since these reflections
are not consecutive.

we mean thatαi = · · · = αi+j , and all these points come together at commensurable rates.
This stratum will be described by an infinitesimal diagram inTθM in which vi 
= · · · 
=
vi+j . Furthermore, when we write(

. . . ,
{
αi, . . . , {αi+', . . . , αi+'+m}, . . . , αi+j

}
, . . .

)
we mean thatvi+' = · · · = vi+'+m in the first infinitesimal diagram, requiring a second
diagram.

Each pair of braces must enclose a proper subset of the points in preceding set of braces.
Each grouping designates a stratum with as many infinitesimal diagrams as there are pairs
of braces. Moreover, for each pair of braces we add, the codimension of the stratum is
increased by one. To see this, consider what happens when we add a single set of braces:(

. . . , {αi, . . . , αi+j }, . . .
)
.
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Before the braces were added, these points representedj + 1 distinct points in an
infinitesimal diagram (or inMk)—an n(j + 1)-dimensional set. They now represent a
single point in ann-dimensional space, and a new diagram. We can scale the diagram
so thatαi is at the origin andαi+j is on the unit circle. The remainingj − 1 points lie
elsewhere in the tangent plane.

Altogether, we note that with the braces in place, the pointsαi, . . . , αi+j account for
n+ (n− 1)+ n(j − 1) or n(j + 1)− 1 dimensions. Thus adding the braces decreases the
dimension by one.

To see how a coordinate chartx may be defined near a point on this stratum, first choose
a coordinate chartui at each of the distinct pointsαi in M. The chartuθ at θ induces a
coordinate chartw1 on Tθ ′M for θ ′ nearθ . Then we may choose coordinatesw2 on the
unit sphere inTθ ′M that vary smoothly withθ ′.

Whenαi, . . . , αi+j are all sufficiently close together we can write uniquely

(αi , . . . , αi+j )=
(
expθ ′(tvi ), . . . ,expθ ′(tvi+j )

)
,

by requiringvi = 0 (so thatθ ′ = αi ), |vi+1| = 1 andt � 0. Then the limit ast→ 0 is the
infinitesimal diagram defined by{vi , . . . ,vi+1}. Set, forvi = 0 and|vi+1| = 1 andθ ′ in a
small neighborhood ofθ ,

x
(
α1, . . . , αi−1,expθ ′(tvi ), . . . ,expθ ′(tvi+j ), αi+j+1, . . . , αk

)
= (

u1(α1), . . . ,ui−1(αi−1),uθ (θ
′),ui+j+1(αi+j+1), . . . ,uk(αk),

w1(vi ),w2(vi+1),w1(vi+2), . . . ,vi+j , t
)
.

Then on a neighborhood of(α1, . . . , αk) this map defines a coordinate chart.
The same procedure can be used for any grouping of theαi ’s, using one parameter

0 � ti ∈R for each pair of braces.✷
There is a mapg :Xk→Mk that assigns to each point inXk the corresponding limiting

point inMk. We can define (abusing notation in the process)

−Lk :Xk→R

by

−Lk(q)=−Lk ◦ g(q).
Now, we wish to study this function onXk . There is just one more order of business to

attend to first.

3.4. When is−Lk a Morse function?

We want to show that−Lk satisfies the properties in Definitions 4 and 6. First of all, we
must show that∇Lk extends continuously toXk . Recall the definition ofLk :

Lk(P )=
k∑
i=0

dEuc(αi , αi+1).
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It is sufficient to show that∇dEuc(αi , αi+1) extends continuously for eachi. If αi andαi+1

do not approach each other, thendEuc(αi, αi+1) is smooth as it approaches the boundary of
Xk , and∇dEuc(αi, αi+1) can be extended continuously. Ifαi andαi+1 do approach each
other, we must show that∇dEuc(αi , αi+1) approaches a limit.

As the pointsαi andαi+1 approach each other, we can write

αj = expθ ′
(
tv′j

)
,

whereθ ′ → θ andv′j → vj ∈ TθM as t → 0. Then, sinceD(expθ ′)0 is the identity on
Tθ ′M, we can write,

αj = θ ′ + tv′j +O
(
t2
)
.

Here we are thinking ofTθ ′M as a linear subspace ofR
N . SinceM is compact, O(t2) is a

uniform bound for boundedv′j . Then the distance fromαi to αi+1 is given by

dEuc(αi , αi+1)= t
∣∣v′i − v′i+1

∣∣+O
(
t2
)
.

So∇dM(αi,αi+1) is given by(
v′i − v′i+1

|v′i − v′i+1|
)
+O

(
t2
)⊕(

v′i+1− v′i
|v′i+1− v′i |

)
+O

(
t2
)
.

The first vector in the sum is inTαiM. The second lies inTαi+1M. The limit ast→ 0 exists
and is equal to(

vi − vi+1

|vi − vi+1|
)
⊕

(
vi+1− vi

|vi+1− vi |
)
∈ TθM ⊕ TθM,

so∇Lk extends continuously to all ofXk .
Since∇Lk points inward at each point in∂Xk, all the essential critical points of−Lk

are in the interior ofXk . To show that−Lk is a Morse function, we have only to determine
when the Hessian is non-singular.

This property requires that the critical points be non-degenerate, i.e., the determinant of
the Hessian at a critical point must be non-zero. To begin with lets look at

−Lk :Xk→R.

Here there arek reflection points,α1, . . . , αk . Choose an orthonormal coordinate system
xi satisfyingxi (αi)= 0 for eachi. The function then can be written as

−Lk =−
k∑
i=0

‖αi − αi+1‖.

Our first goal is to get an explicit representation for the Hessian.
The Hessian is given by
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Lemma 12. The Hessian of−Lk is given by

H(α1, . . . , αk)=



A1 K1
K1 A2 K2 0

K2
. . .

. . . K'−1
K'−1 A' K'

K'
. . .

0
. . . Kk−1
Kk−1 Ak


where

(A')i,j = βxj xi · (vαβ − vβγ )

+ [
cos(ψxj )cos(ψxi )− δij

]( 1

‖α − β‖ +
1

‖β − γ ‖
)
,

and

(K')i,j = 1

‖β − γ ‖
(
βxi · γyj − cos(ψxi )cos(ψyj )

)
.

In the above expressionsvαβ = α−β
‖α−β‖ and δij is the Kronecker delta. Alsoα = α'−1,

β = α', γ = α'+1, x is a coordinate system atβ , andy is a coordinate system atγ .

Proof. We need to computeA' andK'. First compute

∂(−Lk)
∂xi

= ∂

∂xi

(−‖α − β‖− ‖β − γ ‖)=−−βxi · (α − β)
‖α − β‖ − βxi · (β − γ )

‖β − γ ‖
= βxi ·

(
α − β
‖α − β‖ −

β − γ
‖β − γ ‖

)
.

In order to computeK we must differentiate in onex variable and oney variable. In this
case, the result is

∂2(−Lk)
∂yj ∂xi

= βxi ·
∂

∂yj

(
− β − γ
‖β − γ ‖

)

= βxi ·
(‖β − γ ‖γyj − (β − γ )γyj (β−γ )‖β−γ ‖

‖β − γ ‖2

)
.

This expression can be simplified by settingvβγ = (β − γ )/‖β − γ ‖ and lettingψxi
be the angle betweenvβγ andβxi . Similarly,ψyj will be the angle betweenvβγ andγyj .
Then

∂2(−Lk)
∂yj ∂xi

= βxi ·
(

γyj

‖β − γ ‖ −
β − γ
‖β − γ ‖2

cos(ψyj )

)
= 1

‖β − γ ‖
(
βxi · γyj − cos(ψxi )cos(ψyj )

)
.
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Fig. 8. The angleψxi .

In order to computeA, we must differentiate by two differentx-variables. In that case,
we find

∂2(−Lk)
∂xj ∂xi

= βxjxi ·
(
α − β
‖α − β‖ −

β − γ
‖β − γ ‖

)
+ βxi ·

∂

∂xj

(
α − β
‖α − β‖ −

β − γ
‖β − γ ‖

)
and

∂

∂xj

(
α − β
‖α − β‖ −

β − γ
‖β − γ ‖

)

= −‖α− β‖βxj − (α − β)
−βxj (α−β)
‖α−β‖

‖α − β‖2 −
‖β − γ ‖βxj − (β − γ )

βxj (β−γ )
‖β−γ ‖

‖β − γ ‖2

= −βxj
‖α − β‖ +

vαβ cos(ψxj )

‖α − β‖ − βxj

‖β − γ ‖ +
vβγ cos(ψxj )

‖β − γ ‖ .

Since we are at a critical point, it is easily shown thatβxi · vαβ = βxi · vβγ . From this it
follows that the angle betweenβxi andvβγ is alsoψxi . Using this and the orthonormality
of the coordinate systemx, we can write

∂2(−Lk)
∂xj ∂xi

= βxjxi · (vαβ − vβγ )+ cos(ψxi )cos(ψxj )

(
1

‖α − β‖ +
1

‖β − γ ‖
)
.

We also must compute∂
2(−L2)

∂xi
2 . Here it is:

∂2(−L2)

∂xi∂xi
= βxixi ·

(
α − β
‖α − β‖ −

β − γ
‖β − γ ‖

)
+ βxi ·

∂

∂xi

(
α − β
‖α − β‖ −

β − γ
‖β − γ ‖

)
= βxixi · (vαβ − vβγ )

+ βxi ·
( −βxi
‖α − β‖ +

vαβ cos(ψxi )

‖α − β‖ − βxi

‖β − γ ‖ +
vβγ cos(ψxi )

‖β − γ ‖
)

= βxixi · (vαβ − vβγ )+
[
cos2(ψxi )− 1

]( 1

‖α − β‖ +
1

‖β − γ ‖
)
.

Finally, if z is a coordinate system atαm, where|m− '|> 1, then

∂2(−Lk)
∂zj ∂xi

= ∂

∂zj

(
∂

∂xi
‖α'−1− α'‖ + ∂

∂xi
‖α' − α'+1‖

)
= 0. ✷

Now we can use Lemma 12 to prove
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Lemma 13. For a given non-degenerate(i.e., eigenvalues of the corresponding Hessian
at that point are all non-zero) generalized billiard pathP , as the endpointsp andq are
varied, the eigenvalues of the Hessian vary continuously.

Proof. Let x be a coordinate system nearαk , the last reflection ofP . For the other
reflections,αi , let yi = (yi1, . . . , yin) be a coordinate system in a neighborhood. We may,
without loss of generality, assume that the domain of(y1; . . . ;yn−1;x) is contained in the
interior ofXk .

Recall the formulae for the entries of the Hessian, given in Lemma 12. If the endpoint
q is moved toq ′, the vector

v' = αk − q ′
‖αk − q ′‖

varies continuously withq ′. The vectorsvk−1= αk−1−αk
‖αk−1−αk‖ , αk,xj andαi,yij

are all constant.

It follows that
∂(−L(p,q′)k )

∂yij
is zero and

∂(−L(p,q′)k )

∂xi
varies continuously withq ′. So the gradient

∇(−L(p,q ′)k ) varies continuously withq ′. It follows that there is a generalized billiard path
P ′ whose reflections are close to the reflections ofP . Moreover,P ′ varies continuously
with q ′.

In addition, the quantity‖αk − q ′‖ and the angleψxi vary continuously withq ′. It
follows that the entries of the HessianH(P ′) vary continuously, and hence so do the
eigenvalues. ✷

Lemma 13 shows that for a given embedding,M ↪→ R
N , the set of pairs(p;q) ∈

R
N ×R

N such that−L(p,q) is a Morse function is open inR2N .
Notice that as the endpoints are moved, the eigenvalues of a critical point (i.e.,

a generalized billiard path) vary continuously, but the critical point itself varies as well.
We say that a generalized billiard pathP0 fromp0 to q0 is related toa generalized billiard
pathP1 fromp1 to q1 if there are pathsp : [0,1]→M andq : [0,1]→M, with p(0)= p0,
p(1)= p1, q(0)= q0 andq(1)= q1, and for eacht ∈ [0,1] a generalized billiard pathP(t)
whose endpoints vary continuously fromP0 to P1. Sometimes in moving the endpoints
from (p0, q0) to (p1, q1), there will be no generalized billiard path fromp1 to q1 related
to a pathP from p0 to q0. In this case, we say the movementdestroysthe pathP .

There are two things that may prevent−Lk from being a Morse function. One of these
is that one or both of the endpoints may be located a focal point. Another problem occurs
when there is a billiard path that has atangential reflection, i.e., the angle of incidence and
angle of reflection are both zero. We will find in Lemma 20 these are rare occurrences. The
proof of Lemma 20 requires Lemma 15, which in turn requires

Lemma 14. LetM ⊂R
N be an embedded manifold, and letα,β ∈M be such that the line←→

αβ is tangent toM at β , but not atα. Then in any neighborhoodUα of α there is a point
α′ such that the line

←→
α′β is tangent toM at neitherα′ nor β .

Proof. Since the line
←→
αβ is tangent toM at β ,

←→
αβ is contained inTβM. It follows that

α ∈ TβM. (We are thinking ofTβM as a linear subspace ofR
N .)
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Suppose there is a neighborhoodUα such that
←→
α′β is tangent toM atβ for all α′ ∈Uα .

ThenUα ⊂ TβM.
If the entire neighborhoodUα is contained inTβM, thenTαM coincides withTβM.

Consequently,
←→
αβ ⊂ TαM, and so

←→
αβ is tangent toM atα, contrary to assumption.✷

Lemma 15. LetM ⊂ R
n andp,q ∈ R

n. If P is a generalized billiard path fromp to q
that has a tangential reflection atαi+1 = β , then for anyε > 0 there is ap′ ∈ Bε(p) and
q ′ ∈ Bε(q) such that either there is a non-tangential generalized billiard path fromp′ to
q ′ related toP , or the movement from(p, q) to (p′, q ′) destroysP .

Proof. Assumeβ is the first tangential reflection along the path. Then
←−→
αiβ is not tangent

to M at αi . Fix β and moveαi along a curveαi : [0,1] →M such thatαi(0) = αi and←−−−→
αi(t)β is not tangent toM atβ for t > 0.

Since the generalized billiard path(α1, . . . , αi) from p to β is non-tangential, there is
a δ > 0 and curvesp : [0, δ] → M andαj : [0, δ] → M for j ∈ {1, . . . , i − 1} such that
(α1(t), . . . , αi(t)) is a (non-tangential) generalized billiard path fromp(t) to β .

If there are pathsαj : [0, δ] →M for j ∈ {i + 2, . . . , k} andq : [0, δ] →M such that
(α1(t), . . . , αi(t), β,αi+2(t), . . . , αn(t)) is a non-tangential generalized billiard path from
p(t) to q(t), then we can chooset0 such thatp(t0) ∈ Bε(p) andq(t0) ∈ Bε(p). Then set
p′ = p(t0) andq ′ = q(t0). (Note, this can be done in such a way that every non-degenerate
generalized billiard path fromp to q has a related path fromp′ to q ′.)

If there are tangential reflections along the generalized billiard path(α1(t), . . . ,

αi(t), β,αi+2(t), . . . , αn(t)) from p(t) to q(t), then the above procedure must be repeated
before choosingp′ andq ′.

Finally, if there is no such generalized billiard path fromp(t) to q(t), then the pathP
has been destroyed.✷

Now we turn our attention to the problem of non-tangential degenerate billiard paths.
We begin by investigating the eigenvectors of the Hessian matrixH(α1, . . . , αk). We
can think of an eigenvectorV as a vectorvi in each of the tangent spacesTαiXk ,
V = (v1; . . . ; vk). In this case

A1 K1
K1 A2 K2 0

K2
. . .

. . . Ki−1
Ki−1 Ai Ki

Ki
. . .

0
. . . Kk−1
Kk−1 Ak



 v1
.
.
.

vk

= λ
 A1v1+K1v2

.

.

.

Kk−1vk−1+Akvk

 ,

whereλ is the corresponding eigenvalue.
From Lemma 12, the matrixKk−1 can be written

Kk−1= 1

‖β − γ ‖
(
βxi · γyj − cos(ψxi )cos(ψyj )

)
i,j
= K ′ −K ′′
‖α − β‖ ,
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Fig. 9. The three anglesσ, ψx' , andθx' .

whereβ = αk−1 andγ = αk
Lemma 16. If H(α1, . . . , αk) has an eigenvectorV = (v1; . . . ; vk−1;0) with eigenvalue
zero, then(α1, . . . , αk) is a sequence with a tangential reflection.

Proof. In this case,Kk−1vk−1 + Akvk = Kk−1vk−1 = 0. It is sufficient to show that if
Kk−1v = 0 for anyv ∈ Tαk−1M, then the sequence has a tangential reflection.

Let us investigateK ′′v first. The'th component is given by(
K ′′v

)
'
=

∑
j

vj cos(ψx')cos(ψyj )= cos(ψx')
∑
j

vj cos(ψyj )

= (βx' · vαβ)
∑
j

vj (αyj · vαβ)= (βx' · vβγ )
(∑

j

vj γyj

)
· vβγ

= (βx' · vβγ )(v · vβγ ).
We also have(

K ′v
)
'
=

∑
j

vj βx' · γyj = βx' ·
∑
j

vj γyj = βx' · v.

When isβx' ·v = (βx' ·vβγ )(v ·vβγ )? Letθx' be the angle betweenβx' andv, and letσ
be the angle betweenvβγ andv. The statement the reduces to

cos(θx')= cos(ψx')cos(σ )

(since the vectors in question are all unit vectors).
Let πβ denote the projection ontoTβM. Then the following identities hold.

πβ(vβγ )=
∑
'

cos(ψx')βx', πβ(v)=
∑
'

cos(θx')βx'.

From this we see

πβ(v)=
∑
'

cos(ψx')cos(σ )βx' = cos(σ )
∑
'

cos(ψx')βx' = cos(σ )πβ(vβγ ).

We can writev = vβγ cos(σ )+ (vβγ )⊥ sin(σ ) for some(vβγ )⊥ orthogonal tov. It then
follows that eitherπβ(vβγ⊥) = 0 or sin(σ ) = 0. In the first case the conclusion is that
vβγ ∈ TβM, and so the path is tangent toM at the pointβ . The second condition implies
thatvβγ =±v, and sovβγ ∈ TγM. Here the path is tangent toM at γ . ✷
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Lemma 17. For each non-tangential generalized billiard pathP , as the length' from the
last reflection toq is increased, the eigenvalues of the HessianH(P') increase strictly
monotonically.

Proof. Recall from the proof of Lemma 12 that the Hessian can be written as

H(P')=N − 1

'

0 . . . 0
...

. . .
...

0 . . . C

 ,
whereN is a constant matrix and

C = (
δij − cos(ψxi )cos(ψxj )

)
i,j
.

A standard result of linear operator theory tells us that theith eigenvalue (in increasing
order) is given by

λi = sup
{X1,...,Xi−1}

inf
V ∈{X1,...,Xi−1}⊥

( 〈HV ,V 〉
〈V ,V 〉

)
= sup
{X1,...,Xi−1}

inf
V ∈{X1,...,Xi−1}⊥

( 〈NV ,V 〉
〈V ,V 〉 −

1

'

〈Cvk,vk〉
〈vk,vk〉

)
,

where{X1, . . . ,Xi−1} are taken to be linearly independent, andV = (v1; . . . ; vk).
The valueλi can be realized by choosingXj to be an eigenvector corresponding toλj

andV to be an eigenvector corresponding toλi . Because of this, we may restrict the inf to
those vectorsV ∈ {X1, . . . ,Xi−1}⊥ with vk 
= 0. (All eigenvectors are of this form.) We
may also restrict our attention to those vectors with‖vk‖ = 1.

If v is a unit vector, then a calculation shows

〈Cv,v〉 = 〈v,v〉 − vT · [cos(ψxi )cos(ψxj )
]
i,j
· v = 1− (v · vαkq)2.

Thus〈Cv,v〉 is positive unlessv =±vαkq . This cannot be the case, though, sinceP is
a non-tangential reflection. It follows that when' increases, the value of

〈HV ,V 〉
〈V ,V 〉

increases continuously for every vectorV with vk 
= 0. As a consequence of this, we see
thatλi must increase continuously as' increases. ✷
Lemma 18. Given two pointsp,q ∈ R

N , a non-tangential generalized billiard pathP
connecting them and anε > 0, there exists aq ′ ∈Bε(q) such that there is a non-degenerate
generalized billiard pathP ′ fromp to q ′ related toP . Moreover,q ′ can be chosen in such
a way that each non-degenerate generalized billiard path fromp to q has a related non-
degenerate generalized billiard path fromp to q ′.

Proof. Let v1 be the unit vector pointing from the last reflection ofP to q . As q ′ is moved
in the direction ofv1 from q , all the eigenvalues ofP and all the non-degenerate paths
vary continuously (Lemmas 13 and 17). Choose a 0< δ < ε so that all of the non-zero
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eigenvalues (ofP and the non-degenerate generalized billiard paths) are bounded away
from zero betweenq andq + δv1.

By Lemma 17, the eigenvalues of the pathP1 will increase monotonically. Hence all of
the zero eigenvalues will have increased to positive values. Since no new zero eigenvalues
have been created, we can setq ′ = q + δv1. ✷
Lemma 19. For any embedded manifoldM ↪→R

N , pointsp,q ∈R
N andε > 0, there are

pointsp′ ∈Bε(p) andq ′ ∈ Bε(q) such that−L(p′,q ′)k is a Morse function.

Proof. Choose a degenerate generalized billiard pathP . If it has a tangential reflection,
use Lemma 15 to findp1 ∈ Bε/4(p) andq1 ∈ Bε/4(q) such that there is either a related
non-tangential generalized billiard pathP1 from p1 to q1, or no generalized billiard path
related toP . This can be done without destroying any non-degenerate generalized billiard
paths.

Next use Lemma 18 to choosep2 ∈ Bε/4(p1) andq2 ∈ Bε/4(q1) such that there is a
non-degenerate generalized billiard pathP2 fromp2 to q2 related toP1. Again, this can be
done without destroying any non-degenerate generalized billiard paths.

Repeat these two steps as often as needed, each time choosingp2j−1 andq2j−1 within
ε/2j + 1 of p2j−2 andq2j−2, then choosingp2j andq2j within ε/2j + 1 of p2j−1 and
q2j−1. This procedure must terminate after a finite number of steps, otherwise we have
constructed an infinite sequence of non-degenerate (and hence isolated) critical points in
the compact manifoldMk. ✷
Lemma 20. Given an embedding ofM ↪→ R

N , the set of points(p;q) ∈ R
N ×R

N such
that−L(p,q)k is a Morse function is open and dense.

Proof. Lemma 13 shows that the set is open. Lemma 19 shows the set is dense.✷
3.5. Application of the Morse inequalities

In this section, we finally apply the results of Section 2 to the case of−Lk :Xk→R.

Theorem 21. SupposeM ↪→R
N is a smooth embedding of ann-manifold, andp,q ∈R

N .
Then for everyε > 0, there is ap′ ∈ Bε(p) and aq ′ ∈ Bε(q) such that ifNk is the number
of billiard paths withk reflections connectingp′ to q ′. Then

Nk �
kn∑
i=0

bi(Xk).

Proof. Choosep′ andq ′ so that−Lk is a Morse function. Then

Nk =
kn∑
i=0

mi(−Lk).

Sincemi(−Lk)� bi(Xk), the result follows. ✷
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This shows that the more complicated the topology of the path spaceXk , the greater the
number of generalized paths there must be. In the next two sections the Betti numbers of
Xk will be related to the Betti numbers ofM. This will allow an estimate of the number of
billiard paths to be stated in terms of the topology of the underlying manifoldM.

4. Morse Theory for the length function on sequences

4.1. M × · · · ×M as a stratified space

The spaceMk is naturally a smooth manifold. We impose on this smooth space a
stratified structure, by treating all of the various diagonals as separate strata.

A point P in Mk is an orderedk-tuple of points inM, P = (α1, . . . , αk). DefineFj =
Fj (M

k) = {(α1, . . . , αk): αi 
= αi+1 for exactlyj + 1 choices ofi ∈ {0, . . . , k}}. Here, as
usual,α0 = p andαk+1 = q . Fj is the set of sequences withj distinct “reflections”. The
components ofFj will be the strata ofMk.

4.2. A continuous flow onMk

In classical Morse theory, one considers the negative gradient flow of a function. The
functionLk :Mk→R is not differentiable everywhere, but we will show that its restriction
to any stratum is, in general, a Morse function. ViewingMk as a stratified space, we can
define a flow that will substitute for a negative gradient flow.

Lemma 22. For j = 1, . . . , k, if −L(p,q)j :Xj → R is a Morse function(in the sense of

Section2) thenL(p,q)k |Fj :Fj →R is a (classical) Morse function.

Proof. Fj is the set of all configurations ofk points inM such that the maximal subset
of distinct points has magnitudej . Xk is the (closure of the) set of configurations ofj
distinct points inM. For each connected componentH of Fj , there is a diffeomorphism
F :H → Int(Xk). (Provided thatXk is connected, otherwiseH maps onto the interior
of a connected component ofXk .) If (α1, . . . , αk) ∈ H andαi1, . . . , αij are distinct, then
f (α1, . . . , αk)= (αi1, . . . , αij ) ∈Xk .

Now, if P ∈H , thenLk(P )= Lk(f (P )). Since−Lk is a Morse function on the interior
of Xk (a smooth manifold),Lk is a Morse function as well. ✷
Lemma 23. The set of endpointsp andq such thatL(p,q)k |Fj :Fj →R is a Morse function
for everyj ∈ {1, . . . , k} is open and dense inR2N .

Proof. For eachj , the set of endpoints such that−Lj :Xj → R is open and dense.
Consequently, the intersection of allk of these sets is open and dense.✷

Now we will define a vector fieldG+ on Mk as follows. ForP ∈ Fj , setG+(P ) =
−∇(Lk|Fj (P )). That is,G+(P ) is the negative gradient ofLk restricted to the stratum
containingP .
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Now, if H is a stratum ofMk , the vector fieldG+ induces a flowϑH :U→H , whereU
is an open neighborhood of{0}×H ⊂R×H . Assume thatU is the largest neighborhood
on which such a flow may be defined. ForP ∈H , let tP = sup{t | (t,P ) ∈ U}.

We can build a flowϑ : [0,∞)×Mk→Mk on all ofMk from these individual flows in
the following way: define forP ∈H

ϑ(t,P )=
{
ϑH (t,P ) t < tP ,
ϑK

(
t − tP , lims→tP ϑH (s,P )

)
t � tP ,

whereK is the stratum containing lims→tP ϑH (s,P ). The idea is that the point flows until it
reaches the boundary of the initial stratum, and hence reaches a lower-dimensional stratum,
then continues in the lower-dimensional stratum. Note that this is a recursive definition,
but since when the flow moves from one stratum to another the dimension of the stratum
always decreases, only finitely many iterations are needed.

Lemma 24. The flowϑ : [0,∞)×Mk→Mk is continuous.

Proof. Certainlyϑ|F1 is continuous, since it is just the negative gradient flow of a smooth

function. Now, suppose thatϑ restricted to the union
⋃j−1
i=1 Fi is continuous. We will show

that

ϑ|⋃j
i=1Fi

is continuous.
Let U = {(t,P ) ∈ [0,∞)× Fj | t < tP }. Thenϑ|U is continuous. We must show that

ϑ is still continuous whent � tP . It follows from the continuity ofϑ onU that the map
P '→ tP is continuous.

LetEj = {P ∈ Fj | tP <∞}. Since moving two nearby reflections closer decreases the
length of the sequence,Ej contains a neighborhood of∂Fj . We can define the function

f :Ej → ⋃j−1
i=1 Fi(M

k) by f (P ) = limt→tP ϑ(t,P ). Thenf is a continuous function,
again due to the continuity ofϑ|U .

Finally, defineτ :R×Ej →R by τ (t,P )= t − tP . Thenτ is continuous as well. Now
we can writeϑ(t,P ) as a composition of continuous functions:

ϑ(t,P )= ϑ(τ (t,P ), f (P )).
By induction, it follows thatϑ is continuous onMk . ✷

4.3. The Morse theorems

Before we may proceed to prove the Morse theorems, we need to make a

Definition 10. An essential critical point ofLk :Mk → R is a pointP ∈ Mk such that
G+(P )= 0.

By the definition ofG+, this condition is equivalent to the requirement thatP is a
critical point of one of the functionsLk|Fj :Fj → R. If P ∈ Fj is an essential critical
point, then there is a coordinate system onMk such that
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Lk(x1, . . . , xkn) = Lk(P )− x2
1 − · · · − x2

λ + x2
λ+1+ · · · + xjn

+ |xjn+1| + · · · + |xkn|.
Here(x1, . . . , xjn) represents a coordinate system on a neighborhood ofP in Fj . We say
thatλ is theindexof P .

We will use the following notation:(Mk)a = L−1
k ((−∞, a]).

Lemma 25. If there are no essential critical points inL−1
k ([a, b]), then for each pointP

in (Mk)b there is a timet such thatϑ(t,P ) ∈ (Mk)a .

Proof. The setL−1
k ([a, b]) is compact, and contains no essential critical points. It follows

that

µ=min
i

inf
P∈L−1

k ([a,b])

∥∥∇(Lk|Fi )∥∥> 0.

Since the directional derivative(−∇(Lk|Fi ))[Lk] is given by

(−∇(Lk|Fi ))[Lk] = −
(

jn∑
'=1

∂Lk

∂x'
e'

)
[Lk] = −

∑
'

∂Lk

∂x'
(e')[Lk]

= −
∑
'

∂Lk

∂x'

∂Lk

∂x'
=−∥∥∇(Lk |Fi )∥∥,

and ∂
∂t
ϑ = (−∇(Lk|Fi ))[Lk], it follows that along flow lines, the value ofLk is decreasing

at a rate bounded away from zero. So fort > b−a
µ

, ϑ(P, t) ∈ (Mk)a for all P ∈ (Mk)b. ✷
Theorem 26. If a < b andL−1

k ([a, b]) contains no essential critical points, then(Mk)a

is a deformation retract of(Mk)b, so the inclusion map(Mk)a ↪→ (Mk)b is a homotopy
equivalence.

Proof. Since there are no essential critical points inL−1
k ([a, b]), and the value ofLk

decreases along the flow lines ofϑ , for each pointP ∈ (Mk)b, there is a timet such
thatϑ(t,p) ∈ (Mk)a . Let sP = inf{t ∈R+: ϑ(t,P ) ∈ (Mk)a}.

Now we can define a homotopyH : (Mk)b × [0,1]→ (Mk)a by

H(P, s)=
{
ϑ( s

1−s ,P ),
s

1−s � sP ,
ϑ(sP ,P ),

s
1−s � sP . ✷

Theorem 27. Let P be an essential critical point ofLk with indexλ. SetLk(P ) = c.
Suppose that for someε > 0,L−1

k ([c− ε, c+ ε]) contains no essential critical points other
thanP . Then(Mk)c+ε is homotopy equivalent to(Mk)c−ε with aλ-cell attached.

Proof. Choose a coordinate systemx :UP →R
kn in which we can write

f = f (P )− x2
1 − · · · − x2

λ + x2
λ+1+ · · · + x2

jn + |xjn+1| + · · · + |xkn|.
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Then chooseε > 0 sufficiently small so thatL−1
k [c− ε, c+ ε] contains no essential critical

points other thanP , and the imagex(UP ) contains the closed ‘ball’{
(x1, . . . , xn):

n(k−j)∑
i=1

x2
i +

kn∑
i=n(k−j)+1

|xi|� 2ε

}
.

We proceed as in Section 2.7, definingµ, ξ andη as we do there. Now, though, we must
define

ζ = |xn−j+1| + · · · + |xn|.
Then we can writeLk = c − ξ + η + ζ andΓ = Lk − µ(ξ + 2η + 2ζ ). These functions
play the roles off andF respectively in Section 2.7. As before, it follows that the essential
critical points ofΓ andLk are identical. Likewise,Γ −1(−∞, c+ ε)= L−1

k (−∞, c+ ε)
andΓ −1(−∞, c− ε] is a deformation retract of(Mk)c+ε .

It is now necessary only to show that(Mk)c−ε ∪ eλ is a deformation retract of
Γ −1(−∞, c − ε]. For eacht ∈ [0,1] we must define a maprt :Γ −1(−∞, c − ε] →
(Mk)c−ε ∪H as follows:

Case 1. If Q ∈ (Mk)c−ε , setrt (Q)=Q for all t .

Case 2. If Q ∈ Γ −1(−∞, c− ε] butQ /∈ (Mk)c−ε andξ(Q) < ε, then set

rt (x1, . . . , xn)=
(
x1, . . . , xλ, (1− t)xλ+1, . . . , (1− t)xn

)
.

Case 3. If ε � ξ(Q)� η(Q)+ ζ(Q)+ ε, then definert by

rt (x1, . . . , xn)= (x1, . . . , xλ, st xλ+1, . . . , stxn),

where

st = (1− t)+ t
[
ξ − ε
η+ ζ

]1/2

.

Then r0 is the identity map, andr1 :Γ −1(−∞, c − ε] → (Mk)c−ε ∪ eλ. Note that
this Case 3 agrees with Case 1 whenξ = ε and with Case 2 whenξ − η − ζ = ε.
Continuity follows from the proof of Theorem 8. Thusr provides a deformation retraction
of (Mk)c−ε ∪H to (Mk)c−ε ∪ eλ. This concludes the proof of Theorem 27.✷

Theorems 26 and 27 may be used to show thatMk is homotopy equivalent to a CW-
complex having oneλ cell for each essential critical point ofLk :Mk→ R with indexλ.
(See [7].) This in turn allows us to deduce the Morse Inequalities, both strong:

'∑
i=0

(−1)'+ibi
(
Mk

)
�

'∑
i=0

(−1)'+imi(Lk),

and weak:

m'(Lk)� b'
(
Mk

)
or each 0� '� kn.
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5. Generalized billiard paths revisited

5.1. A comparison of essential critical points inXk andMk

We can now investigate the relationship between critical points of−Lk :Xk→ R and
Lk :Mk → R. If a stratumH is in Fj , then its dimension isnj . Consequently, every
essential critical point inH has index at mostnj . Consequently, we get the following

Lemma 28. Any essential critical point ofLk :Mk→R with indexλ > n(k − 1) is in Fk .

For any pathP ∈ Fk , the preimageg−1(P ) consists of a single point,P ′. It is easy to
see thatP is an essential critical point ofLk if and only if P ′ is an essential critical point
of −Lk, since

−∇(Lk)= 0 ⇐⇒ −∇(−Lk)= 0.

Since the function−Lk decreases along paths moving away from∂Xk , it follows that all
of the essential critical points of−Lk :Xk→R lie in the interior ofXk . As a result of this
we have the following

Lemma 29. The essential critical points of−Lk :Xk → R are in one-to-one correspon-
dence with the essential critical points ofLk :Mk→R that lie inFk .

5.2. Application of the Morse inequalities

So we see that counting the number of generalized billiard paths with exactlyk

reflections is equivalent to counting the number of essential critical points inFk . There
are at least as many of these essential critical points as there are essential critical points
with index greater thannk.

Theorem 30. The number of generalized billiard paths connectingp to q in the vicinity of
a manifoldM satisfies

N
(p,q)
k �

n−1∑
j=0

∑
i1+···+ik=j

bi1(M) · · ·bik (M).

Proof. If mj(Lk) denotes the number of essential critical points ofLk :Mk→R, then

N
(p,q)
k �

nk∑
j=0

mj(Lk)�
nk∑

j=n(k−1)+1

mj(Lk)�
nk∑

j=n(k−1)+1

bj
(
Mk

)
.

SinceMk is a manifold, we can use Poincaré duality to saybi(M
k)= bnk−i (Mk). Then

we see

N
(p,q)
k �

n−1∑
j=0

bj
(
Mk

)
.
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Using the Künneth Theorem, it can be shown that

bj
(
Mk

)= ∑
i1+···+ik=j

bi1(M) · · ·bik (M).

Now we can finally write

N
(p,q)
k �

n−1∑
j=0

∑
i1+···+ik=j

bi1(M) · · ·bik (M)

proving the theorem. ✷
Two things are evident from this expression. First, the more complicated the topology

ofM, the more generalized billiard paths there will be. The second is that as the number of
reflectionsk increases, the number of generalized billiard paths withk reflections increases,
and rather quickly.
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