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Abstract

A billiard path on a manifold embedded in Euclidean space is a series of line segments
connecting reflection points oM. In a generalized billiard path we also allow the path to pass
throughM. The two segments at a ‘reflection’ point either form a straight angle, or an angle whose
bisector is normal td/. Our goal is to estimate the number of generalized billiard paths connecting
fixed points with a given number of reflections.

We begin by broadening our point of view and allowing line segments that connect any sequence of
points onM. Since this sequence is determined by its ‘reflection’ points, the length of such a sequence
with k reflections may be thought of as a function . Generalized billiard paths correspond to
critical points of this length function. The length function is not smoothh having singularities
along some of its diagonals. Following the procedure of Fulton and MacPherson we may blow up
MK to obtain a compact manifold with corners to which the length function extends smoothly.

We develop a version of Morse theory for manifolds with corners and use it to study this length
function. There are already versions of Morse theory that may be used in this case, but ours is
a generalization of the work of Braess, retaining both a global ‘gradient’ flow and the intrinsic
stratification of a manifold with corners.

We find that the number of generalized billiard paths witlteflections connecting two points in
RY can be estimated in terms of the homology of the manifaldin part, we show the number of
these paths is at least

n—1
YooY b (M)--bi (M)
J=0 iyt +ig=j
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1. Introduction
1.1. A motivational example

Imagine that we have a glass surface which has been half-silvered. Any time a beam of
light struck the surface, half of the light would reflect off the surface and half would pass
through.

One of the questions this article seeks to answer is: given two points in the vicinity of
such a model, how many paths may a beam of light travel connecting one point to the other,
with a given number of reflections?

Since the beam of light travels in a straight line between reflections, such a path can
be described by listing the sequence of reflection points. Moreover, all of these paths have
the property that wherever a reflection occurs, the angle of incidence is equal to the angle
of reflection. This can be stated equivalently by saying that the bisector of the angle is
perpendicular to the surface.

1.2. The general problem

This same question can be posed in more general termd/lcet RY be a smooth-
manifold embedded in Euclidean space of dimengioWe can choose points, ¢ € RV
and consider ordered sequences of paifts. ., oy € M.

Definition (Definition9). A sequence® = {«1, ..., ax} connectingp = ag t0 g = ag+1 IS
ageneralized billiard pattwith k-reflections if for eachi one of the following is true:

(1) The bisector oK w;_1ejai+1 is normal toT,, M.
(2) Laj_10;0;41 IS a straight angle.

Note that this definition allows the line segmefd; 11 to intersect the manifold. [#
happens to be a convex hypersurface, however, the definition reduces to the usual notion
of a billiard path. This situation is addressed in [3]. The task at hand now may be thought
of as counting generalized billiard paths.

The space of all sequences can be thought of as the pratfuet M x - -- x M. We can
define the length of a sequenfe= {«1, ..., ok} to be the sum of the Euclidean distances
between consecutive reflections:

k
Li(P) = ) deudet. @ita).
i=0
This function will be central to our arguments, because of

Lemma (Lemma 10)A sequenc® = {1, ..., ax} With o; # ;1 for 0 < i < k satisfies
VLi(P)=0

if and only if it is a generalized billiard path.
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Unfortunately, the functiorL; has a serious drawback. Wherever consecutive reflec-
tions coincide L, has a singularity that looks like — y|.

In Section 3.3 we describe how to ‘blow upf*. The blow up we use was developed by
Fulton and MacPherson [4], and allows us to remove fidfthe diagonalge; = a1}
that are causing difficulty and replace them with something that is easier for us to deal
with. The result is a manifold with cornerXy.

We will use the versions of Morse theory developed in Sections 2 and 4 to study the
critical points of L; on Xj. In doing so, we define a modified gradient flow. An essential
critical point is defined to be a stationary point of that flow. In Section 2.7, we prove the
Morse theorems in this setting:

Theorem (Theorem7)Let f: M — R be a Morse function on a manifold with corneis
If « < b and f~1([a, b]) contains no essential critical points, the, is a deformation
retract of M;, so the inclusion mapf, — M, is a homotopy equivalence.

Theorem (Theorem8)Let f: M — R be a Morse function on a manifold with corneis
Let p be an essential critical point with index Set f(p) = ¢. Suppose that, for some
>0, f~1([c — ¢, ¢ + ¢]) contains no essential critical points other thanThenM., is
homotopy equivalent tdf._. with a A-cell attached.

These theorems imply the Morse Inequalities, which we will use to deduce lower
bounds for the number of generalized billiard paths.

In Section 3.4, we show that for a smooth embeddiig— R", most choices of
endpointg andg result in a length function that satisfies the definition of a Morse function
(Definitions 4 and 6):

Lemma (Lemma 19).For any embedded manifolt < R, points p,q € R¥ and
¢ > 0, there are pointy’ € B.(p) andq’ € B.(g) such that—L,(j’ “4) is a Morse function.

Section 3.5 applies the results of Section 2 to the functidn on X;. The result is
given by

Theorem (Theorem 21)The number of generalized billiard paths withreflections is at
least

kn

> bi(Xp),
i=0
whereb; (X;) denotes theth Betti number oy.

In Section 4 we show that a stratified space structure can be imposkd amd that
— Ly is a then Morse function off*. A comparison of the critical points df : X; — R
with those of—L; : M¥ — R allows us, in Section 5, to conclude
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Theorem (Theorem 30)The number of generalized billiard paths connectintp g with
k reflection is at least

n—1
S0 by(M) b (M),

J=0 izt tig=j
1.3. A brief history of Morse theory

The foundations of Morse theory were laid in the 1920s by Marston Morse [8]. His
original work relates information about the critical points of a smooth function on a
smooth manifold to information about the topology of the manifold. This relationship was
presented at that time as a collection of inequalities, known as the Morse Inequalities.

By the late 1940s, the gradient flow of the function was coming into the picture more
forcefully. Once a Riemannian metric has been chosen, each point in the manifold lies in
exactly one gradient flow line, and each such flow line begins and ends at a critical point.
Thom noticed that by bundling together all the flow lines having the same initial point, the
manifold can be decomposed into a collection of ‘descending cells’—one for each critical
point [9]. The dimension of the cell associated to a critical point is equal to the index of
that critical point.

In 1959, Smale showed that if the ‘ascending cell’ of each critical point intersect
transversely with each descending cell it meets, then the descending cells form a CW-
complex.

Morse theory has been generalized to deal with a large number of situations which
are not addressed by the classical theory. The direction with the most direct relevance to
this work, though, is treating functions on spaces other than smooth manifolds. Braess
presented a version for manifolds with boundary in 1974 [2]. The most remarkable
achievement in this area, though, is Goresky and MacPherson’s stratified Morse theory.
This version applies to a class called Whitney stratified spaces, which include manifolds
with boundary and manifolds with corners [5]. Some of the proofs of Goresky and
MacPherson’s theorems have recently been simplified by Hamm in [6]. Vakhremeev has
also proven the Morse theorems for the case of Manifolds with corners [10].

In Vakhrameev's work and the stratified Morse theory of Goresky and MacPherson,
however, the gradient flow does not appear as prominently as it does in other versions.
Indeed, the functions on these spaces may not even allow a gradient flow to be defined
globally. My intention in the first part of this work is to produce a Morse theory for
manifolds with corners, a type of stratified space, that retains the point of view developed
by Thom and Smale. A more thorough history of Morse theory may be found in [1].

2. Morsetheory for manifoldswith corners

2.1. Manifolds with corners

Let{es, ..., e;} denote the standard basis vector®ih Define]HI;’. to be the set

H?:{weR": w-e; >0forall 1<i < j},
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where- denotes the standard inner productish

Definition 1. An n-dimensional manifold with cornerd/, is a topological space together
with an atlas,A, of chartsx, : U, — H’]’.a such that J,. ,Us = M.

If p e M, we will say acoordinate chart ap is a chartr, € A such thatc,(p) =0e
H?. In this case, the numbgris uniquely determined by the poipt Thus we can write
J=7Jp).

The tangent space of a manifold with corners can be defined as equivalence classes of

Cp(M) = {(x,v): x is a coordinate chart gt € M andv € R"},

where(x, v) ~ (y, w) if D(x o y~1)(w) = v. If p € 9M then some of the vectors iR, M
point away from the manifold with corners.

Definition 2. A tangent vector irll, M pointsoutwardif some representativer, v) has
ve¢ H" . Atangentvectorid, M pointsinward (orinto M) if some representativer, v)

Note that the definition of an inward pointing vector includes those vectors which are
tangent to the boundary @ . These terms are well defined, since for any two coordinate
charts atp, the transition functions preserWE]’.(m.

2.2. Stratified spaces

There are a number of different notions of what constitutes a stratified space. We will
not be using any results pertaining any particular theory of stratified spaces, but we will
find the language to be convenient. Consequently, we will use a fairly general definition of
‘stratified space’.

Definition 3. A stratified spaceonsists of a topological spaég a partially ordered sef
and a collectior{ H;};cs of subspaces of satisfying

(1) EachH; is a manifold.
2) X= Lies H;. o
(3) HHNH; #V < H; C Hj < i < j.Inthis case we also writf; < H;.

Each of the manifold#Z; is astratumof X.

For us, the most important example of a stratified space is a manifold with corners. For
a manifold with corners/, let£;(M) ={p € M. j(p) = j}. Itis not difficult to see that
£;(M) is a manifold of dimension — j. We may think of each connected component of
£;(M) as a stratum with dimension— ;.
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2.3. Morse functions on manifolds with corners

Let f: M — R be a smooth function. Iff is a stratum oM, andp € H, we sayp is a
critical pointof f wheneverp is a critical point off | 4.
If p € H is in the closure of another stratuiki, we can define the generalized tangent
space
T,K = {w eT,M: w= lim v; € T, K for some sequendg;} — p}.
11— 00

We may also write this a6, K =lim,_, , T, K.

Definition 4. For a manifold with corners/, we say a smooth functiofi: M — R is a
Morse function if it has the following properties:

(1) If H isastratum ofV, andp € H is a critical point off | : H — R, then either
(a) pisanon-degenerate critical point 6fz : H — R, i.e., the Hessian has non-zero
determinant, or
(b) the vector—V f(p) points intoM.
(2) If p € H is a critical point, then for any stratuki # H with p in the closure ofK,
df, is notidentically zero o7, K .

Notice that this definition involves only the first and second derivatives.dh fact a
Morse function need only b€2 in a neighborhood of each critical point in the interior of
M and each critical point such thatV 7 (p) points outward. It need only b@! elsewhere.

2.4. Modifying the gradient vector field

In classical Morse theory, a Morse functigh: M — R is studied by choosing a
Riemannian metric oM and examining the flow induced by the vector fiel f. When
we allow the manifoldM to have corners (or even just a boundary) a difficulty arises. If
—V f points outward from any point ia M, the vector field cannot produce a flow that
carriesM to M. As a result, we must modify the gradient vector field to produce a new
vector field that does induce such a flow. As we do this, we must keep in mind the two
properties this flow must have. First, it must be continuous, and second, the value of the
function f must decrease along the flow lines.

The point of view we will take is that we want to follow the gradient vector field as
closely as possible. What we must do is project the veet®rf (p) onto the maximal
stratum such that the resulting vector does not point outward fikom

At first sight, is makes no sense to talk abet (f|z)(p), whenp ¢ H. Whenp € H,
however, this can be reasonably defined. The approach requires us to remempgy that
can be thought of ag o x,* 1 x ,(U,,) — R and extended to a functiof: R” — R. Thus

we can extend the stratufih to a manifoldd > H that containg. Then we can define

=V(fla)(p)==V(fl7)(p).

Since -V f is continuous onH, this procedure provides a continuous extension of
—V(fln) o H.
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How do we know there must be a maximal stratémsuch that—V (f|g)(p) does
not point outward fromM? Suppose we have two strafd; and H», such thatH; # H»
and —V(f|x,)(p) points inward towardH; for i = 1,2. Choose a standard coordinate
chartx:U, — H’ , at p. Then the coordinate; will be non-negative whenever>
n—j(p). Let A; ={£ e{l,...,n} e pointsintoH;}. Thenx(H; N Up) is an open
subset of spda,}cc4,. Since—V(f|g;)(p) points intoM, we must have,[ ] > 0 when
¢>n—j(p)andl € A;. (Recall that according to Definition 2 vectors tangent to a stratum
in M are considered inward pointing.)

Let B = A1 U Ap. Then spafe;}eep N U, = K N U, for some stratumk, and
—V(flx)(p) pointsintoM.

Then either dindK) > dim(H;) for i = 1, 2, or one of the two strata is contained in
the boundary of the other. Consequently for each ppiatM, there is a unique maximal
stratumk , such that-V(f|k,)(p) points intoM. This allows us to make

Definition 5. At each pointp € M, let K, be the unique maximal stratum such tpat K,
and—V(f|k,)(p) does not point outward from¢. SetG(p) = —V(f|k,)(p)-

ThengG is a well defined vector field oM . From the above construction we see that the
directional derivativeG (p)[ f1 < 0, so the value of will decrease along the flow lines of
any flow induced byG. What we must show is that such a flow exists and is continuous.

2.5. The modified gradient vector field induces a continuous flow

First we will show that even though the modified gradient vector figlds not
continuous, it does induce a flow. Thieflow will follow the —V f-flow until it hits a
stratumH in the boundary. It then follows the V( f|g)-flow until it either hits a lower-
dimensional stratum, or flows back into the interior. To ensure uniqueness, we must impose
another condition on our Morse functions.

Definition 6. We say that a Morse functiofi : M — R satisfies Property (3) if for any
standard coordinate chatt whenever—V f(p) is tangent to a stratunil C M with
e, L H and%(p) =0, the directional derivative oaaxi in the direction—V f(p) is not
zero, i.e.,

E) . 9f 92
(—Vf(p))[ f}zz__f f
j=1

3_)61‘ 8)(]' 8)(]'8)(,'

This is equivalent to the statemen¥ f(p) is not tangent to the s¢ € M: gi_fz =0}.

Lemmal. If f:M — R is a function satisfying Propert{8), then the modified gradient
vector fieldG induces a flowp : M x [0, co) — M satisfying

(-, 0) =identity

d
E‘P(I% z‘)|l‘=t0 = G(Q”(P’ tO))-
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Proof. Recall that in Definition 5 we selected at each pgifih a stratumS C M a stratum
K, and definedG(p) = —V(f|k,)(p). Since f|s is a smooth function, the vector field
—V fls induces a continuous flows on §. We can use this flow to define a stratum
Hp =1lim;_0 Ky, py- In general we will find thatd, = K, but if g—)ﬁ(p) =0 for some/,
this may not be the case.

We can solve the initial value problen’%(r) = =V (fln,)(0p(1)), 0p(0) = p. The
solutiono), lies in H,. Lett; be given by

1 =sup{r € Ry o, () = G(op)}.

Then fors <11, we setp(z, p) =0, (t). Fort > 1, we must repeat this procedure starting
fromo,(11), and flowing for timer —#1. O

This shows that the vector field induces some flow oM. Our goal now is to show
that this flow is continuous.

Lemma2. If f:M — Ris a function satisfying Propert§8), then the flow induced by the
modified gradienG is continuous.

Near a pointp € M, there is a coordinate system:.U, — V, € H such that
x(q) = (x1(q), ..., xn(q)). As usual, the coordinates are chosen so that (—oo, o)
fori<n—j,x;€[0,00)fori >n— j,andx(p)=(0,...,0).

Choose anR > 0 such thatBg(p) C U,. Let p = SUR,em IG @I Then we can
chooser and g such thatutg < R — r. Then ¢(z, B, (p)) C Br(p) for everyt <
79. Consequently, it is sufficient to view the situation in terms of the coordinate
systemx.

Define a projectionr : R" — H? by 7 (v) = (w1 (v1), ...,y (vs)), Where

v;,, ifl<i<n—jorv;=0
ni(vi)z{ol else. Jory

Note thatr is a continuous 5 map anfkyo(mw (x), y) < deudx, y).

We have a vector field; = x:(G) on V). There is also another vector field =
x+(—Vf). Extend F to all of n‘l(V,,) by settlngF to be “constant” (i.e., parallel in
the Euclidean metric) along each preimagel(q) for g € V). The extended vector field
F is Lipschitz, and so induces a continuous flow, denoteg by

Next, we want to define mag :7_1(V) - {0,1} fori =n — j 4+ 1,...,n. The idea
is that7; will be zero where the flow stays within a stratum whene = 0. T; changes to
1 when the flow enters a higher-dimensional stratum whgteO.

Ti(g) = {g) if vi(¢) <0and-G(q), o 9)<0
, else.

Definition 7. Say thaty (-, ¢g) has aruptickat timez if forsomei e {n — j +1, ..., n},
lim_ Ti (¥ (s, q)) < lim_ Ti (¥ (s, q)).



D.G.C. Handron / Topology and its Applications 126 (2002) 83-118 91

Lemma 3.

(1) If g € V, andy (-, ¢) has no upticks irf0, 7), then

@(t,q) =moY(7,q).
(2) If ¥ (-, g) has an uptick in0, ), then

deud@(t.q), T o Y (1, q)) < 2ut.

Proof. Sinceu is the maximal speed for both flows, the farthest they can diverge in time
T is 2ut. That proves the second part of the Lemma.

Now suppose that (-, ¢) has no upticks i0, 7). Let o(¢, ¢) = (x1(2), ..., x,(t)) and
¥(t,q) = (1), ..., ya(2)). Itis sufficient to consider the case where the flpwemains
in a single stratum, saff C £;(M).

Theux;’s satisfy the system of differential equations

_l:gi(xl,...,xn):gi(xl,...,Xj,o,...,O).

d
We are able to set; 1 = --- = x, = 0, since this flow remains i/ .
They;’s, on the other hand, are determined by the system
dy

a:f,-(yl,...,yn):ﬁ(yl,...,yj,O,...,O).
Here, we replace; 1, ..., y, with 0, because th¢; are constant on

77_1()’1, '~-,yj,0, -..,O).
Moreover, for 1<i < j,

five, ..., y,0,...,00=gi(y1,...,¥;,0,...,0).

Consequently for Xi < j, yi(t) = x; (t).
Fori > j, m;i(y;) =0. Sincex; 1 =---=x, =0, it follows that

T (1(0), - ya (D) = (x1(0), ..., X0 (1))
It follows then, thatr o Y (7, q) = ¢(t,q). O

Lemma 4. For ¢ € U and a suitably chosenthere is a finite upper limity, to the number
of upticks along/ (-, ¢) : [0, 7] —> M.

Proof. The set f~1((—o0c, f(g)) is compact and contains the image of the curve
¥(-,q):[0,t] > M. Suppose that the sgp;} of points wherey (-, ¢):[0, 7] - M has
an uptick is infinite. Then some subsequencémf has a limit pointpg.

Property (3), however, ensures that there is a neighborhopgltbfat contains no other
upticks, deriving a contradiction. This shows that each such curve has a finite niyfnber
of upticks. We need to show that there is a finite upper boun{iNgr ¢ € M}.

Suppose there is no such upper bound. Then choose a sedyghnse thatN,, > i.
Finally, choose a paifa; = ¥ (4, i), bi = ¥ (wp,, qi)} so that|z,, — 13| is minimized
along the curvey (-, ¢) : [0, t] — M. Then|t, — 1,| = 0 asi — oo.
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Using compactness again, we can find a subsequence of{paibs} so thata; — po
and b; — po asi — oo. It follows that in a standard coordinate system, for some
n—j(po) <i<n,

of _
a_x,-(pO) =

since pg is a limit of upticks, and;;’—)a is continuous. Moreover, becaugg is the limit of
two consecutive upticks, the directional derivativegéfin the—V f(po) direction satisfies

0
(V1) 5| =0

But this contradicts the fact thgt satisfies Property (3). O

Proof of Lemma 2. We can define a family of mapg : [0, to) x M — M by

k
Yi(T.q) = [mw(; )] @).

Fig. 1 shows an example wheke= 3. If ¥ (z, ¢) has upticks at times, ..., t,, we may
write this as

o= [ros )] oo oeoe( ]
e Tl Sl o
eor(g ) oG o oe )
Jros( o5 ) oo o

wheret; € (# %1”)) Using the first part of the lemma, we can write

Eanll I

Fig. 1. The solid line shows the path from to ¢(z,q). The dotted line shows the path frog to
Ya(q) = oy (5. (@)
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V(. q) = [(p(N%)] o[ﬂoW(%,.)] o|:(p(Nn_1£,.>i| ...
A A e

Now, [0, 7] x M is compact, so there is a constant- 0 such that

dEuc(W(T, 128 w(S,C])) < K(dEuc(PaCI) +llr— S”)-

Combining this estimate with the fact thatdoes not increase distances and the lemma,
we get the estimate

n N
T o1 .
deu(Vi(T, @), ¢(7, ) <2u Y K' < ;(aquK').
i=1 i=1
This bound is independent af and ¢, so ask — oo, Yy converges uniformly tap.
Since the mapg; are all continuous it follows that : [0, c0) x M — M is a continuous
flow. O

2.6. Essential critical points

In classical Morse theory, critical points of a Morse functifrappear as stationary
points of the—V f-flow. Analyzing the behavior of the flow near these points allows one
to prove the Morse theorems. In Section 1.2 we defined a critical point to be anyppoint
such that-V(f|s)(p) = 0, whereS is the stratum containing. Which of these critical
points are stationary points of the modified gradient flow?

A point p in the stratumS C M will be a stationary point ifG(p) = 0. This means
that the projection of-V f(p) onto any stratum other thaghmust point outward frond/.

This is equivalent to saying thatif: U, — H’]’. is a standard coordinate chart ngathen
e;[fl(p)>0fori >n—j.

Definition 8. An essential critical points a pointp € M satisfyingG(p) = 0.

In classical Morse theory, a critical point of is labeled with a number called its
index. The indexs of a critical point p is the number of negative eigenvalues of the
Hessian matrixH (p) of second partial derivatives gf at p. The lemma of Morse tells
us that near such a critical point, there is a system of local coordingtesich that
f=f(p)—x2—- —xZ+xZ , +---+xZ Our situation requires a slight modification
of this lemma.

Lemma 5. Let p be an essential critical point of a Morse functigh which satisfies
Property (3), and suppose thap is contained in a stratun$ having dimensiom — ;.
Then there is a local coordinate systam: U, — H; such that the identity

f=fp) —xf— o mxf g+ x gt

holds throughout,,.
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Proof. We may assume without loss of generality th&tp) = 0. Sincep is a non-
degenerate critical point of|s, we can choose coordinat@s, ..., u,_;) at p such that

fls=—uf——ul+ul + - +ui_j,
and extend this to a standard coordinate charh M.
We can expresg as a Taylor series in these coordinates:

2 2., .2 2
f=—up——uytus g Fu

n 1 n
+ Z ul|:fu,+52fu,u/uj+ s
j=1

i=n—j+1
then setx; = u; for 1 <i <n — j and fori > n — j define

l n
xi=ui|:fu; +§qu,uju]+:|
j=1

Then for eachi, x;(u1,...,u,) is a smooth function. Let: be the map that carries
(u1,...,uy) tox(u1,...,u,). Thenkh is smooth and

-1 -

det(Dh(0)) = det

fun—_/'+1

0
L Su,
Since p is an essential critical pointf,, > 0 for all i > n — j. Thus detDh(0)) # 0.
It follows from the Implicit Function Theorem that on some neighborhoog of is a
coordinate system, compatible with

Moreover, it is clear from the definition af that in the domain of the coordinate chart

x,x; =0ifand only ifu; = 0. Furtherx; > 0 if and only ifu; > 0. Consequently is a
standard coordinate system. In this coordinate sysjeis given by

—xf— XX gty

as required. O

We will call the numbe# theindexof p, and we will take this lemma to be the definition
of the index of an essential critical point. The coordinate systamthe lemma induces a
coordinate systeré = (x1, ..., x,—;) onS. Fromthis itis clear that is the index ofp as
a critical point of f|s.

2.7. The Morse theorems

In this section we see how the number and type of essential critical points a function on
a manifold with corners may have is governed by the topology of the domain. We will use
the following notationM, = f~1((—o0, a]). We will assume tha#,, is compact for each
aeR.
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Lemma 6. If a < b, and f~1([a, b]) contains no essential critical points, then there is a
timet > 0 such thatp(z, My) C M,.

Proof. Suppose thatthere is a point f~1([a, b]) such thatp (¢, g) ¢ f~1((—o0, a]) for

all r > 0. Let{g;};~0 be the sequence(i, ¢g). Then{g;} is contained in the compact set

f~Y([a, b]). Consequently, there is a subsequencégpf that converges to a limigo €

f~Y([a, b]). We must havef (¢(t, q)) > f(qo) for all t and lim_ f(@(t, q)) = f(q0)-
Sincego is not an essential critical poinG (¢g) is non-zero. We can choose some

time 1o such thatf (¢(t0, g0)) < f(go0). Let U be a neighborhood af(zg, go) such that

f(U) < f(qo). Sinceg(ro, -) is continuousg(ro, -)~1(U) is an open set containing.

It follows that there is someé such thatf (¢(i + t0,q)) < f(go) which contradicts the

assumption thaiy;} ¢ f~1([a,b]). O

We are now in a position to prove three of the central theorems of Morse theory.

Theorem 7. Let f: M — R be a Morse function satisfying Propert) on a manifold
with cornersM. If a < b and f~1([a, b]) contains no essential critical points, thé#, is
a deformation retract oM}, so the inclusion map/, — M, is a homotopy equivalence.

Proof. Since there are no essential critical points finl([a, b]) and the value off
decreases along the flow lines @f for each pointp € M, there is a time such that
@(t,p)e M,. Lett, =inf{t e Ry: ¢(t, p) € M,}.

Now we can define a homotogy : M, x [0, 1] - M, by

o(p, =), if £ <1p,

Hip.s)= {wp,rp), it = >1, O

Theorem 8. Let f: M — R be a Morse function satisfying Proper{$) on a manifold

with cornersM. Let p be an essential critical point with index Setf(p) = ¢. Suppose
that, for some > 0, f~1([c — ¢, ¢ 4 ¢]) contains no essential critical points other than

ThenM, . is homotopy equivalent t&/._, with a A-cell attached.

.“ r
_

Fig. 2. The arrows illustrate the homotopy fravf, to M, .
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Proof. Choose a coordinate systemU, — R"~/ x [0, c0)” in which we can write
f=1m —xf—~-~—xf+x§+l+---+x3_j +xr}—j+1+-~-+x,}.

Then choose > 0 sufficiently small so thaf ~1[c — e, ¢ + ¢] contains no essential critical
points other thamp, and the image (U,) contains the closed ‘ball’

n—j n
(X1, ..., Xp): le-z—i— Z xl-1<28}.
i=1

i=n—j+1
The proof from here will consist of the following three steps:
(1) Define aregiorH, as shown in Fig. 3.

(2) ShowM,_. UH >~ M,,..
(3) ShowM,_,Ue* ~ M. ,UH.

We begin by tweaking the functiopi a bit. Choose aC* function u:R — R that
satisfies

n(0) > ¢,
u(r)=0, forr > 2s,
—1<u <0.

If we write

E:x%+...+x§’
2 2
n=af il
1 1
C= gt

then we canwritef =c—&+n+¢.
Define a new functioF by

F=f—-pul+2n+20)=c—&+n+¢—uE+2n+2).

x;\__,_l,...,ij
fmcte et

f =C-E

X ’""x?&

X peeesXy

Fig. 3. M;, is the shaded regionM, is the darkly shaded region. The heavy outline shows the set
{& 4+ 2n + 2¢ = ¢}, and the medium shaded regionHs
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We will use this function (and its level sets) to define the reditn
Claim 1. The essential critical points af and f are identical.

Outside our ‘ball’ of ‘radius’ 2, F = f and so any critical points there must coincide.
Inside, the functiory’ has a single essential critical pointzatTo find the essential critical
points of F we must compute H.

dF = (—1—p)H)de + (1 —2uydn+ (1 —2u)) dz.

The coefficients(—1 — u’) and (1 — 2u’) are nowhere zero andédand d; are
simultaneously zero only ap. Thus p is an essential critical point provided that
e;[F](p) > 0fori >n — j. A computation shows that

ei[F1(p) =dF(e;)(p) = (L—2n) ds(ei)(p) = (1 —21/)(1) > O,
so p is indeed an essential critical point bt
Claim 2. F71(—oo,c+¢) = f1(—00, c +¢).
Outside the seft + 2n + 2¢ < 2¢} we know thatu = 0, soF = f. Inside this set, we
see that
F<f=c—-§+n+¢.
Equality holds on the boundary of the ‘ball’. Also,

1
c—$+n+§<c+<§§+n+§).

Here equality holds whefh= 0. Finally, we note that

1
c+(§$+n+§><c+8.

Here, again, equality holds on the boundary of the ‘ball’. So we see that within this set,
F<c+eandf <c+eunlesss =0andy+ ¢ =¢,inwhichcaseF = f =c +¢.

Claim 3. F~1(—o0, ¢ — ¢] is a deformation retract oM.
Consider the regio—1[c — ¢, ¢ + ¢]. It is compact, but does it contain any critical
points? The only possibility ig, but
F(p)=c—u) <c—e,

sop ¢ F~Y[c—¢,c+¢] and Theorem 7 applie® 1 (—oo, ¢ — ¢] is a deformation retract
of

FH(—o00,c+6]l=fH(—00,c+ 6] = Mcye.
Define the regior by

H=F1(—o0c0,c—&]—M._,.
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Recall that we have defined thecell ¢* such that* = {g4: g(q) <e, n(g)=¢(g)=0}.
Note thate’ C H, smce‘g’; =—1— ' <0implies forg € ¢*,

F(g)<F(p)<c—e.
Note also that* N M,._, = de*.

Claim 4. M._, U ¢* is a deformation retract oM,._, U H.
For eachr € [0, 1] we define amap, : M. UH — M._. U H as follows:
Casel. If g € M., setr;(q) = q for all .

Case?2.If g € H andé(g) < ¢, then set

re(x1,...,xp) = (xl, e X, =—0Hx41, ..., (A= t)xn).

Case 3. If ¢ <&(g) <n(g) +¢(g) + ¢, then define; by

rl‘(xla"'axn)=(x19"'9x)uslx)n+la"'7sl‘xn)9
where
£—el?
s;=1—1t)+t .
ey [+§}

Thenrg is the identity map, angy : M._. U H — M._, U ¢*. Moreovery;(g) € ¢ for
eachr, becausé > 0 and3f > 0. (Moving towarde* decreases'.)

We must show that the functiorxsx,- are continuous as — ¢, n — 0, ¢ — 0. Since
x;—>0asn+¢— 0,

12 a2
lim [‘S 8} x,-:[lim § E} 0).

n+¢—0l n+<¢ n+e—=0n+¢
Since
:(8)—8<«§ (77+§+€)—8
n+¢ n+§ n+¢ ’

the limit is zero, and it follows that eachyx; is continuous.

Note that this definition agrees with Case 1 whgn- ¢ and with Case 2 when
£ —n — ¢ =e¢. Thusr provides a deformation retraction &f._, U H to M._, U .
This concludes the proof of Theorem 81

Theorems 7 and 8 together imply

Theorem 9 (Main Theorem)If M is a manifold with cornersf : M — R a Morse function
on M which satisfies Propert§8) and f ~1(—oo, c] is compact for each, thenM has the
homotopy type of a CW complex with one cell of dimensidor each essential critical
point with indexi.
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Finally, because the homology groups are a homotopy invariant, the Morse inequalities
hold for a Morse function on a manifold with corneys, M — R. If b; (M) is theith Betti
number ofM, andm; (f) is the number of essential critical points pfwith indexi, then

k k
DD hi(M) < (=D mi(f).
i=0 i=0
These are the Strong Morse Inequalities. It is a simple matter to deduce from these the
Weak Morse Inequalities:

my(f) = by (M) foreachk > 0.

3. Generalized billiard paths

3.1. Statement of the problem

We now return to the problem posed in Section 1.1. We have a compaeinifold
embedded in some Euclidean spate— R". Given p,q € R¥ we wish to count the
number of generalized billiard paths fropnto g:

Definition 9. A sequenceé = {1, ..., o} connectingy = ag t0 g = ax+1 is ageneralized
billiard path with k-reflections if for eacti one of the following is true:

(1) The bisector oK w; 111 is normal toT,, M.
(2) Laj_1a;;41 is a straight angle.

3.2. The length of a sequence

We can define the length of a sequeite: {«1, ..., ax} connectingp andqg to be

k
LD (P) = deudei. iya),
i=0

and think ofL,(j’"” as a function
L,((p’q):Mx o x M— R,
N e’
k copies
When there is no confusion regarding the endpoints, we will wrjtéor L,(f’"’).
This length function has one bad property. Wherever consecutive points of a sequence
coincide,L; has a singularity that looks liker — y|. It has another property, though, that

makes us willing to put up with this. Away from this bad set, we can computg. Paths
for which VL; = 0 will be of special interest, as shown by the following

Lemma 10. A sequenc® = {a1, ..., o} With o; # ;41 for 0 <i < k satisfies
VLii(ag,...,ar) =0
if and only if it is a generalized billiard path.
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Proof. VL, = 0 if an only if the directional derivative[L;] = O for all v € T (M*). Since
we can identifyl’ (M*) with TM & --- @ T M, we can writev = v1 @ - - - ® v Then, since
W1®---@v)[Li]l =v1[Lr] + -+ vi[Lg], it is sufficient to show thaV L, = 0 if and
only if v;[L;] = 0 for any choice ob;.
Now, v;[Li] = vi[Z];:OdEuc(O[j, a;+1)]. Only two of the terms on the right are non-
Zero:
vi[Li] = vi[deuc(ei—1, i) | + v [deudei, @iy1)]-
In order to compute; [deyc(ei—1, ;)] we can choose a curve M (which we will also
call o;) satisfying
a;(0)=«; and 0{1/-(0) =;.
In this way, we think oty; as varying along the curve, rather than as a fixed point. Then
d
vi[deuc(ei—1, @) ] = aLk(al, i (D), ag)li=o.
Then we can compute
v; [dEuc(Oli—l, @) + deuddi, Oli—i-l)]
el 1/2 1/2
= 5[(0&—1 —a; (1)) - (@i—1 — i (0))] 24 [(ci (1) — i) - (i (1) — tiy1)] /
_ —a/(t) - (oj—1 — o (1)) af(t) - (i (1) — ait1)
[(@ic1— i () - (ei—1 — o (NIY2 T [(i (1) — otip1) - (o (1) — j11)]Y/?
i-1—aill ilt) -«
:a;(t)-( d1— i) | ) —diga )
loi—1 — i (O i (7)) — eyl
Evaluating at = 0 we find

o1 — o o — 041 )
loi1r—oill - llei —aigall

This will be zero for allv; provided that the vector
( Gl O igd )
loic1 —aill [l — eigall
is either normal tdl,, M or zero. When this vector is non-zero it is a bisector of the angle

Laj—1a;ai+1. When it is zeroLo; 111 IS a straight angle. Thus the gradient is zero
exactly when the sequence is a generalized gradient path.

vi[deuc(@i—1, @) + deuc(ai, i1 ] = v; - (

Having established thdt;, is a function worth considering, let's look more closely at its
behavior near the diagondls; = «;+1}. Consider a sequende, 8, y} wherea = 8. If 8
moves slightly to8’, as in Fig. 4, the triangle inequality tells us that we have increased the
length of the sequence.

We know that the vector field-VL; points in the direction of decreasing length.
Consequently, under any modified gradient flow, nearby consecutive reflections would tend
to flow toward each other. We will define such a flow in Section 4.2, but for now we are
interested in generalized billiard paths withdistinct reflections. Consequently we will
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B'
o.p

Fig. 4. Wheng is moved away frone the length of the path increases.

instead look at the function L. It has the same critical points, but tRd.-flow tends
away from the diagonals. Then we will ‘blow up’ the produet along the appropriate
diagonals.

3.3. The blow up space

This notion of blowing up was introduced by Fulton and MacPherson in [4]. To
understand what is meant by blow up, let’s think about a simple example. Wakes?!
andk = 2. Assume thap, g ¢ M. Then—L3 is a function on the torus which is singular
along the diagonah c ST x §1.

As (a, ) — (o, a) the limit of —V L, depends on the direction of approach. The
gradient vecto—V L («, 8) consists of a vector iff, M pointing away fromg and a
vector inTg M pointing away fromw. If g is allowed to approach from the opposite side,
the gradient vector is reversed.

We need to produce a closures¥x ST — A on which we can exten¥ L continuously.
Consequently, ag, ) approaches\, we keep track not only of the limiting point, but also
of the relative positions af andg. The result is shown in Fig. 5.

Now lets consider a path with reflections on am-manifold M. Fig. 6 shows the
situation when two consecutive points coincide. This collision is described by the limiting
point and annfinitesimal tangent space diagraffhis diagram shows pointg, andvg in
the tangent space of the limiting point. Two such diagrams are equivalent if they differ by
translation and multiplication by a positive constant. We can translate the diagram so that
v, IS at the origin, and then scale it 8@ is on the unit circle. This shows that each such
point will be blown up into a copy o$” 1.

Fig. 7 shows what may happen when 8, andy coincide at a point € M. The
situation is a bit more complicated now. Again, we can translate the diagram sa,that
is at the origin, and then scale it $9 is on the unit circle. The pointg now may lie
anywhere inTy M U co. It would seem that each such pothtis blown up to a copy of
§"=1 x §". In fact this is not the case. Wheneugy= v, or vg = v,, the resulting double
point must also be blown up. On the other hand, if scaling the diagram s, tligbn the
unit circle pushesg off to infinity, we would do better to scale the diagram so thais on
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Y

N
A\
7”7

A\N
Y/

A\

Fig. 5. The poin® € A is blown up to the two point§’ ands” .

v
I

TyM

Fig. 6. The infinitesimal tangent space diagram for two consecutive reflections collidivig in

the unit circle. (We are free to choose, since all these diagrams are equivalent.) When we
rescale in this fashion, we will find that, = v, . This point need not be blown up further,
becauser andy are not consecutive reflections. All of these special situations correspond
to a situation where two of the points approach each other much more quickly than they
approach the third.

When more points collide, there will be more of these cascading diagrams. In addition,
two collections of points may collide independently at different points in the manifold. In
this case we have two separate collections of infinitesimal diagrams corresponding to the
two collections of points. We will denote the space that results from blowing tim this
way by X; = X;(M). The spaces that result are somewhat difficult to describe. There is
one thing we can say about these spaces which is of particular importance to us.

Lemma 11. For any smooth manifold/, the spaceX; = X (M) is a manifold with
corners.

Proof. It is shown in [4] that the result of blowing up all the diagonals is a manifold
with corners. In our case, we are only concerned with the diagonals corresponding to the
collision of consecutive reflections. Here we show that blowing up only these diagonals
also leads to a manifold with corners.

First, we define some convenient notation for referring to a stratum of the blo, up
When we write

(alﬂ"'7“1'—17{aiQ"'Qai+j}9"'9ak)9
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V.
-1y R
K i K .
| \ / \
Vo, VB ' A I
“ (VEALS ‘\ o,
~ ’ \O\ //
~_1.- 9 VB ~_1.-
TyM TyM

©)

V.
A B
\\ V(X /’
(b)
TyM
v,V
Iy Ll
' \ J vg '
\ VOL 1 \ 1
' . N »,
R , <1 .- V’Y
M M

Fig. 7. Possible infinitesimal tangent space diagrams for three consecutive reflections collidintnita),«, 8

andy all approach each other at approximately the same rate. i (@)dy approach each other much faster
then they approach. In (c), « and g approach each other much faster than they apprpadine situation where

« andy approach each other faster than they apprgacbed not be considered separately, since these reflections
are not consecutive.

we mean that; = --- = ;4 j, and all these points come together at commensurable rates.
This stratum will be described by an infinitesimal diagran¥jr/ in which v; # - -- #
v;+ ;. Furthermore, when we write

(..., {Oll‘, ey {aH_g,...,a,-+g+m},...,a,-+j}, )
we mean thav;y, = --- = v; 4o+, in the first infinitesimal diagram, requiring a second
diagram.

Each pair of braces must enclose a proper subset of the points in preceding set of braces.
Each grouping designates a stratum with as many infinitesimal diagrams as there are pairs
of braces. Moreover, for each pair of braces we add, the codimension of the stratum is
increased by one. To see this, consider what happens when we add a single set of braces:

(...,{(Xi,...,()ti+j},...).
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Before the braces were added, these points represgrted distinct points in an
infinitesimal diagram (or inM*)—an n(j + 1)-dimensional set. They now represent a
single point in amm-dimensional space, and a new diagram. We can scale the diagram
so thato; is at the origin andy;4; is on the unit circle. The remaining— 1 points lie
elsewhere in the tangent plane.

Altogether, we note that with the braces in place, the paifts. ., «;4; account for
n+n—1)+n( —1 orn(j +1) — 1 dimensions. Thus adding the braces decreases the
dimension by one.

To see how a coordinate chartmay be defined near a point on this stratum, first choose
a coordinate chaunt; at each of the distinct pointg in M. The chartug até induces a
coordinate chartvy on Ty M for 6’ neard. Then we may choose coordinates on the
unit sphere iy M that vary smoothly withy’.

Wheng;, ..., a;4; are all sufficiently close together we can write uniquely

(i, ..., ai-i—j) = (exrb,(tv,-), ey expg,(tviﬂ-)),
by requiringv; = 0 (so that’ = «;), |v;+1| = 1 andr > 0. Then the limit ag — 0 is the
infinitesimal diagram defined by, , ..., v;1+1}. Set, forv; =0 and|v;+1| =1 andd’ in a
small neighborhood of,

x(al, ces 01, EXPy (), L eXRy (P04 ), g il -, Otk)

= (u1(on), ..., wi—1(ti—1), ug (O, witjy1(tipjt1), -, wlog),
w1(v;), w2(vi41), W1(Vi42), ..., Viyj, ).

Then on a neighborhood ¢, . . ., ) this map defines a coordinate chart.
The same procedure can be used for any grouping oftlse using one parameter
0 < t; € R for each pair of braces.O

Thereis a mag : Xy — M* that assigns to each point ¥y, the corresponding limiting
pointin M*. We can define (abusing notation in the process)
—Lip: Xr—R
by
—Li(q) =—Lik o g(q)-
Now, we wish to study this function oK. There is just one more order of business to
attend to first.

3.4. When is-L; a Morse function?

We want to show that- L satisfies the properties in Definitions 4 and 6. First of all, we
must show thaV L; extends continuously t&;. Recall the definition of.;:

k

Li(P) =) deuceti, i)
i=0



D.G.C. Handron / Topology and its Applications 126 (2002) 83—-118 105

Itis sufficient to show thaVdeyd(«;, a;+1) extends continuously for eac¢hlf «; anda; 11
do not approach each other, thénc(«;, @;+1) is smooth as it approaches the boundary of
X, andVdeyd(a;, @i+1) can be extended continuously.df ande;+1 do approach each
other, we must show thatdeyd(w;, @;+1) approaches a limit.

As the pointsy; anda;+1 approach each other, we can write

aj =expy(1v)),

whered’ — 0 and v/j — vj € TyM ast — 0. Then, sinceD(expy)o is the identity on
Ty M, we can write,

aj =0+ 10, 4+ O(r%).

Here we are thinking of M as a linear subspace Bf¥. SinceM is compact, @?) is a
uniform bound for boundedj. Then the distance froms; to «;11 is given by

deuc(oy, 0jp1) = t‘”; - v;+l| + O(tz)'

SoVdy (a;, ai+1) is given by

/

(L Vi ) +0(?) @ (7;’%“ — vi|) +0(r3).

I /
lv; — v, 4l Vir1— Y

The first vector in the sum is ifi,, M. The second lies i, , M. The limit ast — 0O exists
and is equal to

v — v Vi1 — v
(’7""1) ® <$) eToM O TyM,
[v; — i1 [vir1 — ;]

so VL, extends continuously to all ofy.

SinceV L points inward at each point ialXg, all the essential critical points ef L
are in the interior of(;. To show that- L is a Morse function, we have only to determine
when the Hessian is non-singular.

This property requires that the critical points be non-degenerate, i.e., the determinant of
the Hessian at a critical point must be non-zero. To begin with lets look at

—Li: X — R,

~Here there are reflection pointsgs, ..., ax. Choose an orthonormal coordinate system
x' satisfyingx’ («;) = 0 for eachi. The function then can be written as

k
—Ly=—Ylleg —aisal.-

i=0

Our first goal is to get an explicit representation for the Hessian.
The Hessian is given by
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Lemma 12. The Hessian of L, is given by

TA1 Ki |
Ki A2 K> 0
K,
Ki_
H(oy,...,op) = Ko_1 Iﬁél Ky
Ky
0 o Kg-1
i Ki1  Ap
where

(A0)i,j = Bxjx; - (Vap — Vgy)

1 1
*{wiwﬂwi%”_&ﬂga—mﬁﬁm—VO’

and

(Ke)ij = (B, - Yy; — COLWYrx;) COS(‘Py,-))-

1
I8 =l

In the above expressiong,s = ﬁ and §;; is the Kronecker delta. Alsa = a¢_1,
B =y, Yy =ay41, x is a coordinate system @&, andy is a coordinate system at.

Proof. We need to computg, andK,. First compute

d(=Ly) d By @—=B) By - B-v)

» :a_ﬂ(—||a—ﬁ||—llﬁ—yll)=— o — Bl 18—l
a—p

_ _ _ B-v
= b (Ila—ﬁll IIﬁ—VH)'

In order to computek we must differentiate in one variable and ong variable. In this
case, the result is

f&iﬂﬁzﬂ”jl(_ﬁ_y>
oyoxi v\ B =l
i 18— 712

This expression can be simplified by setting, = (8 — y)/[8 — vl and lettingy,,
be the angle betweery, andg,,. Similarly, ¥, will be the angle betweeng, andyy,.
Then

32(—Ly)
Byjaxi

=,3_.< Vvi o _B-v
NIB=vI 1B -vyI?
1

= m(ﬂxi Yy — COil/jx[) Coquj)).

cogyy; )>
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Fig. 8. The angleyy; .

In order to computet, we must differentiate by two differemntvariables. In that case,
we find

O*(=Ly) (a—ﬂ__ﬂ—y> jl(a—ﬁ__ﬁ—y>
avom o =gl " 1s =) TP o e =gl "B

Kl ( a—p  B-v )
ax; \la— Bl 1B —7I
= BliB, — (@ = YT 1B =y IBy — (B =) Tt
I — BI2 18— 71
—ﬂxj vaﬁ Coil/fx_,-) ﬂxj' vﬂV Cogl/ij)
+ + -

and

e =Bl lle — Bl 18—l 18—l
Since we are at a critical point, it is easily shown that- ves = By, - vg,. Fromthis it
follows that the angle betweey, andwvg, is also,,;. Using this and the orthonormality
of the coordinate system, we can write
9%(—Ly)
8)(]' ax,-

1 1
= Bujx; - (Vap — Vpy) +c08(1/fx,~)coswx,)<”a — + = y”>-

n2 .
We also must comput%%. Here it is:

P(-La) _ (a—ﬂ__ﬁ—y) _1<a—ﬁ__ﬁ—y>
P P Py By R B Pl (oY By

= ,Bx;x; : (votﬁ - vﬁy)
_lgx,- Vaop CO&W}Q) lgx,- Vgy COgI/ﬁc;))
+ By, - + - +
§ (Ila—ﬂll o — Bl 18—l 18—l
1 1
= Brixi - (Vap — + [cog x,»—l( + )
P+ (g = vpy) + [0S o) = U{ =gy + =
Finally, if z is a coordinate system at,, where|m — £| > 1, then

Pl 0 (0 I I+ - I)=0. o
——=—\|\—llag-1—« — oy — =0
8zj8x,- aZj 8x,- -1 ¢ Bx,- t e+l

Now we can use Lemma 12 to prove
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Lemma 13. For a given non-degeneratée., eigenvalues of the corresponding Hessian
at that point are all non-zerpgeneralized billiard pathP, as the endpointgp andg are
varied, the eigenvalues of the Hessian vary continuously.

Proof. Let x be a coordinate system neag, the last reflection ofP. For the other
reflections;, let y! = (ny, ..., y}) be a coordinate system in a neighborhood. We may,
without loss of generality, assume that the domaitydf ...; y*~1; x) is contained in the
interior of Xy.

Recall the formulae for the entries of the Hessian, given in Lemma 12. If the endpoint
g is moved tag’, the vector

/

Ok — ¢
(=
ok —¢'ll
varies continuously with'. The vectorsy—1 = 7*==2tr, ax.«; ande; i are all constant.
- )

(p.g"

, , (p.q")
d(—L . —L . . . .
It follows that% is zero ancf% varies continuously witly’. So the gradient
J !

V(—L,((”’q/)) varies continuously witlg’. It follows that there is a generalized billiard path
P’ whose reflections are close to the reflectiong’oMoreover, P’ varies continuously
with ¢’.

In addition, the quantityjex — ¢’|| and the anglep,, vary continuously withg’. It
follows that the entries of the Hessidii(P’) vary continuously, and hence so do the
eigenvalues. O

Lemma 13 shows that for a given embedding,— R", the set of pairsp; q) €
RV x RN such that-L("9) is a Morse function is open iR?" .

Notice that as the endpoints are moved, the eigenvalues of a critical point (i.e.,
a generalized billiard path) vary continuously, but the critical point itself varies as well.
We say that a generalized billiard pah from pg to g is related toa generalized billiard
path P1 from p1 to ¢1 if there are pathg : [0, 1] — M andgq : [0, 1] - M, with p(0) = po,
p(1) = p1,9(0) = go andq (1) = g1, and for each € [0, 1] a generalized billiard patR (¢)
whose endpoints vary continuously frofg to P1. Sometimes in moving the endpoints
from (po, qo0) to (p1, q1), there will be no generalized billiard path from to ¢1 related
to a pathP from pg to go. In this case, we say the movemelesstroyghe pathpP.

There are two things that may prevenL; from being a Morse function. One of these
is that one or both of the endpoints may be located a focal point. Another problem occurs
when there is a billiard path that hassengential reflectioni.e., the angle of incidence and
angle of reflection are both zero. We will find in Lemma 20 these are rare occurrences. The
proof of Lemma 20 requires Lemma 15, which in turn requires

I(._)emma 14. Let M c RN be an embedded manifold, andéet8 € M be such that the line
ap is tangent toM at g, but not ate. Then in any neighborhoald, of « there is a point
o’ such that the line/’ is tangent taM at neithera’ nor 8.

Proof. Since the Iineo(ﬁé is tangent toM at g, 573 is contained in7TgM. It follows that
o € TgM. (We are thinking off3 M as a linear subspace Bf'.)
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Suppose there is a neighborhddg such thaﬁTé is tangent taV at 8 for all &’ € U,.
ThenU, C TgM.

If the entire neighborhood,, is contained inTg M, thenT, M coincides withTz M.
Consequently% Cc TyM, and scfx_B is tangent taVf atw, contrary to assumption.O

Lemma 15. Let M C R"” and p,q € R". If P is a generalized billiard path fronp to ¢
that has a tangential reflection a1 = 8, then for anys > 0 there is ap’ € B.(p) and
q' € B:(g) such that either there is a non-tangential generalized billiard path fygno
q' related toP, or the movement frortp, ¢) to (p’, ¢’) destroysP.

Proof. Assumeg is the first tangential reflection along the path. Tﬁgﬁ is not tangent
to M ate;. Fix 8 and movey; along a curvey; : [0, 1] - M such thaty; (0) = «; and
a;(¢)B is not tangent ta at g8 fort > 0.

Since the generalized billiard paths, ..., «;) from p to 8 is non-tangential, there is
as>0and curveg:[0,6] - M ande;:[0,8] = M for j e {1,...,i — 1} such that
(a1(2), ..., a; (1)) is a (hon-tangential) generalized billiard path freiir) to 8.

If there are paths; :[0,8] — M for j e {i +2,...,k} andg:[0, 8] — M such that
(a1(1),...,ai(t), B,ai12(t), ..., a,(t)) is @ non-tangential generalized billiard path from
p(t) to ¢(¢), then we can choosg such thatp(zg) € B.(p) andq(tp) € B:(p). Then set
p’ = p(to) andq’ = ¢ (t0). (Note, this can be done in such a way that every non-degenerate
generalized billiard path from to ¢ has a related path fropf to ¢’.)

If there are tangential reflections along the generalized billiard gaif), ...,

a; (1), B, ait2(t), ..., a,(t)) from p(¢) to ¢ (¢), then the above procedure must be repeated
before choosing’ andq’.

Finally, if there is no such generalized billiard path fror) to ¢ (¢), then the pathP
has been destroyed O

Now we turn our attention to the problem of non-tangential degenerate billiard paths.
We begin by investigating the eigenvectors of the Hessian mafrx, ..., ar). We
can think of an eigenvectoV as a vectory; in each of the tangent spacéy, Xy,
V = (v1;...; vr). Inthis case

FAL Ky -
K1 Ay K> 0
K2
V] Aqvy1 + Kqvp
- Kia .
= )\, ,
Ki-1 A K; : .
vk Ki—1vk—1+ Agvk
K;
0 o K
L Ki-1  Ar
where is the corresponding eigenvalue.
From Lemma 12, the matriK;_1 can be written
K/ _ K//

K1

(B 70, = cotin) 0w ) ;= oy

_ 1
B =l loe — BII°
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V(XB

Fig. 9. The three angles vyx,, andfy, .

whereg = ax_1 andy = oy

Lemma 16. If H (a1, ...,ar) has an eigenvectoV = (v1; ...; vx—1; 0) with eigenvalue
zero, thenas, .. ., o) is a sequence with a tangential reflection.

Proof. In this case,K;_1vi_1 + Arvr = Ki_1vr_1 = 0. It is sufficient to show that if
Ki—1v =0foranyv € T, , M, then the sequence has a tangential reflection.
Let us investigat& v first. Thefth component s given by

(K"v), = Y vjcosy,) cosry,) = COSYry,) Y v; COthy,)
J J

= (B, Vap) Y _vj(@y; - Vap) = (By, - Vpy) (Z vm,-) vy
J J

= (By, - vﬁy)(v “Vgy).
We also have

(K/v)e = ZUJ'IBX@ Yy = B 'Zvjyyj =By, - V.
J J

Whenisgy, - v = (By, - vg,)(v-vg,)? Letdy, be the angle betweeh, andv, and leto
be the angle betweary, andv. The statement the reduces to

cos0,,) = COS,) COS0)

(since the vectors in question are all unit vectors).
Let rg denote the projection ontz M. Then the following identities hold.

mp(vpy) =Y COSY)By,  Tp() =y  COOy,)Bu,.
l 4

From this we see
mp(v) =) COYYry,) COS0) By, = COS0) Y COIYry, ) By, = COL0) (v ).
l 4

We can writev = vg, co90) + (v,gy)L sin(o) for some(v,gy)L orthogonal tow. It then
follows that eithernﬁ(vﬁf) = 0 or sinlo) = 0. In the first case the conclusion is that
vg, € TgM, and so the path is tangentié at the point8. The second condition implies
thatvg, = +v, and sovg, € T, M. Here the path is tangentid aty. O
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Lemma 17. For each non-tangential generalized billiard path as the lengtit from the
last reflection tog is increased, the eigenvalues of the Hessta@P;) increase strictly
monotonically.

Proof. Recall from the proof of Lemma 12 that the Hessian can be written as
HP)=N—21: " |,
0o ... C
whereN is a constant matrix and

C= (Sij — cog¥Yry,) COil/fx_,)),-,j-

A standard result of linear operator theory tells us thatitheigenvalue (in increasing
order) is given by

) (HV,V)
A= sup inf AL M
(X1,.. X, ) VelXe,...Xi -\ (V, V)

((NV,V) l(Cvk,vk)>
= sup inf - =
(X, X, ) VelXp. X -\ (V. V) £ (g, vp)

.....

where{X1, ..., X;_1} are taken to be linearly independent, ane= (v1; ...; vg).

The valuei; can be realized by choosing; to be an eigenvector correspondingito
andV to be an eigenvector correspondingito Because of this, we may restrict the inf to
those vectord/ e {X1, ..., X;_1}* with v; # 0. (All eigenvectors are of this form.) We
may also restrict our attention to those vectors With|| = 1.

If v is a unit vector, then a calculation shows

(Cv,v) = (v,0) —v" - [COSY,) COSY )], -0 =1 (¥ V).

Thus(Cw, v) is positive unles® = +v,,,. This cannot be the case, though, silkces
a non-tangential reflection. It follows that whéincreases, the value of

(HV,V)

(v,v)
increases continuously for every vec®rwith v, # 0. As a consequence of this, we see
thati; must increase continuously aéncreases. O

Lemma 18. Given two pointsp, g € RY, a non-tangential generalized billiard path
connecting them and an> 0, there exists @’ € B:(¢) such that there is a non-degenerate
generalized billiard pathP’ from p to ¢’ related toP. Moreoverg’ can be chosen in such
a way that each non-degenerate generalized billiard path fpoto ¢ has a related non-
degenerate generalized billiard path fropto ¢'.

Proof. Letws be the unit vector pointing from the last reflectionfto g. As g’ is moved
in the direction ofv1 from ¢, all the eigenvalues of and all the non-degenerate paths
vary continuously (Lemmas 13 and 17). Choose-a ® < ¢ so that all of the non-zero
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eigenvalues (ofP and the non-degenerate generalized billiard paths) are bounded away
from zero betweeg andg + §v1.

By Lemma 17, the eigenvalues of the pa@hwill increase monotonically. Hence all of
the zero eigenvalues will have increased to positive values. Since no new zero eigenvalues
have been created, we canget=g +dvy. O

Lemma 19. For any embedded manifold < R", pointsp, g € RY ande > 0, there are
pointsp’ € B.(p) andq’ € B:(g) such that—L,((” “4) is a Morse function.

Proof. Choose a degenerate generalized billiard pthf it has a tangential reflection,

use Lemma 15 to finghy € B,4(p) andqi € B, 4(q) such that there is either a related
non-tangential generalized billiard path from p1 to ¢1, or no generalized billiard path
related toP. This can be done without destroying any non-degenerate generalized billiard
paths.

Next use Lemma 18 to chooge € B, 4(p1) andg, € B,/4(q1) such that there is a
non-degenerate generalized billiard p&hfrom p» to g2 related toP;. Again, this can be
done without destroying any non-degenerate generalized billiard paths.

Repeat these two steps as often as needed, each time chpgsiagndgz;_1 within
e/2j 4+ 1 of pp;_» andgz;_», then choosing,; andg,; within ¢/2j + 1 of pp;_; and
g2j—1- This procedure must terminate after a finite number of steps, otherwise we have
constructed an infinite sequence of non-degenerate (and hence isolated) critical points in
the compact manifold/*. o

Lemma 20. Given an embedding aff — R, the set of pointgp; ¢g) € RY x R" such
that —L\”"?" is a Morse function is open and dense.

Proof. Lemma 13 shows that the set is open. Lemma 19 shows the set is dense.
3.5. Application of the Morse inequalities

In this section, we finally apply the results of Section 2 to the caselqgf: X; — R.
Theorem 21. Supposé/ — R is a smooth embedding of aamanifold, andp, ¢ € R".

Then for every > 0, there is ap’ € B:(p) and aq’ € B.(q) such that ifNy is the number
of billiard paths withk reflections connecting’ to ¢’. Then

kn
Ne =) bi(Xp).
i=0

Proof. Choosep’ andq’ so that— Ly, is a Morse function. Then
kn

Ne = mi(~Ly).

i=0
Sincem; (—Ly) > b; (Xy), the result follows. O
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This shows that the more complicated the topology of the path spadée greater the
number of generalized paths there must be. In the next two sections the Betti numbers of
X will be related to the Betti numbers af. This will allow an estimate of the number of
billiard paths to be stated in terms of the topology of the underlying manitld

4. Morse Theory for thelength function on sequences
4.1. M x --- x M as a stratified space

The spaceM* is naturally a smooth manifold. We impose on this smooth space a
stratified structure, by treating all of the various diagonals as separate strata.

A point P in M* is an ordered-tuple of points inM, P = (a1, ..., ax). DefineF; =
Fj(M") ={(a1,...,0¢): a; # aj41 forexactlyj + 1 choicesof € {0,..., k}}. Here, as
usual,cp = p anday41 = ¢q. F; is the set of sequences wihdistinct “reflections”. The
components of’; will be the strata ofi/.

4.2. A continuous flow om*

In classical Morse theory, one considers the negative gradient flow of a function. The
functionL; : M*¥ — R is not differentiable everywhere, but we will show that its restriction
to any stratum is, in general, a Morse function. Viewit§ as a stratified space, we can
define a flow that will substitute for a negative gradient flow.

Lemma 22. For j =1,...,k, if —Li.”"’):Xj — R is a Morse function(in the sense of
Section?) thenL,((”"”|pj : F; — Ris a(classica) Morse function.

Proof. F; is the set of all configurations df points in M such that the maximal subset
of distinct points has magnitudg X is the (closure of the) set of configurations pf
distinct points inM. For each connected componditof F;, there is a diffeomorphism
F:H — Int(X}y). (Provided thatX; is connected, otherwis& maps onto the interior
of a connected component &f.) If («q,...,a) € H anda;,, ..., o;; are distinct, then
flog,...,op) = ((xil,...,oe,-_/.) e Xg.

Now, if P € H,thenLy(P) = Ly (f(P)). Since— L is a Morse function on the interior
of X, (a smooth manifold) is a Morse function as well. O

Lemma 23. The set of endpoints andg such thatL,((”"”|p/. : F; — Ris a Morse function
for everyj e {1, ..., k} is open and dense iR?" .

Proof. For eachj, the set of endpoints such thatL;:X; — R is open and dense.
Consequently, the intersection of albf these sets is open and densel

Now we will define a vector fields+ on M* as follows. ForP e Fj, setGT(P) =
—V(LklF;p))- That is, GT(P) is the negative gradient df; restricted to the stratum
containingP.
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Now, if H is a stratum of*, the vector field5+ induces a flowd  : U — H, whereU
is an open neighborhood @0} x H C R x H. Assume that is the largest neighborhood
on which such a flow may be defined. FBre H, lettp = supz | (¢, P) € U}.

We can build a flows : [0, co) x M* — M* on all of M* from these individual flows in
the following way: define fol? € H

UH(t, P) t<tp,
Ok (t —tp,liMg_s, OH(s, P)) t>1tp,

whereK is the stratum containing lim,;, ¥x (s, P). The ideais that the point flows until it
reaches the boundary of the initial stratum, and hence reaches a lower-dimensional stratum,
then continues in the lower-dimensional stratum. Note that this is a recursive definition,
but since when the flow moves from one stratum to another the dimension of the stratum
always decreases, only finitely many iterations are needed.

9(t, P) = {

Lemma 24. The flows? : [0, oco) x M¥ — M* is continuous.

Proof. Certainlyd|r, is continuous, since it is just the negative gradient flow of a smooth

function. Now, suppose thatrestricted to the uniobjlf:_ll F; is continuous. We will show
that

0|U2/:1 Fi
is continuous.

LetU = {(t, P) € [0,00) x F; | t <tp}. Theny|y is continuous. We must show that
9 is still continuous when > ¢p. It follows from the continuity of¢ on U that the map
P — tp is continuous.

LetE; ={P € F; | tp < oo}. Since moving two nearby reflections closer decreases the
length of the sequencd;; contains a neighborhood éfF;. We can define the function
fiEj— U{:_ll F;(M*) by f(P) = lim,_,, ®(¢, P). Then f is a continuous function,
again due to the continuity af| .

Finally, definer :R x E; — Rby (¢, P) =t —tp. Thent is continuous as well. Now
we can writed (¢, P) as a composition of continuous functions:

9(t, P)=0(z(t, P), f(P)).
By induction, it follows that? is continuous orM*. O

4.3. The Morse theorems
Before we may proceed to prove the Morse theorems, we need to make a

Definition 10. An essential critical point of.; : M¥ — R is a pointP € M* such that
G*(P)=0.

By the definition ofG*, this condition is equivalent to the requirement tifais a
critical point of one of the function$k|Fj :F; — R. If P e F;is an essential critical

point, then there is a coordinate systemih such that
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Li(x1, ... Xkn) = Li(P) —x§ — - — x4+ xf 1+ + X
+ |xjn+l| + o Xk
Here(xy, ..., xj,) represents a coordinate system on a neighborho@iofF;. We say

thatA is theindexof P.
We will use the following notationtM*), = L,:l((—oo, al).

Lemma 25. If there are no essential critical points ihk_l([a, b)), then for each poinP
in (M%), there is a time such that? (¢, P) € (M¥),.

Proof. The seth‘l([a, b]) is compact, and contains no essential critical points. It follows
that

pw=min inf |V(Llg)| > 0.
i peL(a,b)

Since the directional derivative-V (Lk|r,))[ L] is given by

(—=V@Lil))Li] = = iﬁe [L]——Zaﬂ(e )[Li]
kI F; k1l = 3X13l k1= gaxl{ L k

(=1

aLy 0L
=Y S = | VWlR)
7 d0xg 0xg

)

andg—tﬁ = (—=V(Lk|F,))[L], it follows that along flow lines, the value @ is decreasing
at a rate bounded away from zero. Sofer }% O (P, 1) e (M5, forall P e (MY),. O

Theorem 26. If a < b and L,:l([a, b]) contains no essential critical points, them%),,
is a deformation retract ofM*);, so the inclusion mapM*), — (M*), is a homotopy
equivalence.

Proof. Since there are no essential critical pointsljpl([a,b]), and the value of_;
decreases along the flow lines ®f for each pointP e (M), there is a timer such
thatd (1, p) € (M¥),. Letsp =inf{r e Ry: 9 (1, P) € (M¥),}.

Now we can define a homotogy : (M%), x [0, 1] — (M%), by

iz, Py 15 <sp,
HP, )= {l‘/‘(SP,SP), &>

Theorem 27. Let P be an essential critical point of; with indexi. SetL;(P) = c.
Suppose that for sonze> 0, Lk_l([c — ¢, ¢+ €]) contains no essential critical points other
than P. Then(M*).,. is homotopy equivalent ta/¥)._, with a x-cell attached.

Proof. Choose a coordinate systemUp — R¥" in which we can write

2

f=f(P)—xf—m—x§+xf+1+~~+xjn+Ixjn+1|+~-+|xkn|-
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Then choose > 0 sufficiently small so thaLk‘l[c — ¢, ¢ + €] contains no essential critical
points other tharP, and the image (Up) contains the closed ‘ball’

n(k—j) kn
L)t Yo xfE Y <2
i=1 i=n(k—j)+1

We proceed as in Section 2.7, definjagé andn as we do there. Now, though, we must
define
= |xn—j+l| 4+ xnl.

Thenwe can writdy =c — & +n+ ¢ andI” = Ly — u(§€ + 2n + 2¢). These functions
play the roles off andF respectively in Section 2.7. As before, it follows that the essential
critical points of " and L, are identical. Likewise]"~1(—o0, ¢ + &) = Lk_l(—oo, c+e)
andI"~1(—o0, ¢ — €] is a deformation retract afV/*) .

It is now necessary only to show thaM*)._, U ¢* is a deformation retract of
I'Y(—o00,c — ¢]. For eachr € [0, 1] we must define a map, : ' 1(—o0,c — ¢] —
(M*)._. U H as follows:

Casel.If Q € (M%)._,, setr;(Q) = Q forall r.

Case2.If Q e ' Y(—o0,c—¢]butQ ¢ (M¥)._, and£(Q) < ¢, then set

re(x1,...,x,) = (xl, e X, =—0Hx41, ..., (A= t)xn).

Case3. If £ <£(Q) <n(Q) +¢(Q) + ¢, then define, by

Te(X1, oo, Xn) = (X1, oo, X0, St X4 1, - - -5 StXn),
where
£_gY2
st=(l—t)+t|: } .
n+¢

Thenrg is the identity map, andy: ' (—oco,c — ¢] > (M*)._. U *. Note that
this Case 3 agrees with Case 1 whgn= ¢ and with Case 2 whe§ — n — ¢ = ¢.
Continuity follows from the proof of Theorem 8. Thugprovides a deformation retraction
of (M*)._, U H to (M*)._, U e*. This concludes the proof of Theorem 270

Theorems 26 and 27 may be used to show Mé4tis homotopy equivalent to a CW-
complex having one cell for each essential critical point @f; : M* — R with index .
(See [7].) This in turn allows us to deduce the Morse Inequalities, both strong:

Z( l)€+lb Mk Z( l)g-Hm (L]()

i=0 i=0
and weak:

me(Lg) > be(M")
or each 0< ¢ < kn.
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5. Generalized billiard pathsrevisited
5.1. A comparison of essential critical pointsi and M*

We can now investigate the relationship between critical pointsof : Xy — R and
Li:M* — R. If a stratumH is in F;, then its dimension isj. Consequently, every
essential critical point ir has index at most;j. Consequently, we get the following

Lemma 28. Any essential critical point of : M¥ — R with indexx > n(k — 1) is in Fy.

For any pathP € Fy, the preimage —1(P) consists of a single poing’. It is easy to
see thatP is an essential critical point dfy if and only if P’ is an essential critical point
of —Lg, since

—V(Ly)=0 < —V(—-Ly)=0.

Since the function- Ly decreases along paths moving away fro®y, it follows that all
of the essential critical points 6f L : X — R lie in the interior of X;. As a result of this
we have the following

Lemma 29. The essential critical points of L, : X; — R are in one-to-one correspon-
dence with the essential critical points bf : M¥ — R that lie in F.

5.2. Application of the Morse inequalities

So we see that counting the number of generalized billiard paths with exactly
reflections is equivalent to counting the number of essential critical poing.iThere
are at least as many of these essential critical points as there are essential critical points
with index greater thank.

Theorem 30. The number of generalized billiard paths connectintp ¢ in the vicinity of
a manifoldM satisfies

n—1

NP2 N by (M) by (M),

Jj=0 i1+ Fir=j

Proof. If m;(L;) denotes the number of essential critical pointd.pf M* > R, then

nk nk nk
NP mpy = Y mply =y bi(MY).
j=0 Jj=n(k—1)+1 j=nk—1)+1

SinceM* is a manifold, we can use Poincaré duality to 8a\M*) = b,._; (M*). Then
we see
n—1
NP =3 by (),
j=0
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Using the Kiinneth Theorem, it can be shown that

bi(MYy= > biy(M)---bi (M).
i tir=j

Now we can finally write

n—1
NPD SN by (M) by (M)

J=0 ir4-tig=j

proving the theorem. O

Two things are evident from this expression. First, the more complicated the topology
of M, the more generalized billiard paths there will be. The second is that as the number of
reflectionsk increases, the number of generalized billiard paths imgflections increases,
and rather quickly.
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