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INTEGRABILITY AND GEOMETRIC PREQUANTIZATION 
OF THE MAXWELL-BLOCH EQUATIONS 

BY 
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ABSTRACT. - In this paper we discuss the integrability and geometric prequantization of the 
3-dimensional real valued Maxwell-Bloch equations and point out some of their properties. 
0 Elsevier. Paris 

1. Introduction 

It is well known that the description of the interaction between laser 
light and a material sample composed of two-level atoms begins with 
Maxwell’s equations of the electric field and SchCdinger’s equations for 
the probability amplitudes of the atomic levels. The resulting dynamics 
is given by the following equations usually called Maxwell-SchrGdinger 
equations: 

0.1) 

E = ib+b*_ 

bt = iEb- 

b- = iE*b+ 
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where E denotes the self-consistent electric field and h&(t) are the 
probability amplitudes. They have a Hamiltonian formulation and 
moreover there exists a homoclinic chaos [3]. 

Starting with the equations (1. I), let us introduce the Stokes variables 

(14 i? = 2E; f’ = 2ib+b:; 6 = Ib+I’ - lb-j’). 

They inherit the chaotic dynamics of the equations( I. 1) simply as a result of 
the above change of variables and moreover the chaotic dynamics remains 
near two homoclinic orbits which lie in the real subspace E = 0, P = 0. 
The last property suggests modelling the chaotic dynamics by taking the 
real parts of all quantities in (1.2). The resulting approximate dynamics 
is governed by the following equations, usually called 3-dimensional real 
valued Maxwell-Bloch equations: 

where 

q = Re(E); 22 = Re(P); x3 = D. 

Their Hamilton-Poisson formulation, stability and control have been 
extensively studied in [2], [4], [5]. 

The goal of our paper is to discuss their integrability via a Weierstrass 
function. their numerical integration via the Lie-Trotter formula and mid- 
point rule, and their 
point of view. 

2. Integrability 

To begin with, let 

L= 

prequantization from the geometric prequantization 

us introduce the matrices 
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Then an easy computation proves the following result: 

THEOREM 2.1. - The equations (1.3) have a Lax formulation, i.e., they 
can be put in the equivalent form: 

L = [L, I?]. 
As a consequence of the above theorem the following statements hold: 
(i) The flow of L is isospectral, i.e., it does not depend on t. 

(ii) 

(2.1) 

and 

N = Trace(L) = x3 + ix: 

(2.2) C = f Trace (L2) = i (xg + zz) 

are constants of notion. 
We can now prove: 

THEOREM 2.2. - The equations (1.3) can be explicitly integrated via a 
Weierstrass function. More exactly we have: 

x3 = 2P + $ 

where P is the Weierstrass function given by 

(P)2 = 4p3 - 
H3 + 18CH 

27 . 

Proof. - We have successively: 
ZH-2x3 =xf. 

2c-2; =x;, 

xix; = 2%; - 2Hz; - 4Cx3 + 4CH, 
and then 

(2.3) (i3)’ = 2~; - 2H x; - 4Cx3 + 4CH. 
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Let us make now the change of variables 

xy = UP + 0. 
where n. b will be determined later. Then (2.3) becomes 

(@)z = zap3 + 2 (3b _ H) j$ + Cib” - “‘:I’ - 4c p 

2b” - 2b’H - 4bC + 4GH 
+ d 

If we impose now the conditions 
2n = 3 

3b - H = 0 
then we obtain immediately the desired result. 

Q.E.D. 

3. Numerical integration 

In this section we shall discuss the numerical integration of the equations 
(1.3) via the Lie-Trotter formula and the mid-point rule. To begin with, let 
us remind that the equations (1.3) have a Hamilton-Poisson formulation, 
[2], with the phase space R”, the Poisson structure given by the matrix 

nA,rB = [$, T’ a] 

and the Hamiltonian H given by (2.1). Moreover, the Casimir of our 
configuration (R”, II,\ro) is given by (2.2), i.e. 

(VC)+ . rI,\fB = 0. 
Now, the Hamiltonian vector field XH splits as follows: 

XH = XH, + XH,, ) 

where 

HI = &:f, H3 = x3 . 

Their flows can be explicitly computed and we obtain 
a(t) [ I[ 1 0 0 

a(t) = 0 cos.x.1(0) t sin 21(O) t 
x3 w 0 - sin xl(O) t cm xl(O) t I[ 

x1 (0) 

x2 (0) 
x3(0) 
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and 

[:,~Z] = [a ; 41 [,;Z]. 
Then the Lie-Trotter formula [6], [S] is given by: 

A+- I; .x 1 - x1 + tx; 
(3.1) xi+l = xt cos xl(O)t + xi sinq(0) t 

x!j+l = -xi sinxl(0) t + xi cOSx1(0) t 

THEOREM 3.1. - The first order integrator (3.1) has the following 
properties: 

(i) It is a Poisson integrator. 
(ii) Its restriction to the coadjoint orbit (bk, WI;), where 

bk = {(x1, x2, x3) E R” 1 x; + x; = A?} 

and 

WL = ; (x.3 dxl A dxz - x2 dxl A dx3) 

is a symplectic integrator. 
(iii) It does not preserve the Hamiltonian (2.1). 
The proof is a straightforward computation and we shall omit any other 

details. 
The mid-point rule is an implicit integrator which in this particular case 

can be written in the following form: 

x"S1 _ h 
1 5:. = 5 (22 k+l + xi) 

(3.2) k+l _ .x .z x; = a (x:.+1 + x:‘) (x;+’ + xi) 
lG+1 X3 - x; = -; (x:“’ + x!) ( x$+1 + x;) 

Using the same arguments as in [l] we can prove 

THEOREM 3.2. - The first order integrator (3.2) has the following 
properties: 

(i) It preserves the Hamiltonian (2.1) and the Casimir (2.2). 
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(ii) It is not a Poisson integrator. 
(iii) Its restriction to the coadjoint orbit (bx,. uk) is not a symplectic 

integrator. 

4. Geometric prequantization 

In this last section we shall discuss the geometric prequantization of the 
3-dimensional real valued Maxwell-Bloch equations. To this aim, some 
auxiliar results have to be invoked. 

THEOREM 4.1. - The equations (1.3) have a Hamilton-Poisson formulation 
with the phase space R3, the Poisson bracket given by the matrix 

0 1 0 
(44 II;,,, = -1 0 21 

0 -21 0 

and the Hamiltonian 

Moreover, a Casimir of our con$guration ( R3, II:,,,) is given by 

(4.3) 
Proof. - One easily check that 

[Ii] = [;1 -p, +] 

which proves the theorem. 

0 [I 22 
5.3 

Q.E.D. 

THEOREM 4.2. - The Hamilton-Poisson mechanical system (FL”, 
=l,,* 7 H’)has a full realization on the canonical symplectic manifold 
(R4, w = dpl A dql + dpz A dq2). 

Proof. - Let us take in R’ the Hamiltonian 

H”=~(p~+p’)+~q~-~q;pr. 
2 ’ 8 2 
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Then the corresponding Hamilton’s equations are given by 

(44 

41 = Pl 

(j2 = p2 - I q2 
2 l 

$1 1 qp2 - 1 
2 

q3 
l 

$2 = 0 

If we define now: 

@  (Sl, q2, Pl> P2) = bl, x2, x3) = 
( 

41, Pl, P2 - f 4: 1 
> 

then it is easy to see that + is a surjective submersion, the equations (1.3) 
are mapped onto the equations (4.4), and the Poisson structure (4.1) is 
mapped onto the Poisson structure { . , + }, which is canonically induced 
by w. It follows that (R4, w, H”) is a full symplectic realization of the 
Hamilton-Poisson mechanical system ( R3, II:{,, , H’) as required. 

Q.E.D. 

THEOREM 4.3. - The Hamiltonian mechanical system (R’, w, H”) given 
above is completely integrable on R’\{pr = 0: qlp2 - i qi = 0). 

Proof. - Let us take now 

KI = PZ 

K2 = ;(p: +p;)+ ;q: - ;,:pz. 

Then an easy computation shows us that K1 and Kz are constants 
of motion, they are in involution and moreover dK1 and dK2 are 
linearly independent on R”\{pl = 0, qlp2 - 3 qf = 0). Therefore 
CR‘? w, H”) is a completely integrable Hamiltonian mechanical system 
on R’\{pr = 0, qlp2 - i qf = O}. 

Q.E.D. 

It is clear that our symplectic manifold (R”, w) is quantizable from 
the geometric quantization point of view [7], [9], with the Hilbert 
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representation space ‘FI, = L2 (R4. C’) and the prequantum operator 
C;; given by 

for each f E C” (R4, R) an w ere F, is the Planck constant divided d h 
by 27r. 

If we take now 7-L = ‘FL. and for each f E C” (R3, R), ~3, = c&,, 
then we have: 

THEOREM 4.4. - The pair (‘FI, 6) gives a prequantization of the Poisson 
manifold (R”, II:,,,). 

Proof. - One easily check that Dirac’s conditions are all satisfied as 
required. 

Q.E.D. 
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