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a b s t r a c t

We study the University Course Timetabling Problem (UCTP). In particular we deal with
the following question: is it possible to decompose UCTP into two problems, namely,
(i) a time scheduling, and (ii) a space scheduling.We have arguments that it is not possible.
Therefore we study UCTP with the assumption that each room belongs to exactly one type
of room. A type of room is a set of rooms, which have similar properties. We prove that
in this case UCTP is polynomially reducible to time scheduling. Hence we solve UCTP with
the following method: at first we solve time scheduling and subsequently we solve space
schedulingwith a polynomialO(n3) algorithm. In thiswayweobtain a radical (exponential)
speed-up of algorithms for UCTP. The method was applied at P.J. Šafárik University.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A mathematical model for School Timetabling can be found in [12]. The University Course Timetabling Problem (UCTP)
is a 2-dimensional generalization of School Timetabling. The integer programming model for UCTP has been investigated in
[9,10].
According to [18], a large number ofworks aboutUCTP arises out of theMetaheuristicsNetwork – a EuropeanCommission

project undertaken jointly by five European institutes – which seeks to compare metaheuristics on different combinatorial
optimization problems. In one phase of the four-year project, UCTP was considered. In the course of the Metaheuristics
Network, several metaheuristics were evaluated and compared on instances of a certain reduction of UCTP [16,18].
The metaheuristics evaluated included: Genetic Algorithm [13], Simulated Annealing [2], Tabu Search [4], Iterated Local
Search [7], Ant Colony Optimization [19] and MAX–MIN Ant System [18]. The mentioned papers also present experiments
that were performed in order to evaluate the algorithm’s performance. Problem instances used in experiments have been
proposed as a part of the International Timetabling Competition. A development of metaheuristics continues also after
completion of the project Metaheuristics Network [5,6,8,14,15,17].
It is difficult to provide a uniform and generic definition of UCTP. Due to the fact that a course organization as well as

additional preferences may vary from case to case, the number and type of soft and hard constraints changes. Hence, the
algorithmic solutions proposed for this problem usually concentrate on a particular subproblem.
For the purpose of evaluating metaheuristics in the course of the Metaheuristics Network, the following reduction of

UCTP has been defined [16,18]. The problem consists of a set of n events E = {e1, e2, . . . , en} to be scheduled in a set of k
timeslots T = {τ1, τ2, . . . , τk} (k = 45, 5 days of 9 h each), a set of rooms R in which events can take place (rooms are of a
certain capacity), a set of students S who attend the events, and a set of features F satisfied by rooms and required by events.
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Each student is already preassigned to a subset of events. Each event takes exactly one timeslot. All students and all rooms
are available in each timeslot. A feasible timetable is a mapping which assigns to each event e ∈ E a timeslot te ∈ T and a
room re ∈ R so that the following hard constraints are satisfied:

• no student attends more than one event at the same time;
• only one event takes place in each room at a given time;
• the room is big enough for all the attending students and satisfies all the features required by the event.

The objective is to minimize the number of the following soft constraint violations in a feasible timetable:

• a student has a course in the last slot of the day;
• a student has more than two consecutive courses;
• a student has exactly one course during a day.

In the present paper we show how real UCTP differs from the reduction of UCTP defined above. In fact, the following
conditions are also to be taken into account.

(1) The problem includes also a set of teachers U who attend the events. Each teacher is already preassigned to a subset of
events.

(2) Universities use own formalisms for features F satisfied by rooms and required by events. A very simple formalism is
that each event e ∈ E has a preassigned subset of allowed rooms Re (i.e. we require re ∈ Re).

(3) Events need not take exactly one timeslot. Each event e ∈ E has a preassigned natural number de. The event e takes de
timeslots.

(4) Students and teachers are not available in each timeslot. Hence each event e ∈ E has a preassigned subset of timeslots
Te, which are allowed for a timeslot te (i.e. we require te ∈ Te).

A feasible timetable (schedule) in a real UCTP is a mapping Υ which assigns to each event e ∈ E a timeslot te ∈ Te and a
room re ∈ Re so that the following hard constraints are satisfied:

• no student attends more than one event at the same time;
• no teacher attends more than one event at the same time;
• only one event takes place in each room at a given time.

The schedule Υ has two components: a time schedule TΥ = (te1 , te2 , . . . , ten) and a space schedule R
Υ
=

(re1 , re2 , . . . , ren).
In view of [11,1], a very primitive version of the School Timetabling is NP-hard. This explains the fact that for UCTP only

exponential algorithms are known.
We want to decompose UCTP into two problems:

(1) A time scheduling, whose solution is a time schedule TΥ .
(2) A space scheduling, whose solution is a space schedule RΥ .

We study the following questions:

(1) Is it possible to solve UCTP in the way that we solve the first problem and subsequently the second problem?
(2) Is it true that some of these problems has a polynomial algorithm?

We have arguments that the answers to both questions are negative. Therefore we study UCTP, for which the following
assumption

for all i, j ∈ E, either Ri = Rj or Ri ∩ Rj = ∅ (1)

is satisfied. We prove that in this case, the answers to both questions are positive. We found a polynomial O(n3) algorithm
for the second problem. These results are missing in the literature. The first problem is NP-hard.
We can also consider the question when the assumption (1) is satisfied. Suppose that a university uses some system of

types of rooms. We denote this system by R′. A type of room is a set of rooms, which have similar properties. We prove that
the assumption (1) is satisfied if and only if the system R′ is a partition of the set of the rooms R. In this case we say that we
deal with UCTP1.
Our method can be characterized as follows.

(1) We define a vector TΥ to be a time schedule if there exists a vector RΥ such that Υ = (TΥ , RΥ ) is a schedule for UCTP.
Further, we define a time scheduling as the problem to find a time schedule. Analogously, we define a space schedule
RΥ and a space scheduling problem. A special space scheduling is defined to be the problem to find a space schedule RΥ
for a given time schedule TΥ .

(2) We prove that UCTP1 is polynomially reducible to time scheduling. Hence we solve UCTP1 with the following method:
at first we solve the time scheduling and subsequently we solve the special space scheduling with a polynomial O(n3)
algorithm. In this way we obtain a radical (exponential) speed-up of algorithms for UCTP.



1366 J. Studenovský / Discrete Applied Mathematics 157 (2009) 1364–1378

The organization of the paper is as follows. Section 2 defines a time–space schedule for UCTP. In Section 3 we prove that
UCTP is UCTP1 if and only if the assumption (1) is satisfied. In the following sections we study UCTP1. Section 4 describes
a time schedule. In Section 5 we study interchanges of blocks in a time–space schedule. Section 6 shows that we can use
interchanges of blocks for improving the quality of a time–space schedule. We present an algorithm which improves the
quality of a time–space schedule so that there exists a free room of a desired type and in a desired time. This algorithm is
applied in Section 7, where we present a polynomial O(n3) algorithm for the special space scheduling. Section 8 describes
necessary and sufficient conditions for a time schedule. In Section 9 we prove that UCTP1 is polynomially reducible to
time scheduling. We present a theorem saying that it is possible to decompose UCTP1 into two problems, namely, (i) time
scheduling, and (ii) special space scheduling. Also, we present arguments for the validity of the following hypothesis: if
assumption (1) is not satisfied, then it is not possible to decompose UCTP into two problems with the properties as above.
In Section 10 we study the complexity of UCTP. Section 11 considers the question when the assumption (1) is satisfied in
practice. Section 12 concludes the paper.

2. UCTP—University Course Timetabling Problem

We define the University Course Timetabling Problem (UCTP) as follows.

Notation 1. We will apply the following notation:
U— a set of teachers,
S— a set of students,
T— a linearly ordered set of timeslots, T = {τ1, τ2, . . . , τk}, (τi < τj if i < j),
R— a set of rooms, |R| = g ,
E— a set of events, |E| = n, E = {e1, e2, . . . , en},
I— a set of indices, I = {1, 2, . . . , n}.

As usual, N denotes the set of all positive integers.

Definition 1. An event e ∈ E is an ordered quintuple (Ue, Se, Te, Re, de), where Ue ⊆ U, Se ⊆ S, Te ⊆ T , Re ⊆ R, de ∈ N and
1 ≤ de ≤ k.

The teachers of the set Ue and the students of the set Se attend the event e ∈ E. The event e takes de timeslots.

Definition 2. A mapping which assigns to each event e ∈ E a pair (te, re), where te ∈ Te and re ∈ Re, is called a Υ -mapping.
The value te is called the timeslot of the event e and re the room of the event e. Denote Υ = (TΥ , RΥ ) = (tei , rei)

n
i=1. The

vector TΥ = (te1 , te2 , . . . , ten) is said to be the time component and the vector R
Υ
= (re1 , re2 , . . . , ren) is said to be the space

component of the Υ -mapping.

We interpret the Υ -mapping in the way that the event e ∈ E starts in the timeslot te and takes places in the room re.

Notation 2. For the timeslot τ ∈ T , τ = τj and the integer d, 1 ≤ j+ d ≤ k denoteΘ(τ , d) = τj+d.

Notation 3. For the event e ∈ E denote He = {te,Θ(te, 1), . . . ,Θ(te, de − 1)} = {τj, τj+1, . . . , τj+de−1}, where τj = te.
The set He is the set of timeslots in which the event e ∈ E is realized. The timeslot te is start timeslot and the timeslot

Θ(te, de − 1) is end timeslot of the event e.

Remark 3. We require He ⊆ T for each event e ∈ E. Therefore we assume that the set Te satisfies the condition
Θ(t, de − 1) ∈ T for each timeslot t ∈ Te and each event e ∈ E.

Definition 4. If in the Υ -mapping for a teacher u ∈ U there exist events i, j ∈ E, i 6= j such that u ∈ Ui ∩Uj and Hi ∩Hj 6= ∅,
then we say that the teacher u has a conflict. Analogously we define a conflict for a student s ∈ S. If for a room r ∈ R there
exist events i, j ∈ E, i 6= j such that r = ri = rj and Hi ∩ Hj 6= ∅, then we say that the room r has a conflict.

Definition 5. If the Υ -mapping contains no conflict, then it is called a time–space schedule of the set of events E.

Definition 6. The problem to find a time–space schedule of a given set of events E is called a time–space scheduling or also
a University Course Timetabling Problem (UCTP, for short).

Notation 4. We denote η = max{n, k, g}. In a real UCTP, we always have η = n.
We remark that the notion introduced in Definition 5 can be alternatively defined as follows.

Definition 7. Let TΥ = (te1 , te2 , . . . , ten), R
Υ
= (re1 , re2 , . . . , ren). The pair (T

Υ , RΥ ) is a time–space schedule of the set of
events E if the following conditions are satisfied:
(1) te ∈ Te for all e ∈ E,
(2) re ∈ Re for all e ∈ E,
(3) if Ui ∩ Uj 6= ∅ or Si ∩ Sj 6= ∅ or ri = rj, then Hi ∩ Hj = ∅, for all i, j ∈ E, i 6= j.
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Table 1
The set of events.

e Ue Se Te Re de

e1 u1 s2, s3 τ1 a1 3
e2 u1, u3 s2, s3, s5, s6, s7 τ5, τ6 a2, a3 2
e3 u2 s1, s8, s9 τ1, τ3 a2, a3 3
e4 u1 s2, s3, s4, s5, s6, s7 τ2, τ4 a1 2
e5 u2 s1, s8, s9 τ3, τ4 a2, a3 3
e6 u3 s4, s5, s6, s7 τ1, τ2 a2, a3 3
e7 u2 s1, s4, s8, s9 τ1, τ3, τ7 a2, a3 1

Table 2
The timetables of teachers, students and rooms.

τ1 τ2 τ3 τ4 τ5 τ6 τ7

u1 e1 e1 e1 e4 e4 e2 e2
u2 e3 e3 e3 e5 e5 e5 e7
u3 e6 e6 e6 e2 e2
s1 e3 e3 e3 e5 e5 e5 e7
s2 e1 e1 e1 e4 e4 e2 e2
s3 e1 e1 e1 e4 e4 e2 e2
s4 e6 e6 e6 e4 e4 e7
s5 e6 e6 e6 e4 e4 e2 e2
s6 e6 e6 e6 e4 e4 e2 e2
s7 e6 e6 e6 e4 e4 e2 e2
s8 e3 e3 e3 e5 e5 e5 e7
s9 e3 e3 e3 e5 e5 e5 e7
a1 e1 e1 e1 e4 e4
a2 e3 e3 e3 e2 e2
a3 e6 e6 e6 e5 e5 e5 e7

In fact, the first and the second conditions of Definition 7 are equivalent to the fact that the mapping which assigns a
pair (te, re) to each event e ∈ E is a Υ -mapping. The third condition of Definition 7 is equivalent to the condition that this
Υ -mapping does not contain any conflict.
The following assertion is obvious.

Lemma 8. Definitions 5 and 7 are equivalent.

Example 9. Let U = {u1, u2, u3}, S = {s1, s2, . . . , s9}, T = {τ1, τ2, . . . , τ7}, R = {a1, a2, a3} be sets of teachers, students,
timeslots and rooms, respectively. The set of events E = {e1, e2, . . . , e7} is given by Table 1.
Let TΥ = (τ1, τ6, τ1, τ4, τ4, τ1, τ7) and RΥ = (a1, a2, a2, a1, a3, a3, a3). The pair (TΥ , RΥ ) satisfies all conditions of

Definition 7. Hence the pair (TΥ , RΥ ) is a time–space schedule of the set of events E. The timetables of teachers, students
and rooms are in Table 2.

3. UCTP1

A type of room is a set of rooms which have similar properties. In this context the set Re for e ∈ E is also a type of room.

Definition 10. We consider a system of subsets of the set of rooms R′ = {R′1, R
′

2, . . . , R
′
µ} which satisfies the following

conditions:

(1) for each e ∈ E there exists exactly one number ye ∈ M = {1, 2, . . . , µ} such that Re = R′ye ,
(2) for eachm ∈ M there exists e ∈ E such that R′m = Re.

We say that R′ is a system of types of rooms.

From this definition it follows that all elements of the system R′ are pairwise distinct and µ ≤ n.
For UCTP from Example 9 we have µ = 2, M = {1, 2}, R′1 = {a1}, R

′

2 = {a2, a3}, R
′
= {R′1, R

′

2}, and ye1 = 1, ye2 =
2, ye3 = 2, ye4 = 1, ye5 = 2, ye6 = 2, ye7 = 2.

Algorithm 1. System of types of rooms
Input: the system R� = {Re1 , Re2 , . . . , Ren}
Output: R′ = {R′1, R

′

2, . . . , R
′
µ} and the function y = (ye1 , ye2 , . . . , yen)

Method:
First we set R′ = ∅, µ = 0. For i = 1, 2, . . . , n check whether Rei is equal to some R

′
m ∈ R

′. In such case we set yei = m.
In the opposite case we place Rei at the tail of the system R

′ and we set yei = µ.
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procedure SYSTEM(R�, R′, y);
begin

µ := 0;
for i := 1 to n do begin

m := 0;
equal := false;
while not equal andm < µ do begin
m := m+ 1;
if Rei = R

′
m then begin

yei := m;
equal := true

end
end;
if not equal then begin

µ := µ+ 1;
R′µ := Rei ;
yei := µ

end
end

end;

Lemma 11. Algorithm 1 computes the system R′ and the function y in a time O(η4).

Proof. The proof of the correctness of the algorithm is trivial. By Definition 10, µ ≤ n. By Notation 4, n ≤ η and g ≤ η. The
test Rei = R

′
m requires a time O(η

2). Hence the loopwhile requires a time O(η3). The command if not requires a time O(η).
The algorithm performs n steps in the loop for. Each step requires a time O(η3). Consequently, the algorithm requires a time
O(η4). �

Algorithm1 computes the systemR′ at the beginning of an algorithm forUCTP. Thus E, n, k, g, µ, R′, y are global variables.
This means that they are disposable in each procedure presented in this paper.

Assumption 12. For all i, j ∈ E, either Ri = Rj or Ri ∩ Rj = ∅.

Lemma 13. Assumption 12 is satisfied if and only if R′m ∩ R
′

l = ∅ for all m, l ∈ M,m 6= l.

Proof. Necessity. Suppose that Assumption 12 is satisfied and that the condition of the lemma is not valid. Then there exist
m, l ∈ M,m 6= l such that R′m ∩ R

′

l 6= ∅. From the definition of the system R
′ it follows that there exist i, j ∈ E such that

R′m = Ri and R
′

l = Rj. Since the elements of the system R
′ are pairwise distinct and m 6= l it must be R′m 6= R

′

l and then also
Ri 6= Rj. From R′m ∩ R

′

l 6= ∅we get Ri ∩ Rj 6= ∅. Hence Ri 6= Rj and Ri ∩ Rj 6= ∅, which is a contradiction.
Sufficiency. Suppose that the condition R′m ∩ R

′

l = ∅ for all m, l ∈ M,m 6= l is satisfied and that Assumption 12 does not
hold. Then there exist i, j ∈ E such that Ri 6= Rj and Ri ∩ Rj 6= ∅. From the definition of the system R′ it follows that there
exist m, l ∈ M such that R′m = Ri and R

′

l = Rj. From Ri 6= Rj we get R
′
m 6= R

′

l . Therefore m 6= l. From Ri ∩ Rj 6= ∅ we obtain
R′m ∩ R

′

l 6= ∅, which is a contradiction. �

Lemma 14. R′1 ∪ R
′

2 ∪ · · · ∪ R
′
µ = R.

Proof. We denote R∪ = Re1 ∪Re2 ∪· · ·∪Ren . Obviously, R
∪
⊆ R. If R∪ 6= R, then there exists a room r ∈ R−R∪. If we remove

the room r from the set R, then we get an equivalent UCTP. Thus without loss of generality, we can assume that R∪ = R. The
definition of the system R′ implies that R′1 ∪ R

′

2 ∪ · · · ∪ R
′
µ = R

∪. Hence R′1 ∪ R
′

2 ∪ · · · ∪ R
′
µ = R. �

Corollary 15. Assumption 12 is satisfied if and only if the system R′ is a partition of the set R.

Corollary 16. Assumption 12 is satisfied if and only if for each event e and each r ∈ Re there exists exactly one R′m such that
r ∈ R′m, where m = ye.

Corollary 17. Assumption 12 is satisfied if and only if each room belongs to exactly one type of room.

Definition 18. University Course Timetabling Problem which satisfies Assumption 12 will be called UCTP1.
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4. Time schedule

In this section we define time schedule and time scheduling. In Theorem 23 we present the main property of a time
schedule.

Definition 19. A vector TΥ is called a time schedule of the set of events E, if there exists a vector RΥ such that Υ = (TΥ , RΥ )
is a time–space schedule of the set of events E.

A natural question arises how to test whether a given vector TΥ is a time schedule. We distinguish two cases.

(1) Assumption 12 is not satisfied.
We write an exponential algorithm (cf. Proposition 49), which returns an answer whether there exists a vector RΥ

such that Υ = (TΥ , RΥ ) is a time–space schedule. Clearly, this algorithm also constructs RΥ (if the answer is positive).
The algorithm must test whether Υ = (TΥ , RΥ ) satisfies the conditions of Definition 7 which are dependent on RΥ .
Summarizing, this method constructs RΥ , is dependent on RΥ and requires an exponential time.

(2) Assumption 12 is satisfied.
We find necessary and sufficient conditions for the vector TΥ to be a time schedule (cf. Theorem42). These conditions

are independent onRΥ . The testwhether the given vector TΥ satisfies the conditions requires a timeO(n4). Summarizing,
this method does not construct RΥ , is independent on RΥ and requires a polynomial time.

Definition 20. The problem to find a time schedule of a given set of events E is called a time scheduling.

Definition 21. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E and r ∈ R, t ∈ T . We say that the room r

is free in the timeslot t in the schedule Υ if there does not exist any event e ∈ E such that re = r and t ∈ He.

Definition 22. Let Υ = (TΥ , RΥ ) be a time–space schedule of the set of events E. The symbol Q will denote the matrix of
typeµ×k, in which form ∈ M and t ∈ T the element Qmt determines the number of rooms of the set R′m free at the timeslot
t in the schedule Υ . The matrix Q is called thematrix of numbers of free rooms for the schedule Υ .

To the computation of the matrix Q both components TΥ and RΥ of the schedule Υ are necessary. Further, we will prove
that if Assumption 12 is fulfilled, then to the computation of the matrix Q it is sufficient to know the time component TΥ of
the schedule Υ .

Algorithm 2. Matrix of numbers of free rooms
Input: TΥ = (te1 , te2 , . . . , ten), where te ∈ Te for all e ∈ E.
Output: Q
Assumption: Assumption 12 is satisfied.
Method:
At first we set Qmt = |R′m| for allm ∈ M and t ∈ T , which corresponds to the empty time–space schedule. Next, for each

event e ∈ E we decrement Qmt for all t ∈ He, wherem = ye.

procedureMATRIX(TΥ ,Q );
begin
form := 1 to µ do
for t := τ1 to τk do

Qmt := |R′m|;
for i := 1 to n do begin
m := yei ;
for all t ∈ Hei do

Qmt := Qmt − 1
end

end;

Theorem 23. Let Assumption 12 be satisfied. If TΥ is a time schedule of the set of events E, then Algorithm 2 for the input TΥ
computes the matrix of numbers of free rooms Q for each time–space schedule Υ = (TΥ , RΥ ) of the set of events E with the time
component TΥ . Algorithm 2 requires a time O(η2).

Proof. Let TΥ = (te1 , te2 , . . . , ten) be the time schedule of the set of events E. By Definition 19, there exists a vector
RΥ = (re1 , re2 , . . . , ren) such that Υ = (T

Υ , RΥ ) = (tej , rej)
n
j=1 is the time–space schedule of the set of events E. Obviously,

for all i ∈ I , Υ i = (tej , rej)
i
j=1 is the time–space schedule of the set of events E

i
= {e1, e2, . . . , ei}. Let Υ 0 be the empty

time–space schedule. This means that Υ 0 is the time–space schedule of the empty set of events.
We denote by Q i a state of the matrix Q after i steps of the algorithm for the input TΥ (more precisely, after i steps of the

loop for i). We proceed by induction.



1370 J. Studenovský / Discrete Applied Mathematics 157 (2009) 1364–1378

The induction hypothesis is that after i ≤ n steps, the algorithm computes Q i, where Q i is the matrix of numbers of free
rooms for the time–space schedule Υ i.
Basis. At the 0-th step (before the loop for i) the algorithm computes the matrix Q 0, where Q 0mt = |R

′
m| for all (m, t) ∈

M×T . Obviously,Q 0 is thematrix of numbers of free rooms for the time–space scheduleΥ 0. Hence the induction hypothesis
is true for i = 0.
Inductive step. Assume that after i− 1 < n steps, the algorithm computes Q i−1. The event ei occupies the room rei ∈ Rei

for all timeslots t ∈ Hei in the time–space schedule Υ
i. According to Corollary 16, the room rei belongs exactly to one set R

′
m,

wherem = yei . Hence the following equations hold:

Q imt = Q
i−1
mt − 1 for (m, t) ∈ {yei} × Hei

Q imt = Q
i−1
mt for (m, t) ∈ M × T − {yei} × Hei .

(2)

These equations are applied at the i-th step of the algorithm. Therefore after i steps, the algorithm computes Q i.
From the induction principle it follows that after n steps the algorithm computes Q n. Clearly, Q n = Q .
By Definition 10, µ ≤ n. By Notation 4, n ≤ η and k ≤ η. The matrix Q has µk elements. Hence at the 0-th step, the

algorithm computes the matrix Q 0 in a time O(η2). By Definition 1, dei ≤ k. Therefore |Hei | = dei ≤ k ≤ η. Consequently, at
the i-th step, the algorithm decrements dei elements of the matrix Q in a time O(η). Hence the algorithm performs n steps
in the loop for i in the time O(η2). It follows that the algorithm requires the time O(η2). �

The matrix Q for the time–space schedule Υ from Example 9 is as follows:

Q =
(
0 0 0 0 0 1 1
0 0 0 1 1 0 0

)
.

5. Interchanges of blocks in a schedule for UCTP1

If we construct a schedule then we can interchange blocks for improving its quality. We apply the following method.
Let τ , % ∈ T . As usual, the interval [τ , %] is the set of all t ∈ T such that τ ≤ t ≤ %.

Definition 24. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E, and a ∈ R, τ ∈ T . We denote:

(1) START (a, τ )—is the set of events e ∈ E with a room re = a and with a start timeslot te ∈ [τ , τk].
(2) END(a, τ )—is the set of events e ∈ E with a room re = a and with an end timeslotΘ(te, de − 1) ∈ [τ , τk].

Lemma 25. For a ∈ R and τ ∈ T , the relation START (a, τ ) ⊆ END(a, τ ) is valid.

Proof. Let e ∈ START (a, τ ). Then re = a and τ ≤ te ≤ τk. By Definition 1, de ≥ 1. This implies τ ≤ Θ(te, de − 1). According
to Remark 3,Θ(te, de − 1) ≤ τk. ThereforeΘ(te, de − 1) ∈ [τ , τk]. Consequently, e ∈ END(a, τ ). �

Definition 26. If START (a, τ ) = END(a, τ ), then the set START (a, τ ) is called a block.

For the time–space schedule Υ from Example 9 we get that START (a2, τ4) = {e2} is a block, START (a3, τ4) = {e5, e7} is a
block and START (a3, τ3) = {e5, e7} fails to be a block because END(a3, τ3) = {e6, e5, e7}.

Lemma 27. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E. If START (a, τ ) is a block then He ⊆ [τ , τk] for

each event e ∈ START (a, τ ).

Proof. Let START (a, τ ) be a block and e ∈ START (a, τ ). By Definition 26, START (a, τ ) = END(a, τ ). Consequently,
e ∈ END(a, τ ). HenceΘ(te, de − 1) ∈ [τ , τk]. From e ∈ START (a, τ ) it follows te ∈ [τ , τk]. Therefore He ⊆ [τ , τk]. �

Lemma 28. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E. If a rooma is free in a timeslot τ then START (a, τ )

is a block.

Proof. Let a room a be free in a timeslot τ in the time–space schedule Υ . By way of contradiction, assume that START (a, τ )
fails to be a block. Then by Definition 26, START (a, τ ) 6= END(a, τ ) and by Lemma 25, START (a, τ ) ⊂ END(a, τ ).
Consequently, there exists an event e ∈ END(a, τ )− START (a, τ ). Therefore re = a, τ ≤ Θ(te, de−1) and te < τ . This yields
τ ∈ He. Consequently, the event e occupies the room re = a in the timeslot τ . This is a contradiction with the assumption
that the room a is free in the timeslot τ . �

Lemma 29. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E and let τ ∈ T . If a room a is free in a timeslot

Θ(τ ,−1) then START (a, τ ) is a block.
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Proof. Let a room a be free in a timeslot Θ(τ ,−1) in the time–space schedule Υ . By way of contradiction, assume that
START (a, τ ) fails to be a block. Then by Definition 26, START (a, τ ) 6= END(a, τ ) and by Lemma 25, START (a, τ ) ⊂ END(a, τ ).
Consequently, there exists an event e ∈ END(a, τ )− START (a, τ ). Therefore re = a, τ ≤ Θ(te, de−1) and te < τ . This yields
Θ(τ ,−1) ∈ He. Consequently, the event e occupies the room re = a in the timeslot Θ(τ ,−1). This is a contradiction with
the assumption that the room a is free in the timeslotΘ(τ ,−1). �

Definition 30. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E, and a1, a2 ∈ R

′
m, m ∈ M , τ ∈ T .

Further, assume that START (a1, τ ) and START (a2, τ ) are blocks. The following process is called an interchange of the block
START (a1, τ ) with the block START (a2, τ ):

(1) assign r ′e = re for each e ∈ E − START (a1, τ )− START (a2, τ ),
(2) assign r ′e = a2 for each e ∈ START (a1, τ ),
(3) assign r ′e = a1 for each e ∈ START (a2, τ ).

Algorithm 3. Interchange of blocks
Input: a1, a2, τ , n,Υ = (tei , rei)

n
i=1

Output: Υ ′ = (tei , r
′
ei)
n
i=1

Assumptions: the assumptions are presented in Definition 30.
Method: the computation by Definition 30.

procedure INTERCHANGE(a1, a2, τ , n,Υ ,Υ ′);
begin
for i := 1 to n do begin
r ′ei := rei ;
if rei = a1 and tei ≥ τ then

r ′ei := a2;
if rei = a2 and tei ≥ τ then
r ′ei := a1;

end
end;

In the remaining part of the present section we write Algorithm in stead of Algorithm 3.
For example, let Υ = (TΥ , RΥ ) be the time–space schedule from Example 9, a2, a3 ∈ R′2, τ4 ∈ T . We interchange the

block START (a2, τ4) with the block START (a3, τ4). We obtain a new time–space schedule Υ ′ = (TΥ
′

, RΥ
′

) with the time
component TΥ

′

= TΥ and with the new space component RΥ
′

= (a1, a3, a2, a1, a2, a3, a2).

Theorem 31. Let Assumption 12 be satisfied. Let Υ = (tei , rei)
n
i=1 be a time–space schedule of the set of events E, and a1, a2 ∈ R

′
m,

m ∈ M, τ ∈ T . Suppose that START (a1, τ ) and START (a2, τ ) are blocks. Algorithm interchanges the block START (a1, τ )with the
block START (a2, τ ) in the linear time O(η). Its output Υ ′ = (tei , r

′
ei)
n
i=1 is a time–space schedule of the set of events E.

Proof. The Algorithm computes in accordancewith Definition 30. Hence the Algorithm interchanges the block START (a1, τ )
with the block START (a2, τ ). It performs n steps in the loop for. Every step requires a constant time. By Notation 4, n ≤ η.
Hence the time of the Algorithm is O(η).
LetΥ = (tei , rei)

n
i=1 be the time–space schedule of the set of events E andΥ

′
= (tei , r

′
ei)
n
i=1 be the output of the Algorithm.

We prove that Υ ′ is a time–space schedule of the set of events E.
If a1 = a2 then from the Algorithm it follows Υ ′ = Υ . Consequently, Υ ′ is a time–space schedule of the set of events E.

Next we assume that a1 6= a2.
The first condition of Definition 7, i.e., the condition te ∈ Te for all e ∈ E, is valid in the time–space schedule Υ . The

Algorithm does not change the time component of the time–space schedule Υ . Hence this condition is valid also in Υ ′.
Consequently, Υ ′ satisfies the first condition of Definition 7.
Further, by Definition 7, the condition re ∈ Re for all e ∈ E is valid in the time–space schedule Υ . By the assumption,

we have a1, a2 ∈ R′m, m ∈ M . From a1 6= a2 we obtain START (a1, τ ) ∩ START (a2, τ ) = ∅. We denote E
∪
= START (a1, τ ) ∪

START (a2, τ ). We distinguish three cases.

(1) Let e ∈ E − E∪.
The Algorithm gives r ′e = re. Consequently, r

′
e = re ∈ Re. Hence r

′
e ∈ Re.

(2) Let e ∈ START (a1, τ ).
Then by Definition 24, re = a1 and te ≥ τ . The Algorithm gives r ′e = a2. From the assumption a1 ∈ R

′
m and from the

fact that a1 = re ∈ Re, by using Corollary 16 we get Re = R′m. Consequently, r
′
e = a2 ∈ R

′
m = Re. Hence r

′
e ∈ Re.

(3) Let e ∈ START (a2, τ ).
Then by Definition 24, re = a2 and te ≥ τ . The Algorithm gives r ′e = a1. The proof of the fact that r

′
e ∈ Re can be

performed analogously as in the case (2).

Summarizing, we obtain r ′e ∈ Re for all e ∈ E. Consequently, Υ
′ satisfies the second condition of Definition 7.
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Now we prove that Υ ′ contains no conflict. By way of contradiction, assume that there exists a conflict in Υ ′. First we
assume that there exists a conflict in some room r in Υ ′. It means that there exists a room r and events i, j ∈ E, i 6= j such
that r = r ′i = r

′

j and Hi ∩ Hj 6= ∅. We distinguish nine cases.

(1) Let i, j ∈ E − E∪.
Then r ′i = ri, r

′

j = rj and r = r
′

i = r
′

j . This yields r = ri = rj and Hi ∩ Hj 6= ∅. It means that there is a conflict in the
room r in Υ . This is a contradiction with the assumption that Υ is the time–space schedule.

(2) Let i, j ∈ START (a1, τ ).
Then ri = a1, rj = a1. We obtain a1 = ri = rj and Hi ∩ Hj 6= ∅. It means that there is a conflict in the room a1 in Υ . It

is a contradiction with the assumption that Υ is the time–space schedule.
(3) Let i, j ∈ START (a2, τ ).

The proof can be performed analogously as in the case (2).
(4) Let i ∈ START (a1, τ ), j ∈ START (a2, τ ).

Then ri = a1, rj = a2. From the Algorithmwe get r ′i = a2, r
′

j = a1. From a1 6= a2weobtain r
′

i 6= r
′

j . It is a contradiction
with the assumption r ′i = r

′

j .
(5) Let i ∈ START (a2, τ ), j ∈ START (a1, τ ).

The proof can be performed analogously as in the case (4).
(6) Let i ∈ START (a1, τ ), j ∈ E − E∪.

From i ∈ START (a1, τ ) we get ri = a1, r ′i = a2, τ ≤ ti ≤ τk. This and the assumption r ′i = r
′

j implies r
′

j = a2.
For j ∈ E − E∪ the Algorithm gives r ′j = rj. Consequently, rj = a2. By the assumption, START (a2, τ ) is a block. Hence
START (a2, τ ) = END(a2, τ ). From j 6∈ START (a2, τ )we obtain j 6∈ END(a2, τ ). From rj = a2 and j 6∈ END(a2, τ ) it follows
Θ(tj, dj − 1) < τ . This and τ ≤ ti implies Hi ∩ Hj = ∅. It is a contradiction with the assumption Hi ∩ Hj 6= ∅.

(7) Let i ∈ START (a2, τ ), j ∈ E − E∪.
The proof can be performed analogously as in the case (6).

(8) Let j ∈ START (a2, τ ), i ∈ E − E∪.
The proof can be performed analogously as in the case (6).

(9) Let j ∈ START (a1, τ ), i ∈ E − E∪.
The proof can be performed analogously as in the case (6).

Summarizing, we obtain that Υ ′ contains no conflict in any room r ∈ R. In other words:

if r ′i = r
′

j then Hi ∩ Hj = ∅, for all i, j ∈ E, i 6= j.

By the assumption,Υ is a time–space schedule of the set of events E. HenceΥ satisfies the third condition of Definition 7,
namely:

if Ui ∩ Uj 6= ∅ or Si ∩ Sj 6= ∅ or ri = rj, then Hi ∩ Hj = ∅, for all i, j ∈ E, i 6= j.

Consequently,

if Ui ∩ Uj 6= ∅ or Si ∩ Sj 6= ∅ or r ′i = r
′

j , then Hi ∩ Hj = ∅, for all i, j ∈ E, i 6= j.

This means that Υ ′ satisfies the third condition of Definition 7. We proved that Υ ′ satisfies all conditions of Definition 7.
Consequently, Υ ′ is a time–space schedule of the set of events E. �

6. Improvement of a schedule for UCTP1

This section presents an algorithmwhich improves the quality of a schedule so that in a new schedule there exists a free
room of a desired type and in a desired time. The main result of the section is Theorem 32. The motivation of this theorem
can be described as follows.
A time–space schedule can be constructed by the following method. We start with an empty schedule. At the first step,

we assign a timeslot te1 and a room re1 to the first event. At the second step, we assign a timeslot te2 and a room re2 to the
second event. After i− 1 steps we have a time–space schedule Υ = (tej , rej)

i−1
j=1 of the set of events E

i−1
= {e1, e2, . . . , ei−1}

with the matrix of numbers of free rooms Q . At i-th step we want to assign a timeslot τ to tei . It is possible that we will have
no room of set Rei free in all t ∈ Hei . In this case, if Qmt > 0 for m = yei and all t ∈ Hei , then we improve the quality of
the schedule Υ by a sequence of interchanges of blocks. The details are described in the proof of Theorem 32. We get a new
schedule Υ ′ = (tej , r

′
ej)
i−1
j=1 of the set of events E

i−1 with a room r ∈ Rei which is free during all timeslots t ∈ Hei . Then we
assign tei = τ and rei = r . The i-th step is completed and we continue at the step i + 1. These sketched remarks serve to
point out on the idea of the following theorem.

Theorem 32. Let Assumption 12 be satisfied. Let i ∈ I and Υ = (tej , rej)
i−1
j=1 be a time–space schedule of the set of events

E i−1 = {e1, e2, . . . , ei−1} with the matrix of numbers of free rooms Q . Suppose that tei ∈ Tei . If Qmt > 0 for m = yei and all
t ∈ Hei then there exists a time–space schedule Υ

′
= (tej , r

′
ej)
i−1
j=1 of the set of events E

i−1 with a room r ∈ Rei which is free during
all t ∈ Hei .
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Proof. In the sequel, we write τ instead of tei . Similarly, we write d instead of dei .
Let i ∈ I . By the assumption, τ ∈ Tei . Consequently by Remark 3, Hei ⊆ T . By Definition 1, d ∈ N and 1 ≤ d ≤ k. Hence

Hei 6= ∅.
Suppose that Qmt > 0 for m = yei and all t ∈ Hei . It means that for each timeslot t ∈ Hei there exists at least one free

room of the set R′m in the time–space schedule Υ . We denote these free rooms by a0, a1, . . . , ad−1. The room a0 ∈ R
′
m is free

in the timeslot τ , the room a1 ∈ R′m is free in the timeslotΘ(τ , 1) etc., the room ad−1 ∈ R
′
m is free in the timeslotΘ(τ , d−1).

Asm = yei , from Definition 10 we obtain R
′
m = Rei .

If d = 1 then we set Υ ′ = Υ and r = a0. The room r = a0 ∈ R′m = Rei is free during all timeslots t ∈ Hei = {τ } in the
time–space schedule Υ ′. Hence the assertion of the theorem is valid for d = 1.
Next we assume d > 1. We proceed by induction. We set Υ 0 = Υ .
The induction hypothesis is that after l < d steps, we compute Υ l = (tej , r

l
ej)
i−1
j=1, where Υ

l is a time–space schedule of the
set of events E i−1 and the room ad−1−l is free in all timeslots t ∈ [Θ(τ , d− 1− l),Θ(τ , d− 1)] in the schedule Υ l.
Basis. By the assumption of the theorem, Υ 0 is the time–space schedule of the set of events E i−1. The room ad−1 is free in

the timeslotΘ(τ , d− 1) in the schedule Υ 0. Hence the induction hypothesis is true for l = 0.
Inductive step. Assume that after l − 1 steps, for 0 < l < d we have computed Υ l−1 = (tej , r

l−1
ej )

i−1
j=1, where Υ

l−1 is the
time–space schedule of the set of events E i−1 and the room ad−l is free in all timeslots t ∈ [Θ(τ , d− l),Θ(τ , d− 1)] in the
schedule Υ l−1.
At the l-th step we deal with the schedule Υ l−1. From the relations d > 1 and 0 < l < d it follows Θ(τ , d − l) ∈ Hei ,

Θ(τ , d− l− 1) ∈ Hei and that the rooms ad−l, ad−l−1 belong to R
′
m. By the induction assumption, the room ad−l is free in the

timeslotΘ(τ , d− l) in the schedule Υ l−1. By Lemma 28 we obtain that START (ad−l,Θ(τ , d− l)) is a block. The room ad−l−1
is free in the timeslot Θ(τ , d − l − 1) in the schedule Υ 0. At previous steps we performed no change before the timeslot
Θ(τ , d − l). Hence the room ad−l−1 is free in the timeslot Θ(τ , d − l − 1) also in the schedule Υ l−1. By Lemma 29 we get
that START (ad−l−1,Θ(τ , d − l)) is a block. The assumptions of Theorem 31 are satisfied for the schedule Υ l−1, the rooms
ad−l, ad−l−1 and the timeslotΘ(τ , d− l).
At the l-th stepwe interchange the block START (ad−l,Θ(τ , d−l))with the block START (ad−l−1,Θ(τ , d−l))byAlgorithm3

in the schedule Υ l−1. We denote Υ l = (tej , r
l
ej)
i−1
j=1 the output of Algorithm 3. It means that we perform the command

INTERCHANGE(ad−l, ad−l−1,Θ(τ , d− l), i− 1,Υ l−1,Υ l).
By Theorem 31, Υ l is a time–space schedule of the set of events E i−1. By the induction assumption, the room ad−l is free

in all timeslots t ∈ [Θ(τ , d− l),Θ(τ , d− 1)] in the schedule Υ l−1. Consequently, after the interchange, the room ad−l−1 is
free in all timeslots t ∈ [Θ(τ , d− l),Θ(τ , d− 1)] in the schedule Υ l. The room ad−l−1 is free in the timeslotΘ(τ , d− l− 1)
in the schedule Υ 0. At previous steps and at the l-th step we performed no change before the timeslot Θ(τ , d − l). Hence
the room ad−l−1 is free in the timeslot Θ(τ , d − l − 1) also in the schedule Υ l. It follows that the room ad−l−1 is free in all
timeslots t ∈ [Θ(τ , d− l− 1),Θ(τ , d− 1)] in the schedule Υ l.
From the induction principle it follows that after d− 1 steps we computed a time–space schedule Υ d−1 = (tej , r

d−1
ej )i−1j=1

of the set of events E i−1 and the room a0 is free in all timeslots t ∈ [τ ,Θ(τ , d− 1)] in the schedule Υ d−1. Consequently, the
room a0 is free in all timeslots t ∈ Hei in the schedule Υ

d−1.
We set Υ ′ = Υ d−1 and r = a0. Because r = a0 ∈ R′m = Rei we get r ∈ Rei . The room r ∈ Rei is free in all timeslots t ∈ Hei

in the time–space schedule Υ ′ of the set of events E i−1. �

Algorithm 4. Improvement of a time–space schedule
Input: i, τ , d,Υ = (tej , rej)

i−1
j=1

Output: Υ ′ = (tej , r
′
ej)
i−1
j=1, r

Assumptions: the assumptions are presented in Theorem 32.
Method: the method is presented in the proof of Theorem 32.

procedure IMPROVEMENT (i, τ , d,Υ ,Υ ′, r);
begin
find free rooms a0, a1, . . . , ad−1 ∈ R′m ;
Υ 0 := Υ ;
for l := 1 to d− 1 do
INTERCHANGE(ad−l, ad−l−1,Θ(τ , d− l), i− 1,Υ l−1,Υ l);

Υ ′ := Υ d−1;
r := a0

end;

Corollary 33. Let Assumption 12 be satisfied. Algorithm 4 improves a time–space schedule Υ = (tej , rej)
i−1
j=1 to a time–space

schedule Υ ′ = (tej , r
′
ej)
i−1
j=1 in accordance with Theorem 32. A time of Algorithm 4 is O(η

2).
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Proof. Obviously, Algorithm 4 performs a process described in the proof of Theorem 32. Hence Algorithm 4 improves a
time–space schedule Υ to a time–space schedule Υ ′ in accordance with Theorem 32.
By Theorem 31, the command INTERCHANGE(ad−l, ad−l−1,Θ(τ , d− l), i−1,Υ l−1,Υ l) requires a time O(η). The loop for

has d− 1 steps. From Definition 1 we get d− 1 < k. By Notation 4 we obtain d− 1 < η. Thus the loop for requires a time
O(η2).
The algorithm which finds free rooms a0, a1, . . . , ad−1 ∈ R′m requires a time O(η

2) (cf. Remark 36). Hence Algorithm 4
requires a time O(η2). �

Definition 34. Let Υ = (tej , rej)
n
j=1 be a time–space schedule of the set of events E. The symbol C will denote the matrix of

type g × k, whose elements Crt are defined as follows. If there exists an event ewhich occupies the room r in the timeslot t ,
then we put Crt = e; otherwise we set Crt = 0. The matrix C is called the timetable of rooms for the time–space schedule Υ .

For example, last 3 rows of Table 2 represent the timetable of rooms (instead of the symbol 0 the corresponding place is
empty).
The following assertion is obvious.

Lemma 35. Let Υ = (tej , rej)
n
j=1 be a time–space schedule of the set of events E. An algorithm which computes the timetable of

rooms for Υ requires a time O(η2).

Remark 36. Now we will present a method, which founds free rooms a0, a1, . . . , ad−1 ∈ R′m mentioned in the proof of
Theorem 32. We compute the timetable of rooms C for the schedule Υ . We check the column τ of the matrix C . So we
find a room a0 ∈ R′m, which is free in the timeslot τ . Similarly, we found a1, a2, . . . , ad−1. The column τ has g elements. By
Notation 4, g ≤ η. Hence we find a0 in the linear time O(η). From d ≤ k ≤ ηwe obtain that we found d free rooms in a time
O(η2).

7. Special space scheduling for UCTP1

In this section we will deal with UCTP1. We present a polynomial algorithm which constructs a time–space schedule
Υ = (TΥ , RΥ ) for a given vector TΥ . In Theorem 40 we give sufficient conditions for the existence of Υ . These conditions
are independent on RΥ . The test whether TΥ satisfies these conditions requires a time O(n4).

Definition 37. A vector RΥ is called a space schedule of the set of events E if there exists a vector TΥ such that Υ = (TΥ , RΥ )
is a time–space schedule of the set of events E.

Definition 38. The problem to find a space schedule of a given set of events E is called a space scheduling.

Definition 39. A special space scheduling problem is defined as follows. Let a time schedule TΥ of the set of events E be
given. Find a vector RΥ such that Υ = (TΥ , RΥ ) is a time–space schedule of the set of events E.

Algorithm 5. Special space scheduling
Input: TΥ = (te1 , te2 , . . . , ten)
Output: RΥ = (re1 , re2 , . . . , ren) and Υ = (T

Υ , RΥ ) = (tej , rej)
n
j=1

Assumptions: the assumptions are presented in Theorem 40.
Method: the method is presented in the proof of Theorem 40.

procedure SPECIAL-SPACE-SCHEDULING (TΥ , RΥ ,Υ );
begin

Υ 0 := (tej , r
0
ej)
0
j=1; // Υ

0 is the empty time–space schedule
for i := 1 to n do begin

IMPROVEMENT (i, tei , dei ,Υ
i−1,Υ ′, r); // Υ ′ = (tej , r

′
ej)
i−1
j=1

for j := 1 to i− 1 do r iej := r
′
ej ;

r iei := r;
Υ i := (tej , r

i
ej)
i
j=1

end;
Υ := Υ n;
RΥ := (rnej)

n
j=1

end;

Theorem 40. Let Assumption 12 be satisfied and a vector TΥ = (te1 , te2 , . . . , ten) be given. Suppose that Q is the matrix
computed by Algorithm 2 for the input TΥ . If the conditions
(1) te ∈ Te for all e ∈ E,
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(2) if Ui ∩ Uj 6= ∅ or Si ∩ Sj 6= ∅, then Hi ∩ Hj = ∅, for all i, j ∈ E, i 6= j,
(3) Qmt ≥ 0 for all (m, t) ∈ M × T

are satisfied then there exists a vector RΥ such that Υ = (TΥ , RΥ ) is a time–space schedule of the set of events E. Algorithm 5
computes RΥ and Υ in a time O(η3).

Proof. Let the vector TΥ = (te1 , te2 , . . . , ten) satisfy all conditions of the theorem. Let Q
i be the state of the matrix Q after i

steps of Algorithm 2 for the input TΥ for i = 0, 1, . . . , n. In the proof of Theorem 23 it was shown that the computation of
Q i from Q i−1 is made by Eqs. (2). Clearly, Q n = Q . From the third condition of the theorem and from Eqs. (2) we obtain

Q imt ≥ 0 for all (m, t) ∈ M × T and all i = 0, 1, . . . , n. (3)

We proceed by induction.
The induction hypothesis is that after i ≤ n steps, the algorithm computes a time–space schedule Υ i = (tej , r

i
ej)
i
j=1 of the

set of events E i = {e1, e2, . . . , ei} and that Q i is the matrix of numbers of free rooms for Υ i.
Basis.At the 0-th step (before the loop for i) the algorithm assigns the empty time–space schedule toΥ 0. It means thatΥ 0

is the time–space schedule of the empty set of events. FromAlgorithm2we getQ 0mt = |R
′
m| for (m, t) ∈ M×T . Consequently,

Q 0 is the matrix of numbers of free rooms for Υ 0. Hence the induction hypothesis is true for i = 0.
Inductive step. Assume that after i− 1 < n steps, the algorithm computes a time–space schedule Υ i−1 = (tej , r

i−1
ej )

i−1
j=1 of

the set of events E i−1 = {e1, e2, . . . , ei−1} and Q i−1 is the matrix of numbers of free rooms for Υ i−1. Algorithm 2 computes
the matrix Q i from the matrix Q i−1 according to Eqs. (2). From (2) and (3) we get

Q i−1mt > 0 for (m, t) ∈ {yei} × Hei . (4)

Consequently, Υ i−1 satisfies the conditions of Theorem 32 for i ∈ I . At the i-th step, the algorithm performs the command
IMPROVEMENT (i, tei , dei ,Υ

i−1,Υ ′, r). By Corollary 33, this command computesΥ ′ and r , whereΥ ′ is a time–space schedule
of the set of events E i−1 and r ∈ Rei is free during all timeslots t ∈ Hei in Υ

′. Next, the algorithm computes Υ i = (tej , r
i
ej)
i
j=1,

where Υ i extends Υ ′ by scheduling of the event ei to the room r (namely, we have in mind the command r iei := r). This and
the first and the second condition of the theorem imply that Υ i satisfies all conditions of Definition 7. Consequently, Υ i is a
time–space schedule of the set of events E i. Obviously, Q i is the matrix of numbers of free rooms for Υ i.
From the induction principle it follows that after n steps the algorithm computes a time–space scheduleΥ n = (tej , r

n
ej)
n
j=1

of the set of events En = E. We set Υ = Υ n.
The 0-th step of the algorithm requires a constant time. By Corollary 33, the command IMPROVEMENT (i, tei , dei ,Υ

i−1,

Υ ′, r) requires a timeO(η2). Consequently, the i-th step of the algorithm for i > 0 requires a timeO(η2). Hence the algorithm
performs n ≤ η steps in the loop for in a time O(η3). Thus, the algorithm requires a time O(η3). �

Corollary 41. If Assumption 12 is satisfied, then Algorithm 5 solves the special space scheduling in a time O(η3).

8. Conditions for a time schedule concerning UCTP1

Theorem 42. Let Assumption 12 be satisfied and a vector TΥ = (te1 , te2 , . . . , ten) be given. Suppose that Q is the matrix
computed by Algorithm 2 for the input TΥ . The following conditions are necessary and sufficient for the vector TΥ to be a time
schedule of the set of events E:

(1) te ∈ Te for all e ∈ E,
(2) if Ui ∩ Uj 6= ∅ or Si ∩ Sj 6= ∅, then Hi ∩ Hj = ∅, for all i, j ∈ E, i 6= j,
(3) Qmt ≥ 0 for all (m, t) ∈ M × T .

Proof. Necessity. Let TΥ be the time schedule of the set of events E. According to Definition 19, there exists a vector RΥ such
that Υ = (TΥ , RΥ ) is a time–space schedule of the set of events E. By Definition 7, the first and the second condition of
the theorem are necessarily satisfied. In view of Theorem 23, the matrix Q computed by Algorithm 2 for the input TΥ is the
matrix of numbers of free rooms for Υ .
By way of contradiction, assume that the third condition of the theorem is not satisfied. Then there exists (m, t) ∈ M×T

such that Qmt < 0. Consequently, the number of free rooms of the set R′m in the timeslot t is negative, which is not possible.
We arrived at a contradiction.
Sufficiency. Let us assume that the vector TΥ satisfies all conditions of the theorem. These conditions are equivalent to

the conditions of Theorem 40. Hence the vector TΥ satisfies all conditions of Theorem 40. By this theorem, there exists a
vector RΥ such that Υ = (TΥ , RΥ ) is a time–space schedule of the set of events E. By Definition 19, TΥ is a time schedule of
the set E. �
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9. Polynomial reduction of UCTP1 to the time scheduling

The idea of reducibility is a fundamental concept in the theory of complexity. (Cf. [3].)
A problemΠ1 is reducible to a problemΠ2 if there exists a transformation (algorithm) A, which transforms each instance

π1 ofΠ1 to an equivalent instance π2 ofΠ2. The equivalence is understood so that π1 has a solution if and only if π2 has a
solution. The algorithm A allows one to transfer an arbitrary algorithm for the problemΠ2 to an algorithm for the problem
Π1. A reduction is polynomial if the algorithm A is polynomial.

Theorem 43. If Assumption 12 is satisfied, then the time–space scheduling is polynomially reducible to the time scheduling.

Proof. Let us suppose that a set of events E is given and that Assumption 12 is satisfied.We transform time–space scheduling
to time scheduling. Both problems have the same input—the set of events E. Hence the time of this transformation is a
constant (equal to 0). We shall show that time–space scheduling has a solution for the input E if and only if time scheduling
has a solution for the input E.
Necessity. We assume that time–space scheduling has a solution for the input E. This solution is a time–space schedule

Υ = (TΥ , RΥ ) of the set of events E. According to Definition 19, TΥ is a time schedule of the set of events E. Consequently,
time scheduling has a solution for the input E.
Sufficiency. We assume that time scheduling has a solution for the input E. This solution is a time schedule TΥ of the

set of events E. According to Theorem 42, TΥ satisfies all conditions of Theorem 42. These conditions are equivalent to the
conditions of Theorem 40. By this theorem, there exists a vector RΥ such that Υ = (TΥ , RΥ ) is a time–space schedule of the
set of events E. Consequently, time–space scheduling has a solution for the input E. �

Corollary 44. The problem UCTP1 is polynomially reducible to time scheduling.

Theorem 45. The problem UCTP1 is possible to decompose into two problems, namely, (i) a time scheduling, and (ii) a special
space scheduling.

Proof. Let E be a given set of events. We will solve UCTP1 in the following way.
We solve time scheduling for the input E. According to Theorem 42, it means that we construct a vector TΥ , which

satisfies all conditions of Theorem 42. We use an algorithmwhich generates and tests all candidates for a time schedule (cf.
Proposition 49). Also, we can use other algorithms or metaheuristics. There are two possibilities:

(1) Time scheduling has a solution for the input E.
This solution is a time schedule TΥ of the set of events E. According to Theorem 42, TΥ satisfies all conditions of

Theorem 42. These conditions are equivalent to the conditions of Theorem 40. By this theorem, there exists a vector RΥ
such that Υ = (TΥ , RΥ ) is a time–space schedule of the set of events E, and Algorithm 5 computes RΥ and Υ in a time
O(η3). By Corollary 41, Algorithm 5 solves the special space scheduling problem. Consequently, UCTP1 has a solution for
the input E.

(2) Time scheduling has no solution for the input E.
In this case, there does not exist any vector TΥ satisfying all conditions of Theorem 42. Then there cannot exist a

time–space schedule Υ = (TΥ , RΥ ) of the set of events E. Consequently, UCTP1 has no solution for the input E. �

Definition 46. University Course Timetabling Problem which does not satisfy Assumption 12 will be called UCTP2.

We will deal with the following hypothesis.

Hypothesis 47. The problem UCTP2 is not possible to decompose into two problems, namely, (i) a time scheduling, and
(ii) a special space scheduling.

The arguments for the validity of this hypothesis can be described as follows.

(1) It is obvious that the definition of a time schedule must be as in Definition 19.
(2) Similarly, it is obvious that the condition Qmt ≥ 0 for all (m, t) ∈ M × T is necessary for a time schedule TΥ .
(3) A test whether a vector TΥ is a time schedule requires to know the matrix Q .
(4) If Assumption 12 is not satisfied, then to the computation of the matrix Q are necessary both components TΥ and RΥ of
the schedule Υ .

(5) If Assumption 12 is not satisfied, then a test whether a vector TΥ is a time schedule requires to know the space schedule
RΥ .

(6) Other arguments are presented below Definition 19.
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10. Complexity of UCTP

We will study the complexity of UCTP. For a speed-up of algorithms for UCTP we use the matrix D, which is defined as
follows.

Definition 48. The symbol D will denote the matrix of type n × n, in which Dii = 0 for each i ∈ E, and for all i, j ∈ E with
i 6= jwe have Dij = 1 if

Ui ∩ Uj 6= ∅ or Si ∩ Sj 6= ∅

and Dij = 0 otherwise.

We compute the matrix D at the beginning of an algorithm for UCTP in a time O(n4).

Proposition 49. There exists an algorithm, which solves UCTP1 and has a time complexity O(n2kn); further, there exists an
algorithm, which solves UCTP2 and has a time complexity O(n2kngn). Both these algorithms have the same basic method.
Proof. First we construct an algorithm for UCTP1. By Theorem 45, UCTP1 is possible to decompose into two problems,
namely, (i) a time scheduling, and (ii) a special space scheduling. We design an algorithm for the time scheduling problem
as follows. A vector TΥ = (te1 , te2 , . . . , ten) where te ∈ T for all e ∈ E is a candidate for a time schedule. A candidate T

Υ

is a time schedule, if it satisfies the conditions of Theorem 42. It is clear that these conditions can be verified in a time
O(n4). If we use the matrix D, then this time is possible to improve on O(n2). We are able to give an algorithm which
generates all such candidates. Generating a candidate requires a time O(n). Generating and testing a candidate requires
a time O(n) + O(n2) ≤ O(n2). The number of all candidates is kn. Hence a time complexity of this algorithm for time
scheduling is O(n2kn). A special space scheduling problem has a time complexity O(n3). (cf. Corollary 41.) Therefore the
time of this algorithm for UCTP1 is O(n2kn)+ O(n3) ≤ O(n2kn).
Nowwe construct an algorithm for UCTP2 in the samemanner, the difference is only in technical details. A pair of vectors

(TΥ , RΥ ) such that TΥ = (te1 , te2 , . . . , ten) and R
Υ
= (re1 , re2 , . . . , ren), te ∈ T , re ∈ R for all e ∈ E, is a candidate for a

time–space schedule. A candidate (TΥ , RΥ ) is a time–space schedule, if it satisfies the conditions of Definition 7. If we use
the matrix D, then these conditions can be verified in a time O(n2). We are able to give an algorithm which generates all
such candidates. Generating and testing a candidate requires a time O(n)+ O(n2) ≤ O(n2). The number of all candidates is
kngn. Hence a time complexity of this algorithm for UCTP2 is O(n2kngn). �

A natural question arises if any quicker algorithm exists for UCTP. We know that UCTP is NP-hard. (cf. [1,11].) Hence for
UCTP only exponential algorithms are known.
We constructed an algorithm for UCTP1 based onmethods of the theory of artificial intelligence (backtracking strategies

with heuristics). We tested the algorithm on random generated instances of UCTP1. We tested an interactive version of
this algorithm on real instances of practise. The result of experiments are as follows. If an instance of UCTP1 has a solution,
then the algorithm requires the polynomial time. If an instance of UCTP1 has no solution, then the algorithm requires the
exponential time. The time complexity of the algorithm is as in Proposition 49.

Hypothesis 50. If T1(n) is a time complexity of UCTP1 and T2(n) is a time complexity of UCTP2 then T2(n) = O(gnT1(n)).
The argument for the validity of this hypothesis is that we know only algorithms with a time complexity as in

Hypothesis 50.

11. Practice

Now we will consider the question when is Assumption 12 satisfied in practice. The author for several years prepared a
schedule at P.J. Šafárik University (mainly at Faculty of Science) in Košice. Basic parameters of this faculty are k = 65, n ∼=
700, g ∼= 70. Our experiences are as follows. The ideas presented in this article have been used before the articlewaswritten.
Thismeans that Assumption 12was fulfilled and the problemwas decomposed into two problems according to Theorem 45.
The situation can be described in the following way.
The input data for UCTP are prepared on three levels. On the first level, the input data are given by users—departments,

teachers and students. These data need not be consistent, namely from the reason that time requirements of events (the
sets Te) can lead to the nonexistence of a schedule. On this level users prepare space requirements of some events (the sets
Re). It is concerned on events, which require special rooms, for example laboratories.
On the second level, the input data are prepared by a commission for the schedule (people constructing the schedule).

On this level, the commission prepares space requirements of mostly events. Here the commission performs steps to obtain
the validity of Assumption 12.
On the third level, the commission searches for events leading to nonexistence of a schedule. The commission modifies

the sets Te of these events after consultations with users. This is done before and during the construction of a schedule.
Hence only interactive methods (algorithms) are applied in practice.
It can be assumed that the situation at other universities is analogous. This means that input data can be prepared such

that Assumption 12 would be satisfied. In this way we obtain a radical (exponential) speed-up of algorithms for UCTP
(cf. Proposition 49 and Hypothesis 50).
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12. Conclusion

We studied 2-dimensional University Course Timetabling Problem (UCTP). The following two cases were distinguished:

(1) UCTP1— Assumption 12 is satisfied.
(2) UCTP2— Assumption 12 is not satisfied.

Assumption 12 means that each room belongs to exactly one type of room. This assumption is natural and accessible in
practice.
We proved that UCTP1 is possible to decompose into two problems, namely, (i) a time scheduling and (ii) a special space

scheduling. We argued that UCTP2 is not possible to decompose into these two problems. Also, we showed that algorithms
for UCTP2 require exponentially more time than analogous algorithms for UCTP1.
The method for solution UCTP1 was applied at P.J. Šafárik University. People responsible for the schedule are able to

do arrangements leading to fulfillment of Assumption 12. An open problem is if the arrangements can be expressed by
conditions, algorithms or metaheuristics. This is a matter for further research.
We showed that the polynomial reduction is a strong tool for achievement of a decomposition of a 2-dimensional problem

onto two 1-dimensional problems.
Not only timetabling problems, but also other combinatorial problems are 2-dimensional. A description of a

decomposition of such problems onto 1-dimensional problems or a decision whether such decomposition exists, can
be a subject of a further research. We will focus on the theory of operating systems of multiprocessor systems, where
Assumption 12 for resources is satisfied (for example, the deadlock problem). Further, it is possible to investigate the
application of methods of this paper to the theory of networks for building distributed systems and clustered systems.
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