
Journal of Symbolic Computation 44 (2009) 99–110

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

An improved EZ-GCD algorithm for
multivariate polynomials
Kuniaki Tsuji 1
Amakubo 1-13-1 Sanyo Rojyumanroom 412, Tsukuba city, Japan

a r t i c l e i n f o

Article history:
Received 8 December 2007
Accepted 16 April 2008
Available online 10 July 2008

Keywords:
EZ-GCD
Bad-zero problem

a b s t r a c t

The EZ-GCD algorithm often has the bad-zero problem, which has
a remarkable influence on polynomials with higher-degree terms.
In this paper, by applying special ideals, the EZ-GCD algorithm for
sparse polynomials is improved. This improved algorithm greatly
reduces computational complexity because of the sparseness of
polynomials. The author expects that the use of these ideals will
be useful as a resolution for obtaining a GCD of sparse multivariate
polynomials with higher-degree terms.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

GCD computation for multivariate polynomials over Z is basic to several important algebraic
operations. GCD computation has been done using Euclid’s algorithm in the early years of algorithm
development and many algorithms were built on this foundation; for example, the reduced-PRS
algorithm (Collins, 1967, 1966), the subresultant PRS algorithm (Brown and Traub, 1971), etc.
However, these algorithms were insufficient for the GCD computation of multivariate polynomials.
Therefore, studies have been conducted from different perspectives to obtain more effective
algorithms for multivariate polynomials. One of these is the sparse modular algorithm that was
introduced by Zippel (1979, 1993), which is a Las Vegas algorithm of GCD computation. Another is the
EZ-GCD algorithm (Moses and Yun, 1973; Yun, 1980), which is widely known as a speedy algorithm.
However, the EZ-GCD algorithmhas a problem that often leads to a very large intermediate expression
growth of terms in polynomials, which is called the ‘‘bad-zero problem" (Geddes et al., 1992). In
particular, the influence of this problem on polynomials with higher-degree terms is remarkable. To
avoid this problem, Wang developed the EEZ-GCD algorithm (Wang, 1980). Since, however, many
differentiations are performed to compute the correction coefficients (Wang, 1978), large integer

E-mail address: tuzi@lapis.plala.or.jp.
1 Tel.: +81 029 853 8166.

0747-7171/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2008.04.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82335256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:tuzi@lapis.plala.or.jp
http://dx.doi.org/10.1016/j.jsc.2008.04.006


100 K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110

coefficients may often occur. In addition, the efficiency of the EEZ-GCD algorithm depends mainly
on its coefficient determination algorithm (Wang, 1980). However, it may not always be applied to all
cases of GCD computation. Also, another solution called the sparse EZ-GCD algorithm was developed
(Kaltofen, 1985), which makes use of the sparse Hensel lifting by using Newton’s iteration. This
algorithm can speed up Hensel lifting, although it is based on many assumptions. Furthermore, the
PC-PRS algorithm (Sasaki and Suzuki, 1992) was suggested as an algorithm that matches the EZ-GCD
algorithm in efficiency. However, it also has the bad-zero problem.
To tackle the bad-zero problem, the author attempted to improve the EZ-GCD algorithm using a

special ideal as a new modulus. Through the adoption of this ideal, the improved EZ-GCD algorithm
can reduce an intermediate expression growth of terms in polynomials,which are sparse, have higher-
degree terms with respect to sub-variables and the degree of the main variable is not very high. As a
result, the algorithm can perform at high speed for obtaining a GCD of two multivariate polynomials.
There were several investigations of polynomials with higher-degree terms. For example, an

algorithm using the Frobenius automorphism was suggested by Kaltofen et al. (Kaltofen and Lobo,
1994), which deals only with univariate polynomials. Also, a fast factorizationmethod using primitive
elements in finite fields was developed by Noro et al. (Noro and Yokoyama, 2002), which only refers
to bivariate polynomial factorization over finite fields. However, none of the previous methods used
a special modulus for polynomials with higher-degree terms. Recently, an algorithm for resolving the
bad-zero problemwas suggested (Inaba, 2005), whichmakes use of a Newton polynomialwith special
moduli and some assumptions.
In Section 2, some definitions and main theorems are described. Two new algorithms with some

examples, their study, and experiments comparing several algorithms are provided in Section 3. The
conclusions are presented in Section 4.

2. Definitions and theorems

Let x1 be the main variable, the remaining x2, . . . , xs be the sub-variables, and s be the number
of variables. Let P =

∑t
i=0 di

∏s
j=1 xj

eji∈Z[x1, . . . , xs] with di∈Z or P =
∑t
i=0 dix1

ei∈R[x1] with di∈R,
where R is a ring and there are no similar terms in P; then, lc(P) is the leading coefficient w.r.t. x1 of
P , ppx1(P) is the primitive part w.r.t. x1 of P , for di∈Z the height of P is defined as max{|dt |, . . . , |d0|},
and P|A1=B1,...,Ar=Br or P|A1→B1,...,Ar→Br shows the substitution A1→B1, . . . , Ar→Br in P .

Definitions of ideals and names of algorithms. The ‘‘power ideal S" is an ideal of Z[x1, x2, . . . , xs]
and is expressed as

S = (x2 l2 − c2, x3 l3 − c3, . . . , xsls − cs),
cu, lu∈Z, lu > 1, cu 6=0, (2≤u≤s),

where S satisfies the following conditions (a), (b):

(a) The algebraic numbers αu = cu
1
lu , (2≤u≤s) are algebraically independent of each other.

(According to this condition, Q[x2, . . . , xs]/S is an algebraic extension field, where Q is the field
of rational numbers. Therefore, (Q[x2, . . . , xs]/S)[x1] becomes a UFD, and we can define a GCD of
polynomials in it.)

(b) Every xlii − ci, (2≤i≤s) is irreducible over Z.

For any natural number k, Sk is defined as an ideal of Z[x1, x2, . . . , xs] generated by all k-generators,
where the k-generator is the product of generators that are arbitrarily selected k times from xi li −
ci, (2≤i≤s) of the power ideal S. For example, suppose S = (x2 l2 − c2, x3 l3 − c3); then, we have S2 =
((x2 l2 − c2)

2
, (x3 l3 − c3)

2
, (x2 l2− c2)(x3 l3 − c3)).

‘‘PI" is an acronym of ‘‘power ideal" and the improved EZ-GCD algorithm using a PI is called the ‘‘PI
algorithm."
In addition, the ideal ‘‘Ŝ" of Zp[x1, x2, . . . , xs] is defined such that l2 = l3 = · · · = ls = p in

S, where p is a prime number of the finite fields Zp∼=Z/(p), and Ŝ satisfies condition (c) (it need not
satisfy conditions (a) and (b)):



K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110 101

(c) GCD (cu, p) = 1 for all u = 2, 3, . . . , s.

Ŝ is called the ‘‘power ideal with a prime number p," the term ‘‘PIP" is its abbreviation and the improved
EZ-GCD algorithm using a PIP is called the ‘‘PIP algorithm."
Furthermore, let

S̄ = (x2 − c2, . . . , xs − cs), ci∈Z, (2≤i≤s)

be an ideal of Z[x1, x2, . . . , xs].
For convenience, let K = K̃ = Q[x2, . . . , xs]/S, K ′ = Zp[x2, . . . , xs]/Ŝ and K ′′ = Zp[x2, . . . , xs]/S̄.
The following theorems support the PI and the PIP algorithms.

Theorem 1. Let F1, F2∈K [x1]. Assume that F1 and F2 do not have a common factor w.r.t. x1 in K̃ [x1], and

lc(F1F2)6≡0 (mod S). (2.1)

Then, the following equation holds:

Â′F1 + B̂′F2≡1 (mod S), (2.2)

where degx1(F1) > degx1(B̂′), degx1(F2) > degx1(Â′)

and only one pair of Â′ and B̂′ exists in K [x1].

Proof. Since K [x1] is a UFD, if we apply the generalized Euclidean algorithm to F1 and F2 in K [x1] and
if the polynomials Â′ and B̂′ obtained by applying it are normalized to satisfy the degree conditions
degxi Â′ < li and degxi B̂′ < li, (2≤i≤s), then we can obtain Eq. (2.2) which becomes unique. �

From this theorem, the following corollary is also derived.

Corollary of Theorem 1. Under the conditions that Theorem 1 holds, for two multivariate polynomials
F1, F2 and any multivariate polynomial H∈Z[x1, . . . , xs], the following equation holds, and only one pair
of Â and B̂ exists in K [x1]:

ÂF1 + B̂F2≡H (mod S),where degx1(F2) > degx1(Â). (2.3)

Next, for F1, F2∈K ′[x1], assuming that F1|x2=c2,...,xs=cs and F2|x2=c2,...,xs=cs do not have a common
factor w.r.t. x1 in K ′′[x1] instead of K̃ [x1], replace K by K ′ in Theorem 1 and its corollary, replace S
by (S̄, p) in Eq. (2.1) and S by (Ŝ, p) in Eqs. (2.2) and (2.3). Then, Theorem 1 and its corollary hold
similarly for the PIP algorithm because of the following proof. In the proof of Theorem 1, if we replace
K by K ′′, then K ′′[x1] is also a UFD. Furthermore, by applying the generalized Euclidean algorithm to
F1|x2=c2,...,xs=cs and F2|x2=c2,...,xs=cs in K

′′
[x1], and by using the usual Hensel construction, we can derive

Â′F1+ B̂′F2≡1 (mod ((x2 − c2)p, (x3− c3)p , . . . , (xs− cs)p, p)). Then, from Fermat’s little theorem,
we have xip − ci≡(xi − ci)p (mod p), (2≤i≤s). Therefore, we can also derive Eqs. (2.2) and (2.3) for
the PIP algorithm.
From this corollary and the fact that the set K is a ring, we can also construct Hensel’s lemma for

the PI algorithm (this Hensel construction using a PI is called the ‘‘Hensel construction modulo PI"). This
lemma is derived from the same proof as the usual Hensel’s lemma and is as follows.

Theorem 2 (Hensel’s Lemma Modulo PI). Let F1,F2∈K [x1], V∈Z[x1, x2, . . . , xs]. For S = (X2, . . . , Xs),
where Xi=xi li − ci, the following three conditions hold:

(A)

lc(F1)6≡0 (mod S) and lc(F2)6≡0 (mod S), (2.4)

(B) F1 and F2 do not have a common factor w.r.t. x1 in K̃ [x1], and
(C) degxu(F1) < lu, degxu(F2) < lu, (2≤u≤s).



102 K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110

Put F (1)1 = F1 and F
(1)
2 = F2. Under these conditions, suppose that the following equation holds for the

multivariate polynomial V :

V≡F (1)1 F
(1)
2 (mod S). (2.5)

Then, for any natural number k, there exist polynomials F (k)1 and F
(k)
2 such that

V≡F (k)1 F
(k)
2 (mod S

k), (2.6)

F (k)1 ≡F
(1)
1 (mod S) and F (k)2 ≡F

(1)
2 (mod S), (2.7)

F (k)1 , F
(k)
2 ∈Q[x1, x2, . . . , xs, X2, . . . , Xs].

In Theorem 2, replace K by K ′, replaceQ by Zp, and let Ŝ = (X2, . . . , Xs) as a PIP by setting li = p for
all i≥2. Furthermore, assuming that F1|x2=c2,...,xs=cs and F2|x2=c2,...,xs=cs do not have a common factor
w.r.t. x1 inK ′′[x1] instead of K̃ [x1] in the condition (B), replace S by (Ŝ, p) in Eqs. (2.5) and (2.7), replace
Sk by (Ŝk, p) in Eq. (2.6), and replace S by (S̄, p) in Eq. (2.4). Then, Theorem 2 holds similarly for the
PIP algorithm (this Hensel construction using a PIP is called the ‘‘Hensel construction modulo PIP").

3. Two new algorithms and their study

The PI and the PIP algorithms are presented in this section. For theGCD computation ofmultivariate
polynomials P1 and P2 in Z[x1, x2, . . . , xs], we use the following degree notation:

ni = max{degxi(gP1), degxi(gP2)}, (1≤i≤s),
if

∑s
j=2 degxj(gP1) <

∑s
j=2 degxj(gP2) then P̃ = gP1 else P̃ = gP2

and g = GCD(lc(P1), lc(P2)).

3.1. New algorithms

The PI algorithm is as follows:
<Input>: Multivariate polynomials P1,P2∈ Z[x1, x2, . . . , xs], which are primitive w.r.t. x1 (*1) and
sparse, where degx1P2≤degx1P1, and g .
<Output>: GCD(P1, P2)∈Z[x1, x2, . . . , xs].

Step 1. As a PI, choose S satisfying the conditions (a) and (b) in Section 2,where lc(P1P2)6≡0 (mod S),
Xi←xi li − ci, and S̃←S. P1′′←P1|x2 l2=c2,...,xsls=cs and P2

′′
←P2|x2 l2=c2,...,xsls=cs .

Step 2. Compute D the GCD of P1′′ and P2′′ modulo S̃ using the generalized Euclidean algorithm, and
if d is known, obtain the relations P1≡g1D (mod S) and P2≡g2D (mod S) in K [x1] such that
d = degx1D; else obtain these relations regardless of the value of d and d←degx1D as well
as the EZ-GCD algorithm (see (Yun, 1980)).
If d = 0 then return 1;
When d is not equal to 0, either of three cases (a), (b), (c) occurs.

(a) Else if degx1P2 = d then if P2|P1 then return P2; else compute again (*3).
(b) Else if D and g1 (or g2) do not have a common factor w.r.t. x1 in K [x1] (*4), then adjust D,

g1 (or g2) modulo S like in the EZ-GCD algorithm (see (Yun, 1980)). Do F
(1)
2 ←g1, F

(1)
1 ←D,

L←gP1, L′←gP2 (or F
(1)
2 ←g2, F

(1)
1 ←D, L←gP2, L

′
←gP1), n̂i←[

degxi L
li
] (where [ ] denotes

Gauss’s symbol), V←L|x2 l2=X2+c2,...,xsls=Xs+cs and n̂←the total degree in Xi’s of V (*5),

and construct V≡F (1)1 F
(1)
2 (mod S). In addition, by applying the Corollary of Theorem 1,

obtain ÂiF
(1)
1 + B̂iF

(1)
2 ≡x1

i (mod S), (0≤i≤degx1V ), where degxj Âi, degxj B̂i < lj,
(2≤j≤s).

(c) Otherwise, deal with the common divisor problem (*2).



K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110 103

Step 3. Apply the Hensel lifting of Theorem 2 to V≡F (1)1 F
(1)
2 (mod S); then,

V≡F (n̂+1)1 F (n̂+1)2 (mod S n̂+1).

Step 4. xi li − ci←Xi for all i > 1 in F
(n̂+1)
1 , F (n̂+1)2 .

Step 5. F̃1←F1(n̂+1). Verify whether F̃1 is the factor of V over Z and whether F̃1|L′ holds. If both hold,
then return ppx1(F̃1); else compute again (*3).

The PIP algorithm is as follows:

For the PI algorithm as described above, let p←li for all i > 1 in Step 2 and Step 4. In Step
1, choose (S̄, p), and define Ŝ with generators Xi←xip − ci as a PIP from (S̄, p), where Ŝ
satisfies the condition (c) in Section 2 and lc(P1P2)6≡0 (mod (S̄, p)). In addition, let S̃←(S̄, p),
P1′′←P1|x2=c2,...,xs=cs and P2

′′
←P2|x2=c2,...,xs=cs in Step 1. Replace K by K

′, S̃ by (S̄, p) and S by
(Ŝ, p) in Step 2 (see Remark 2). Replace S by (Ŝ, p), and S n̂+1 by (Ŝ n̂+1, p) in Step 3. After the
transformation in Step 4, if necessary, apply the coefficient determination algorithm (Wang,
1980) or apply p-adic Hensel lifting, then we obtain V≡F (n̂+1)1

′

F (n̂+1)2
′

(mod (Ŝ n̂+1 , pζ )) ,

1 < ζ∈Z, and moreover, replace F (n̂+1)1 by F (n̂+1)1
′

in Step 5.

Remark 1. In Step 1, for each ci in S or S̄, choose a value such that its absolute value becomes small
(±1 is a desirable value because its use does not lead to coefficient increasing). Furthermore, for each
li in S, choose a relatively small number such that li <

√
ni′, ni′ = degxi P̃ , i = 2, . . . , s, where

∏s
i=2 li

is somewhat larger than 2s−1. For p in Ŝ, choose a relatively small prime number such that 2 < p≤ a
value around min{

√
n2′,
√
n3′, . . . ,

√
ns′}. (These results were obtained from some experiments.)

Remark 2. In Step 2, after the relation P1≡g1D (mod (S̄, p)) (or P2≡g2D (mod (S̄, p)) is obtained
using the generalized Euclidean algorithmwhenwe apply the PIP algorithm, P1≡g1D (mod (Ŝ, p)) (or
P2≡g2D (mod (Ŝ, p))) is derived from its relation with the aid of the usual Hensel lifting as described
in the proof of Theorem 1. Similarly, we can obtain ÂiF

(1)
1 + B̂iF

(1)
2 ≡x1

i (mod (Ŝ, p)) in Step 2(b).

Remark 3. In Step 3, immediately before we perform Hensel lifting, we always apply the coefficient
determination algorithm (Wang, 1980) to V≡F (1)1 F

(1)
2 (mod S) for the PI algorithm, and apply it to

V≡F (1)1 F
(1)
2 (mod (Ŝ, p)) for the PIP algorithm. If GCD (P1, P2) is obtained, this algorithm terminates.

Remark 4. In Step 3, we can apply the technique of variable-by-variable approach (Wang, 1978)
to Hensel lifting of the PI (or PIP) algorithm as well as the EEZ-GCD algorithm. Then, its lifting is
performed on only one of the Xi’s (2≤i≤s) and is repeated from X2 to Xs. (Note that this method is
different from the Hensel construction of Theorem 2 using the total degree in the Xi’s.) Moreover,
immediately before the Hensel lifting of each variable Xi is carried out, the coefficient determination
algorithm is always carried out and it works especially efficiently. This method is called the ‘‘PI (or
PIP)(∗) algorithm."

Remark 5. The PI algorithm has the following characteristic. When performing Hensel lifting in Step
3, if either of two factors F (k)1 and F (k)2 (1≤k≤n̂ + 1) becomes a polynomial with a denominator (for
example, x12 + 3

2x1x2X2) during computing, we cannot continuously perform Hensel lifting, and the
procedure for obtaining a GCD is interrupted. This greatly avoids wasteful computation.

Some other remarks are as follows.
(*1) If P1 (or P2) is a non-monic polynomial, we must remove its content w.r.t. x1 from it in advance.
(*2) The common divisor problem often occurs when both P1 and P2 are not square-free. To resolve
the situation, a few strategies have been suggested by Yun (Yun, 1980), byWang and by Spear (Wang,
1980). These strategies can also be adopted for the PI and the PIP algorithms.
(*3) Set d←d− 1. If d = 0 then return 1. Otherwise, return to Step 1. This feedback is similar to that
of the EZ-GCD algorithm (Yun, 1980).



104 K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110

(*4) When D and g1 do not have a common factor, and moreover, D and g2 do not have a common
factor, if

∑s
j=2 degxj(gP1)<

∑s
j=2 degxj(gP2) then choose D, g1; else choose D, g2.

(*5) Let V =
∑t ′
i=0 fi

∏s
j=2Xj

eji ′ , eji′≥0, fi∈Z[x1, x2, . . . , xs], where there are no similar terms in V ;
then n̂←max{e20′ + e30′ + · · · + es0′, e21′ + e31′ + · · · + es1′, . . . , e2t ′ ′ + e3t ′ ′ + · · · + est ′ ′}. For
example, for V = x13 + x2x3X210X35x12 + (x2x3X221X32 + x22x

2
3X2

19X36)x1 + x132 x
9
3X2

4X320 − 8x32x
3
3, n̂ is

25(= 19+ 6).
Some examples are shown below (for the sake of simplicity, the degree of each sub-variable in

polynomials in the examples is relatively low, and the values of lu, cu (u = 2, 3) and p in S or Ŝ are
very small).

Example 1. We compute a GCD of the following P1 and P2. Let X2 = Y , X3 = Z , x1 = x, x2 = y, x3 = z,

P1(x, y, z) = x5 + (y2z3 + y3z3)x4 + (y4z2 + y4z5)x3

+ (2y3z4 + y6z5 + y7z5)x2 + (2y5z7 + 2y6z7 + y8z7)x+ 2y7z9

= (x2 + (y2z3 + y3z3)x+ y4z5)(x3 + y4z2x+ 2y3z4),

P2(x, y, z) = x4 + (y2z3 + 2y3z3)x3 + (y5z + y4z5 + y5z6 + y6z6)x2

+ (y7z4 + y8z4 + y7z8)x+ y9z6

= (x2 + (y2z3 + y3z3)x+ y4z5)(x2 + y3z3x+ y5z).

As a PI, let S = (y3 − 2, z2 + 1), and apply the Euclidean algorithm modulo S to P1 and P2.
Then the common factor D of P1 and P2 in K [x] is as follows:

P1≡(x3 − 2yx+ 4)D (mod S),
P2≡(x2 − 2zx+ 2y2z)D (mod S), and D≡x2 + (−2z − y2z)x+ 2yz (mod S).

Secondly, put F (1)1 = x
2
+ (−2z − y2z)x+ 2yz, F (1)2 = x

2
− 2zx+ 2y2z and L = P2.

Furthermore, put Y = y3 − 2 and Z = z2 + 1.
V is rewritten as follows:

V = x4 + (y2z(−1+ Z)+ 2z(2+ Y )(−1+ Z))x3 + (y2z(2+ Y )
+ yz(2+ Y )(−1+ Z)2 + y2(2+ Y )(−1+ Z)3 + (2+ Y )2(−1+ Z)3)x2

+ (y(2+ Y )2(−1+ Z)4 + y2(2+ Y )2(−1+ Z)2

+ y(2+ Y )2(−1+ Z)2)x+ (2+ Y )3(−1+ Z)3.

Therefore, V≡F (1)1 F
(1)
2 (mod (Y , Z)).

Applying the Hensel construction modulo PI to this relation,

V − F (1)1 F
(1)
2 ≡ (−2zY + 4zZ + y2zZ)x3 + (−4Y − y2Y + yzY + y2zY + 8Z + 4y2Z − 4yzZ)x2

+ (6yY + 4y2Y − 16yZ − 4y2Z)x− 8Y + 16Z (mod (Y 2, YZ, Z2)),

F (2)1 ≡x
2
+ (−2z − y2z − Yz + 2zZ + y2zZ)x+ 2yz + yzY − 4yzZ (mod (Y 2, YZ, Z2)) and

F (2)2 ≡x
2
+ (−2z − Yz + 2zZ)x+ 2y2z + y2zY (mod (Y 2, YZ, Z2)).

Repeating a similar process, we finally obtain

F (4)1 ≡x
2
+ (y2z3 + y3z3)x+ y4z5 (mod (Y 4, Y 3Z, Y 2Z2, YZ3, Z4)),

F (4)2 ≡x
2
+ y3z3x+ y5z (mod (Y 4, Y 3Z, Y 2Z2, YZ3, Z4)).

Put F̃1 = x2 + (y2z3 + y3z3)x+ y4z5 and F̃2 = x2 + y3z3x+ y5z; then V = F̃1F̃2. Verifying whether
P1(= L′) is exactly divisible by F̃1, we have F̃1|P1. Thus, we can obtain F̃1 as the true GCD of P1 and P2.



K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110 105

Example 2. We compute a GCD of the following P1 and P2. Let X2 = Y , X3 = Z , x1 = x, x2 = y, x3 = z,

P1 = y4z2x4 + (y2z2 + y3z2 + 2y2z4 + y3z4 + y4z4)x3 + (2y2z + y3z + 2z4

+ 3yz4 + 2y2z4 + y3z4)x2 + (2z + 2yz + 2yz3 + y2z3 + y3z3)x+ 2y
= (zy2x2 + z3(y2 + y+ 2)x+ 2)(zy2x2 + z(y+ 1)x+ y),

P2 = y2zx5 + (2z3 + yz3 + y2z3)x4 + (2+ 2y7z6)x3 + (4y5z5 + 4y5z8 + 2y6z8

+ 2y7z8)x2 + (4y5z5 + 8y3z7 + 4y4z7 + 4y5z7)x+ 8y3z4

= (zy2x2 + z3(y2 + y+ 2)x+ 2)(x3 + 2z5y5x+ 4z4y3).

Let S̄ = (y+ 1, z + 1), and p = 3. Then, we have Ŝ = (Y , Z) as a PIP, Y = y3 + 1 and Z = z3 + 1.
Substituting y = −1 and z = −1 in P1 and P2, and applying the Euclidean algorithmmodulo (S̄, p) to
these polynomials, we obtain

D≡GCD(P1, P2)≡x2 + 2x+ 1 (mod (S̄, 3)),
P1≡(x2 + 2x+ 1)(x2 + 1)≡Dg1 (mod (S̄, 3)).

Considering g = GCD(lc(P1), lc(P2)) = y2z, and adjusting the leading coefficient of P1, we have
gP1≡gg1D (mod (S̄, 3)).
Thus, we have

F̄ (1)1 = gD≡g(x
2
+ 2x+ 1)≡y2zx2 + x+ 2 (mod (S̄, 3)) and

F̄ (1)2 = lc(P1)g1≡lc(P1)(x
2
+ 1)≡y4z2x2 + 1 (mod (S̄, 3)).

Applying the usual Hensel lifting to these equations, we have

gP1 = V≡F
(1)
1 F

(1)
2 (mod (Ŝ, 3)),

where F (1)1 ≡y
2zx2 + (2y2 + 2y+ 1)x+ 2 (mod (Ŝ, 3)) and

F (1)2 ≡y
4z2x2 + (2z2 + y2z2)x+ 2z (mod (Ŝ, 3)).

Applying the Hensel construction modulo PIP to these equations as well as Example 1, we have

F (2)1 ≡y
2zx2 + (2z3 + yz3 + y2z3)x+ 2(= F̃1) (mod (Y 2, YZ, Z2, 3)) and

F (2)2 ≡y
4z2x2 + (y2z2 + y3z2)x+ y3z(= F̃2) (mod (Y 2, YZ, Z2, 3)).

Since gP2(= L′) is exactly divisible by F̃1 and ppx(F̃1) = F̃1, F̃1 is the true GCD of P1 and P2.

3.2. Analysis of computational complexity

We compare the computational complexity of the PI algorithm (or PIP algorithm) with that of the
EZ-GCDalgorithm in caseswhere the bad-zero problemoccurswhen aGCD(6=1) of sparse polynomials
is obtainedusing the EZ-GCDalgorithm. For the sake of simplicity, assume that the number of variables
in polynomials is 3, i.e., x1, x2, x3, L = gP1, n̂ is equal to

∑3
i=2 n̂i in Step 2 and ñ =

∑3
j=2 degxj(gP1)

becomes the (usual) total degree in x2 and x3 of gP1. Computational complexity is mainly estimated
for multiplication/division of their terms.
The computational complexities of Steps 2 and 3 in the PI algorithm (or PIP algorithm) are

very different from those in the EZ-GCD algorithm. In Step 2, the computational complexity of the
generalized Euclidean algorithm (**1) for P1 and P2 of the PI algorithm becomes O(n1(n1l2l3)2) (set
p = l2 = l3 for that of the PIP algorithm), while that in the EZ-GCD algorithm becomes O(n13).
For Step 3 in the PI algorithm, its computational complexity becomes at most O(ρ2n12n̂4), ρ�l2l3
(set p = l2 = l3 for the computational complexity of the PIP algorithm); however, for the EZ-GCD
algorithm, the corresponding computational complexity becomes at most O(n12ñ4); therefore,

O(ρ2n12n̂4) < O(n12ñ4). (3.1)



106 K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110

The relation (3.1) of computational complexity of Hensel lifting depends upon the difference between
linear transformations for an input polynomial P1 in both algorithms. That is, from the sparseness of
an input polynomial, its factors also become sparse in many cases (**2), and so the resulting input
polynomial and its factors for Hensel lifting from the linear transformation of sub-variables in the
PI (or PIP) algorithm do not become more dense than those in the EZ-GCD algorithm. For example,
consider F̃1 = x12+x210x310x1+x2x3∈Z[x1, x2, x3] as a factor.When the transformation of the EZ-GCD
algorithm is applied, we must perform Hensel lifting for obtaining x12 + (x2 + c2)10(x3 + c3)10x1 +
(x2 + c2)(x3 + c3), c2 6=0, c3 6=0 and the number of terms in the factor increases from 3 to 126. On the
other hand, when that of the PI algorithm is applied, we must perform Hensel lifting for obtaining
x12 + x2(X2 + c2)3(X3 + c3)2x1 + x2x3, where X2 = x23 − c2 and X3 = x35 − c3, which has only 14
terms. Therefore, the computational complexity of Hensel lifting in the PI (or PIP) algorithm is less
than that in the EZ-GCD algorithm in general.
In addition, the computational complexity of some other steps of the PI (or PIP) algorithm is less

than that of Hensel lifting of the EZ-GCD algorithm, except for a few cases of the PIP algorithm (**3).
Without loss of generality, we can also extend the above-mentioned description to polynomials

such that the number of their variables is not equal to 3 (**4). Consequently, from the point of view of
complexity the PI and the PIP algorithms are superior to the EZ-GCD algorithm in general.
Remarks.
(**1) For an input polynomial of the generalized Euclidean algorithm that is performed in the PI
algorithm, its height becomes smaller than that in the EZ-GCD algorithm. (This claim also holds for the
PIP algorithm because the generalized Euclidean algorithm performs over Zp.) For example, consider
the input polynomial x12 + x210x1 + x25x23. When we substitute c2 = 2 for x2 in the highest term
x210x1 of the polynomial by using the EZ-GCD algorithm, we have 210x1 and its height becomes 1024
(where c3 = 1). On the other hand, when we substitute x23 = 2 in the term x210x1 by using the ideal
S = (X2, X3), X2 = x23 − 2, X3 = x33 − 3 of the PI algorithm, we have x223x1 and its height becomes
8.
(**2) Let I = um1xm11 + · · · + u0∈Z[x1, x2, . . . , xs] and J = vm2x

m2
1 + · · · + v0∈Z[x1, x2, . . . , xs]. Then,

V = IJ = um1vm2x1m1+m2+· · ·+u0v0, ui1vj1∈Z[x2, . . . , xs], (0≤i1≤m1), (0≤j1≤m2). If V is sparse
and I is dense, some sums of terms in IJ must vanish and its probability is not high. For example, when
IJ = um1vm2x1m1+m2+ u0v0 holds, we have um1vm2−1+ um1−1vm2 = 0, . . . , u1v0+ v1u0 = 0, and this
phenomenon rarely occurs.
(**3) In some cases, when p-adic Hensel lifting is carried out after the transformation in Step 4, its
computational complexity may become large and have a bad influence in efficiency.
(**4) When there are several variables in input polynomials and the PI (or PI(*)) algorithm is forced to
choose many lj > 1 in a PI, the computational complexity of the generalized Euclidean algorithm in
Step 2 becomes O(n1(n1

∏s
j=2 lj)

2
). Its complexity is exponential in the number of variables s and the

rational coefficients that appear in its computation also will be exponential in size in s (coefficients
often become dense polynomials in Âi and B̂i). Therefore, in cases where there are a few variables in
polynomials, we choose each lj, (2≤j≤s) such that lj becomes somewhat smaller in advance. (Since
the number of iterations of Hensel lifting increases in Step 3 and the computational complexity of
Step 4 becomes large when

∏s
j=2 lj is very small, it is desirable that

∏s
j=2 lj is somewhat larger than

2s−1.) However, when there aremany variables in polynomials, the PI (or PI(*)) algorithmwill become
hopeless in practice, e.g. 20 variables. As a solution for it, if possible, it is desirable that we choose each
lj such that the number of variables in P1′′ and P2′′ becomes less than that in P1 and P2. For example,
let P1 = u′mx1

m
+ u′1x2

µ21x3µ31x4µ41x5µ51x6µ61x7µ71x1 + u′0x2
µ20x3µ30x4µ40x5µ50x6µ60x7µ70 , where

lj =
µj1
τj1
=

µj0
τj0
, (2≤j≤7),u′m, u

′

0, u
′

1∈Z, thenwehave P1
′′
= u′mx1

m
+u′1c2

τ21 c3τ31c4τ41c5τ51c6τ61c7τ71x1+
u′0c2

τ20c3τ30c4τ40c5τ50c6τ60c7τ70 .

3.3. Computer experiments and some results

The benchmarks of the following twelve GCD computation examples were carried out using
MATHEMATICA 4.2 on a personal computer running Windows Me. Polynomials P1 and P2 in every



K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110 107

example cause the bad-zero problem when we compute their GCD using the EZ-GCD algorithm. In
addition, in these examples, the degree of the main variable x is not very high, while the degrees of
sub-variables are very high.
Twelve examples

(1) D′ = x2 + 2y23z24, P1 = D′(x2 + y23z22), P2 = D′(yzx3 + 2z35y41x2 + z3y5x+ 525).
(2) D′ = x3 + 2(y34 + y75)x2 + y84, P1 = D′(x4 + y43x3 + yx + y92), P2 = D′(yx8 + 2y47x6 + (y20 +
y14)x4 + y69x3 + y55x2 + y99 + y45x+ 54).
(3) D′ = x2 + 2y54z54, P1 = D′(x2 + y53z62), P2 = D′(yx3 + 10y61z55x2 + 7y74z35x+ 2z75y51).
(4) D′ = (y7+2y)x3+2(3y170+y110)x+4, P1 = D′((y2+2y)x3+3y80x+y10), P2 = D′(x4+y120x3+
10y190x2 + 6).
(5) D′ = (y17 + 2y)x2 + 2z34x + 4y81z14, P1 = D′(x2 + 3y78z4x + y69), P2 = D′(zx3 + y120z45x +
10y51z7 + y).
(6) D′ = (x + 2y80 + 2)(x + 2)(x2 + 2y40 + 1), P1 = D′(x + 5y20 + 2)(x + 3)(x2 + 3y20 + 1), P2 =
D′(x4 + 5y51x3 + y10x2 + 10y121)(yx+ 2).
(7)D′ = y9z8x2+2y103z35x+4y141z15+2, P1 = D′(x2+3y128z54x+y69z105), P2 = D′(x3+y220z145x+
10y51z7).
(8) D′ = (x + 2y79z56)(zx2 + 2y55), P1 = D′(x + 5y71z2)(x2 + 3yz53), P2 = D′(yzx4 + 5y81x3 + 2 +
y1000x2 + 10y1001 + 1).
(9) D′ = (x2+ y40x+ y80)(x2− y10x+ y5), P1 = D′(x2+ 6y7x+ 2y4)(x− y40), P2 = D′(x3+ 3y10x2+
2y701 + y)(x+ y120).
(10) a = y4z4, b = −y4,D′ = (x2 + a5x+ a10)(x− a5)(x− a2), P1 = D′(x2 + b5x+ b10)(x− b5)(x+
b2), P2 = D′(x3 + 3a20x2 + 2a11x+ a)(zx+ 3y215).
(11) D′ = zy3x2 + z31(y3 + y51 + 2)x + 2, P1 = D′(zy3x2 + z54(y51 + 1)x + y51), P2 = D′(yzx3 +
2z55y5x2 − z51235y5x+ 4y301 + 2z).
(12) D′ = x3 + y52x2 + y52 + z12, P1 = D′(x3 + 3z100y52x2 + z40y52(z − 2) + z34), P2 =
D′(zyx3 + 2z51235y5x2 + 4z4y1 + y+ z),
where D′ = GCD (P1, P2).
For these examples, the following tables show the comparison results among some algorithms,

i.e., the PI algorithm, the PIP algorithm, the EZ-GCD algorithm and the EEZ-GCD algorithm. The item
‘‘Example (ν-var)" indicates the GCD computation results for ν-variable polynomials.

Table 1
Comparison of speed among some algorithms

Example EZ-GCD PI PI(*) PIP PIP(*) EEZ-GCD

(2-var)

(2) 173.4 5.44 3.30 11.87 13.18 274.90
(1, ∗, 7) (−1, ∗, 4) (−1, ∗, 4) (1, ∗, 5) (1, ∗, 5) (5)

(4) 345.15 41.69 36.09 35.10 39.49 466.04
(1, ∗, 7) (−2, ∗, 7) (−2, ∗, 7) (4, ∗, 13) (4, ∗, 13) (3)

(6) 450.0 6.92 3.46 55.97 68.98 717.0
(1, ∗, 7) (2, ∗, 5) (2, ∗, 5) (2, ∗, 11) (2, ∗, 11) (4)

(9) 114.03 14.72 10.16 27.35 32.46 285.88
(−1, ∗, 7) (3, ∗, 3) (3, ∗, 3) (3, ∗, 7) (3, ∗, 7) (2)

(3-var)

(1) 643.56 3.68 1.70 5.71 5.71 29.99
(1, 1, 3) (2, 3, 3, 3) (2, 3, 3, 3) (2,−1, 7) (2,−1, 7) (2, 7)

(3) – 14.77 1.10 12.36 10.00 14.83
(1, 1, 11) (−1, 3, 4, 6) (−1, 3, 4, 6) (1,−1, 7) (1,−1, 7) (2, 7)

(continued on next page)



108 K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110

Table 1 (continued)

Example EZ-GCD PI PI(*) PIP PIP(*) EEZ-GCD

(3-var)

(5) – 32.52 13.29 77.56 111.94 180.49
(3, 1, 7) (−1, 2, 4, 5) (−1, 2, 4, 5) (−1, 1, 5) (−1, 1, 5) (3, 7)

(7) – 1140.53 126.71 953.56 62.07 856.72
(1, 1, 7) (2,−1, 5, 4) (2,−1, 5, 4) (−1, 1, 5) (−1, 1, 5) (3, 5)

(8) – 396.95 172.90 71.18 47.95 589.68
(−1, 1, 7) (−1, 3, 4, 6) (−1, 3, 4, 6) (−1, 1, 5) (−1, 1, 5) (2, 3)

(10) – 200.37 3.85 167.03 56.63 120.34
(1, 1, 7) (−1, 3, 4, 2) (−1, 3, 4, 2) (−1,−1, 5) (−1,−1, 5) (2, 3)

(11) – 453.25 363.89 60.75 62.89 1347.87
(1, 1, 7) (3,−1, 5, 4) (3,−1, 5, 4) (−1,−1, 5) (−1,−1, 5) (2, 3)

(12) – 383.05 107.65 181.92 246.56 3353.31
(1, 1, 7) (2,−1, 5, 4) (2,−1, 5, 4) (−1,−1, 7) (−1,−1, 7) (2, 3)

Times listed in Table 1 are in seconds. The symbol ‘‘−’’ indicates that it tookmore than 1 hour or the benchmark program that is
based on each algorithm ran out of computer memory. The modulus condition arrays (,,,) in this table were given appropriately
by the author and their meaning is as follows:
For the EZ-GCD algorithm,

(a, b, c)H⇒y− a, z − b, mod c ,
(a, ∗, c)H⇒y− a, mod c .
For example, for (3, 2, 7), the modulus ideal is y− 3, z − 2, mod 7.

For the PI (or PI(*)) algorithm,
(a, b, c, d)H⇒yc − a, zd − b,
(a, ∗, c)H⇒yc − a.
For example, for (3, ∗, 2), the modulus ideal is y2 − 3.

For the PIP (or PIP(*)) algorithm,
(a, b, c)H⇒yc − a, zc − b, mod c,
(a, ∗, c)H⇒yc − a, mod c .
For example, for (3, 2, 7), the modulus ideal is y7 − 3, z7 − 2, mod 7.

For the EEZ-GCD algorithm,
(a, b)H⇒y− a, z − b,
(a)H⇒y− a.
For example, for (3, 2), the modulus ideal is y− 3, z − 2.

From Table 1, we can infer that the PI (or PIP) algorithm is much faster than the EZ-GCD algorithm.
Furthermore, inmany cases, the time for the PI (or PIP) algorithm is shorter than or almost equal to that
for the EEZ-GCD algorithm. However, there are some exceptional cases where the time for the former
is longer than that for the latter. For example, this occurs in No. (7) in Table 1. The author thinks that
this is an effect of the use of the coefficient determination algorithm in the latter. Therefore, in such
cases, if we instead apply the PI(*) algorithm (or the PIP(*) algorithm) that can perform the coefficient
determination algorithm (Wang, 1980) for each Xi, (2≤i≤s), its time becomes shorter than that for
the latter.

Table 2
Comparison of the maximum number of terms among some algorithms

Example EZ-GCD PI PI(*) PIP PIP(*) EEZ-GCD

(2-var)

(2) [840, 162, 140] [299, 51, 37] [299, 51, 37] [135, 17, 26] [135, 17, 26] [717, 151, 95]
(4) [686, 180, 116] [399, 45, 35] [399, 45, 35] [161, 14, 21] [161, 14, 21] [520, 173, 83]
(6) [1069, 405, 125] [221, 85, 29] [221, 85, 29] [295, 71, 19] [295, 71, 19] [889, 321, 85]
(9) [685, 299, 135] [329, 102, 48] [329, 102, 48] [165, 53, 24] [165, 53, 24] [657, 243, 121]

(3-var)

(1) [2007, 577, 529] [393, 73, 65] [393, 10, 9] [82, 17, 17] [82, 5, 5] [69, 25, 24]
(3) [−,−,−] [835, 141, 155] [56, 15, 15] [67, 5, 9] [17, 3, 3] [159, 55, 54]
(5) [−,−,−] [826, 75, 51] [296, 27, 51] [607, 30, 53] [265, 11, 53] [586, 84, 139]
(7) [−,−,−] [7678, 312, 918] [748, 57, 50] [1740, 64, 115] [225, 15, 11] [745, 207, 139]



K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110 109

Table 2 (continued)

Example EZ-GCD PI PI(*) PIP PIP(*) EEZ-GCD

(3-var)

(8) [−,−,−] [4408, 555, 219] [358, 69, 39] [289, 55, 4] [51, 15, 4] [889, 166, 144]
(10) [−,−,−] [5208, 1142, 38] [162, 38, 38] [755, 230, 24] [70, 24, 24) [548, 122, 122]
(11) [−,−,−] [2056, 119, 181] [2056, 21, 30] [539, 22, 28] [539, 14, 14] [493, 65, 110]
(12) [−,−,−] [3164, 27, 538] [3164, 24, 58] [185, 7, 36] [185, 6, 21] [414, 105, 105]
The modulus condition arrays that are shown in Table 1 are used similarly for each case in Table 2. The symbol ‘‘−’’ indicates
that since it took more than one hour, the maximum number of terms was not calculated.
For [TA, TB, TC ] in Table 2, TA indicates the maximum number of terms that appear in any F

(k)
1 F

(k)
2 such that gP1 =

V≡F (k)1 F
(k)
2 (mod M) in the Hensel lifting step of each algorithm. Similarly, TB indicates the maximum number of terms that

appear in any F (k)1 , and TC indicates the maximum number of terms that appear in any F
(k)
2 .

Remark. When the program that is based on each algorithmwas carried out, F (k)1 and F
(k)
2 were computed in practice. However,

F (k)1 F
(k)
2 was not used directly. Instead, the author adopted the iteration of the equation V (k+1) = V (k) − F (k)1 F̂

(k)
2 − F

(k)
2 F̂

(k)
1 −

F̂ (k)1 F̂
(k)
2 , k∈N such that F

(k+1)
1 = F (k)1 + F̂

(k)
1 , F

(k+1)
2 = F (k)2 + F̂

(k)
2 , and V

(1)
= V − F (1)1 F

(1)
2 in the Hensel lifting routine of the

program. Furthermore, note that the relation TA≤TBTC does not always hold. For example, let I = x + y4 , J = x + y2 , and
gP1 = V = IJ . Then, by using S = (Y ) = (y3−2) in the PI algorithm, I = x+y(Y+2)≡F

(k)
1 (mod S), J = x+y2≡F (k)2 (mod S),

and V = x2 + (y2 + y(Y + 2))x+ (Y + 2)2≡F (k)1 F
(k)
2 (mod S), and so we have TB = 3, TC = 2 and TA = 7.

From these results in Table 2, we can infer that the maximum number of terms that appear in
F (k)1 F

(k)
2 in the PI (or PIP) algorithm is less than that in the EZ-GCD algorithm (because in the latter case

the numbers of terms in P1|y→y+1,z→z+1 for Nos. (3), (7), (10), (11), (12), P1|y→y+3,z→z+1 for No. (5),
and P1|y→y−1,z→z+1 for No. (8), respectively, become more than 10000).

4. Conclusions

From the description of the previous section, the comparison between the computational
complexity of the PI (or the PIP) algorithm and that of the EZ-GCD algorithm is consistent with the
experimental results in Tables 1 and 2. Therefore, the former can greatly reduce the computational
complexity and performs much faster than the latter in many cases. Consequently, the use of the
former is a solution of the bad-zero problem.
In the future, it is desirable that the PI (or the PIP) algorithm should find an optimum PI (or

PIP) automatically for input polynomials. Furthermore, the author thinks that the idea in this paper
(especially, that of the PIP algorithm) can be applied to the factorization of a multivariate polynomial
with higher-degree terms and the extension of the idea may be useful in finding the solution for
several other problems.

Acknowledgements

The author acknowledges the referees of the previous version of the paper for valuable comments
and Lester Clowney, Ph.D., of the National Institute of Advanced Industrial Science and Technology,
for refinement of the paper.

References

Brown, W.S., Traub, J.F., 1971. On Euclid’s algorithm and the theory of subresultants. J. ACM 18, 505–514.
Collins, G.E., 1967. Subresultants and reduced polynomial remainder sequences. J. ACM 14, 128–142.
Collins, G.E., 1966. Polynomial remainder sequences and determinants. Amer. Math. Monthly. 73 (7), 708–712.
Geddes, K.O., Czapor, S.R., Labahn, G., 1992. Algorithms for Computer Algebra. Kluwer Academic Publishers, 260–277.
Inaba, D., 2005. Factorization of multivariate polynomials by extended Hensel construction. SIGSAM Bull. 39, 142–154.
Kaltofen, E., Lobo, A., 1994. Factoring high-degree polynomials by the black box Berlekamp algorithm. In: Proc. ISSAC ’94, pp.
90–98.

Kaltofen, E., 1985. Sparse Hensel lifting. In: Proc. EUROCAL 85, pp. 4–17.
Moses, J., Yun, D.Y.Y., 1973. The EZ GCD algorithm. In: Proc. ACM 73, pp. 159–166.



110 K. Tsuji / Journal of Symbolic Computation 44 (2009) 99–110

Noro, M., Yokoyama, K., 2002. Yet Another practical implementation of polynomial factorization over finite fields. In: Proc.
ISSAC ’02, pp. 200–206.

Sasaki, T., Suzuki, M., 1992. Three new algorithms for multivariate polynomial GCD. J. Symbolic Comput. 13, 395–411.
Wang, P.S., 1980. The EEZ-GCD algorithm. SIGSAM Bull. 14, 50–60.
Wang, P.S., 1978. An improved multivariate polynomial factoring algorithm. Math. Comp. 32, 1215–1231.
Yun, D.Y.Y., 1980. The Hensel Lemma in Algebraic Manipulation. Garland Publishing.
Zippel, R., 1993. Effective Polynomial Computation. Kluwer Academic Publishers.
Zippel, R., 1979. Probabilistic algorithms for sparse polynomials. In: Proc. EUROSAM ’79, pp. 216–226.


	An improved EZ-GCD algorithm for multivariate polynomials
	Introduction
	Definitions and theorems
	Two new algorithms and their study
	New algorithms
	Analysis of computational complexity
	Computer experiments and some results

	Conclusions
	Acknowledgements
	References


