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Abstract

We show that the point spectrum of the standard Coulomb–Dirac operator H0 is the limit

of the point spectrum of the Dirac operator with anomalous magnetic moment Ha as the

anomaly parameter tends to 0: For negative angular momentum quantum number k; this
holds for all Coulomb coupling constants c for which H0 has a distinguished self-adjoint

realisation. For positive k; however, there are some exceptional values for c; and in general an
index shift between the eigenvalues of H0 and the limits of eigenvalues of Ha appears,

accompanied with additional oscillations of the eigenfunctions of Ha very close to the origin.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In a 1930 letter to O. Klein [9, letter 261] and in a survey to be given at the 8th
Solvay Congress, planned for October 1939, Pauli suggested to describe the motion
of a particle with rest mass m40; charge e; spin _=2 and magnetic moment ð1þ aÞmB

(mB ¼ e_
2mc

the Bohr magneton) in an electric field �rF and a magnetic field
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B ¼ curlA by means of the operator

H ¼ ca � p � e

c
A

� �
þ mc2bþ eF� amBðia � rFþ s � BÞ:

A revised version of this review appeared in [8] (the relevant equation is (91)); the
original manuscript was not published until 1993 in [10, pp. 827–901].

If FðxÞ ¼ VðjxjÞ and A ¼ 0; self-adjoint realisations of H in L2ðR3Þ4 are unitarily
equivalent to the orthogonal sum of self-adjoint realisations of

Ha ¼ s2p þ mc

_
s3 þ

k
r
þ amB

_c
V 0ðrÞ

� �
s1 þ

e

_c
VðrÞ

in L2ðð0;NÞÞ2; where kAZ\f0g is the angular momentum quantum number.
The first mathematical treatment of the operators H and Ha is due to Behncke [2–

4]. He showed that Ha has a unique self-adjoint realisation if aa0 for a very large
class of potentials V ; including the Coulomb potential VðrÞ ¼ �Ze

r
for all values of

the coupling constant Ze (for alternative proofs see [5,1]). This is in marked contrast
to the case a ¼ 0 where it is well known that H0 is essentially self-adjoint on its

minimal domain if and only if ðZe2

_c
Þ2pk2 � 1

4
: For larger values of Z the singular end-

point 0 is in the limit-circle case; but as long as ðZe2

_c
Þ2ok2 one still has a distinguished

self-adjoint realisation ofH0 defined by the requirement that functions in the domain
behave like the principal solution of the eigenvalue equation of H0 at 0:
The location of the essential spectrum of Ha is comparatively easy to determine

and for a wide range of potentials, notably the Coulomb potential, coincides with
that of H0 [2–4].
In the following, we normalise constants and write the Coulomb Hamiltonian as

Ha ¼ �is2
d

dr
þ s3 þ

k
r
þ a

r2

� �
s1 þ

c

r

assuming a; co0: (The cases of positive c and/or a can be reduced to this situation by
means of suitable unitary transformations.) The discrete spectrum ofH0 accumulates

at the right end-point of the gap ð�1; 1Þ in the essential spectrum. Since CN

0 ðð0;NÞÞ2

is a common core forH0 andHa if (and only if) c2pk2 � 1
4
; Ha converges toH0 in the

strong resolvent sense as a-0 [11, Theorem VIII.25(a)], and as a consequence, the
spectrum of Ha cannot expand in the limit a-0 for this range of the parameters c; k:
However, it is reasonable to expect (and has been used as a basis for a perturbative
calculation of the eigenvalues of Ha) that the point spectrum is stable in the limit
a-0 in the sense that the eigenvalues of Ha converge to those of H0; and each
eigenvalue of H0 is the limit of exactly one eigenvalue branch of Ha: Decoupling the
eigenvalue equation of Ha and using a comparison theorem for principal and non-
principal solutions of second-order equations, Behncke [4] proved this stability for

k24c2 þ ð3
2
Þ2 if ko0; and k4c2 þ 5

2
if k40: He conjectured that k24c2 þ 5

2
might

be sufficient in the latter case. (Farther-reaching conjectures are to be found in
[12, p. 218 seq.])
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In the present paper, we study the convergence of the point spectrum of Ha as a

tends to 0; for the whole parameter range for which a distinguished realisation of H0

exists, i.e. for k2 � c240: We find a surprising qualitative difference in the limiting
behaviour depending on the sign of k: Indeed, for negative k; the eigenvalues of H0

are exactly the limits of eigenvalues of Ha for all values of c: For positive k; however,
there are (finitely or infinitely many) exceptional values c04c14? in ð�k; 0Þ; for
cAðcm; cm�1Þ; the eigenvalues of H0 are still the limits of the eigenvalues of Ha; but
with a shift of size m in the eigenvalue numbers. This shift is reflected in the
appearance of m additional oscillations of the corresponding eigenfunction of Ha;
compared to that of H0; very close to the origin. It seems a delicate question to
decide whether the number of exceptional values cm is finite or infinite; in any case it
grows beyond all bounds with increasing k:
More precisely, we have the following results.

Theorem 1.1 (Spectral convergence and stability for negative k). Let ko0; cAðk; 0Þ;
and let l0 [not] be an eigenvalue of the Coulomb–Dirac Hamiltonian

H0 ¼ �is2
d

dr
þ s3 þ

k
r
s1 þ

c

r
:

Let 0oeodistðl0; sðH0Þ\fl0gÞ=2: Then for ao0 with sufficiently small jaj the

Hamiltonian with anomalous magnetic moment

Ha ¼ �is2
d

dr
þ s3 þ

k
r
þ a

r2

� �
s1 þ

c

r

has exactly one [no] eigenvalue la in ðl0 � e; l0 þ eÞ:

Theorem 1.2 (Spectral convergence and stability for positive k). Let k40; then there

are at least ½ðk log 4Þ=p� 1� values 04c04c14?4� k; which can only accumulate

at �k; such that the following holds.
Let cAð�k; 0Þ\fc0; c1;yg; and let l0 [not] be an eigenvalue of H0: Let

0oeodistðl0; sðH0Þ\fl0gÞ=2: Then for ao0 with sufficiently small jaj; Ha has exactly

one [no] eigenvalue la in ðl0 � e; l0 þ eÞ:

Here ½x� :¼ supfmAZ j mpxg ðxARÞ denotes the GauX bracket.
The proof of these theorems is based on oscillation theory, in particular on an

asymptotic study of the behaviour of the Prüfer angle of solutions of the eigenvalue
equation for Ha (i.e. the solutions of Eq. (2) below) as a tends to 0: After rescaling
R ¼ r=jaj; the mass term and spectral parameter are lower-order terms in the limit
and can be omitted in order to obtain an overview of solutions in the asymptotic
regime near the origin.
The direction field of the resulting simplified Eq. (1) (where k ¼ jkj and

a ¼ �sgn k), and hence the qualitative behaviour of its solutions, shows a
fundamental difference depending on the sign of a:

ARTICLE IN PRESS
H. Kalf, K.M. Schmidt / J. Differential Equations 205 (2004) 408–423410



For negative k (a ¼ 1), the ðR; WÞ plane is divided into essentially horizontal strips
in which the right-hand side of (1) is alternatingly positive and negative (cf. Fig. 1);

as a consequence, the distinguished angle W0 which corresponds to an L2ð0; �Þ
solution of the eigenvalue equation for Ha; cannot change by more than p; and
eventually tends towards an asymptotic value WþðcÞ (Proposition 2.3(a)) which turns
out to be the limiting angle at 0 of the principal solution of the eigenvalue equation
for H0 as well (Lemma 3.1(b)). On the original r scale, the convergence becomes
faster as a-0:
A stability argument (Lemma 3.2, Proposition 3.3) then shows that for a certain

point R40 the influence of the previously neglected mass and spectral parameter
terms can be controlled on ð0;RÞ; and that the solution of the full Prüfer equation (2)
converges at that point to the Prüfer angle of the principal solution of the equation
for a ¼ 0:
Theorem 1.1 follows in view of the uniformity of this convergence with

respect to the spectral parameter, and the fact that the presence of the anomalous
magnetic moment does not significantly affect the behaviour of the solutions
at N:
A curious phenomenon occurs, however, in the case of positive k ða ¼ �1Þ: For R

close to 0 and for large R; one again has W-regions of opposite sign of the right-hand
side of (1), and hence of essential confinement of the solutions, and for large R; the
distinguished angle W0 generically tends to the limit WþðcÞmod p: In contrast to the
previous situation, there is now a R-interval ðR�ðcÞ; RþðcÞÞ on which the right-hand
side of (1) has no zeros and is strictly negative (cf. Fig. 2).
Depending on c; the size of this gap increases, vanishing as c-0 and becoming

infinite as c-� k: Moreover, one can show that the angle W0 changes by several
multiples of p in this interval if �c is large enough (Proposition 2.3(b)), and hence
will eventually converge to WþðcÞ � mp for some mAN0: Thus the corresponding

L2ð0; �Þ solution of the eigenvalue equation for Ha will perform m oscillations which
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Fig. 1. Zones in the directional field of the simplified equation for a ¼ 1: The arrows indicate the sign of

the right-hand side of (1), the solid lines represent its zeros.
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are absent in the principal solution of the eigenvalue equation for H0; to which it
however converges in phase at the point R40:
Theorem 1.2 then follows by way of the same stability argument as before (Lemma

3.2, Proposition 3.3).
As c crosses the exceptional value, a transition of the asymptotic limit from

WþðcÞ � mp to WþðcÞ � ðm þ 1Þp takes place. At c ¼ cm; the distinguished solution W0
of the simplified equation (1) approaches an unstable limit as R-N: The
asymptotics of the solutions of the full Prüfer equation (2) appear to be a rather
delicate matter in these cases, and the limiting behaviour of Ha with c ¼ cm remains
an interesting open question.
The basic analytical tool of the present paper is the study of the direction field of

Prüfer and Riccati type ordinary differential equations near a singularity (for related
earlier but simpler results see [7] and the references therein). The underlying
comparison techniques are outlined in the appendix.

2. The simplified equation

In this section, we consider the scaled and simplified equation

RW0 ¼ c þ ðk þ a=RÞ sin 2W ð1Þ

(with k40; cAð�k; 0Þ and aAf�1; 1g) which arises from the Prüfer equation (2)
equivalent to the eigenvalue equation for Ha by omitting the Oð1Þ ðR-NÞ terms
after rescaling r ¼ jajR; which eliminates jaj:
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Fig. 2. Zones in the directional field of the simplified equation for a ¼ �1: The arrows indicate the sign of
the right-hand side of (1), the solid lines represent its zeros.
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The asymptotic zeros W7ðcÞ of the right-hand side of Eq. (1) satisfy

0oW�ðcÞop=4oWþðcÞop=2;

sin 2W7ðcÞ ¼ �c=k; tan W7ðcÞ ¼ k7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p

�c
:

Moreover, in case a ¼ �1 there are the exceptional points R7ðcÞ ¼ 1=ðk7cÞ;
between which the right-hand side of (1) is strictly negative; for later convenience we
define RþðcÞ ¼ 0 if a ¼ 1:

We first show that (1) has a stable and an unstable asymptotic critical point at
both singular end-points 0 and N (Lemmas 2.1 and 2.2). The distinguished
(unstable) solution at 0; W0; converges to the stable limit at N for all c if a ¼ 1; if
a ¼ �1; one has the convergence with a shift by an integer multiple of p unless c is
one of a sequence of exceptional values (Proposition 2.3).

Lemma 2.1 (The existence of a distinguished solution atN). For each cAð�k; 0Þ; (1)
has a unique solution WNð�; cÞ such that

lim
R-N

WNðR; cÞ ¼ W�ðcÞ:

All other solutions Wð�; cÞ satisfy either WðR; cÞ ¼ WNðR; cÞ þ mpðR40Þ for some mAZ;
or else limR-N WðR; cÞ ¼ WþðcÞmod p: Furthermore, for each R40; WNðR; �Þ is

continuous and strictly decreasing.

The proof of this lemma, based on an asymptotic study of the direction field of (1),
can be found in the appendix. Similarly, one can prove

Lemma 2.2 (The existence of a distinguished solution at 0). For each cAð�k; 0Þ there

is a unique solution W0ð�; cÞ such that

lim
R-0

W0ðR; cÞ ¼
p if a ¼ �1;
p=2 if a ¼ 1:

�

All other solutions are either shifts of W0 by an integer multiple of p; or have

lim
R-0

WðR; cÞ ¼
p=2 mod p if a ¼ �1;
0 mod p if a ¼ 1:

�

For fixed #R40; W0ð#R; �Þ is continuous non-decreasing.

Proposition 2.3.

(a) If a ¼ 1; we have limR-N W0ðR; cÞ ¼ WþðcÞ ðcAð�k; 0ÞÞ:

ARTICLE IN PRESS
H. Kalf, K.M. Schmidt / J. Differential Equations 205 (2004) 408–423 413



(b) If a ¼ �1; there are at least ½ðk log 4Þ=p� 1� values 04c04c14c24?4� k

(accumulating at �k if infinitely many) such that

lim
R-N

W0ðR; cÞ ¼ WþðcÞ � mp ðcACmÞ

and limR-N W0ðR; cmÞ ¼ W�ðcmÞ � mp:
Here Cm :¼ ðcm; cm�1Þ (where c�1 :¼ 0) for all mAN0 for which cm exists; if

there is a minimal cmmax
4� k; define Cmmaxþ1 :¼ ð�k; cmmax

Þ:

Remark. For later convenience, we also define C0 :¼ ð�k; 0Þ in the case a ¼ 1:

Proof. (a) The interval ½p=4;p� is stable for (1) by Lemma A.2 (cf. the appendix), so
W0ð�; cÞ (which by Lemma 2.2 is close to p=2 for small R) cannot tend to W�ðcÞmod p:
The assertion follows by Lemma 2.1.
(b) In the limit c-0; we have, using W0ðRÞXð1=RÞðc � jk � 1=RjÞ;

W0ðRþðcÞ; cÞ � W0ðR�ðcÞ; cÞ

X

Z 1=k

R�ðcÞ

1

R
c � 1

R
þ k

� �
dRþ

Z RþðcÞ

1=k

1

R
c þ 1

R
� k

� �
dR

¼ k � 1

R�ðcÞ
� ðc þ kÞlogðkR�ðcÞÞ �

1

RþðcÞ
þ k þ ðc � kÞlogðkRþðcÞÞ

¼ ðc � kÞlog k

k þ c
� ðc þ kÞlog k

k � c
-0:

As a consequence, limR-0 W0ðR; cÞ ¼ WþðcÞ for co0 sufficiently close to 0:
On the other hand, noting that W0ðRÞpð1=RÞðc þ jk � 1=RjÞ and WNðRþðcÞ; cÞA

½0; p=4�; we have

W0ð1=k; cÞ � WNð1=k; cÞp W0ðR�ðcÞ; cÞ þ
Z 1=k

R�ðcÞ

1

R
c þ 1

R
� k

� �
dR

� WNðRþðcÞ; cÞ þ
Z RþðcÞ

1=k

1

R
c � 1

R
þ k

� �
dR

p p� k þ 1

R�ðcÞ
þ ðk � cÞlogðkR�ðcÞÞ þ

1

RþðcÞ
� k

þ ðk þ cÞlogðkRþðcÞÞ-p� k log 4 ðc-� kÞ:

The assertion follows, as W0ð1=k; �Þ and WNð1=k; �Þ are continuous and monotone
non-decreasing and decreasing, resp. &

Remark. The first part of the proof of Proposition 2.3(b) yields a quantitative
estimate for the first exceptional value c0: Indeed, using Lemma A.1 one can see that
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W0ðR�ðc0Þ; c0ÞX3p
4 and W0ðRþðc0Þ; c0Þpp

4; so

p
2
pðc0 � kÞlog k þ c0

k
� ðc0 þ kÞlog k � c0

k
:

Setting x :¼ �c0=kAð0; 1Þ and observing that

x log
1þ x

1� x
� logð1� x2Þ ¼

XN
j¼1

x2j 1

j
þ 1

j � 1
2

 !

¼ x2 3þ x2
XN
j¼0

x2j 1

j þ 2þ
1

j þ 3
2

 ! !

p x2 3þ x2

1� x2
7

6

� �
¼ x2ð18� 11x2Þ

6ð1� x2Þ ;

we find 11x4 � ð18þ 3p=kÞx2 þ 3p=kp0; and thus

c20X
1

22
18k2 þ 3pk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð18k2 þ 3pkÞ2 � 132pk3

q� �
:

For k ¼ 1; this gives the bound c0p� 0:64157:
Hence, one has convergence and stability of the eigenvalues by Theorem 1.2 for all

kAZ\f0g at least for nuclear charge number Zp87:

3. The convergence of the original equation for a-0; cACm

Throughout this section, we fix a; mAf�1; 1g and k40; and assume that cACm for
some admissible mAN0:
Consider the Prüfer equation

Y0 ¼ c

r
þ k

r
þ ajaj

r2

� �
sin 2Yþ m cos 2Y� l ð2Þ

and the corresponding equation for a ¼ 0;

X 0 ¼ c

r
þ k

r
sin 2X þ m cos 2X � l: ð3Þ

We shall study the following distinguished solutions, whose existence and
properties can be proved in analogy to Lemma 2.1.
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Lemma 3.1.

(a) There is exactly one solution Y0 of (2) with

lim
r-0

Y0ðr; c; a; lÞ ¼
p if a ¼ �1;
p=2 if a ¼ 1;

�

all other solutions either being shifts of Y0 by an integer multiple of p; or having

lim
r-0

Yðr; c; a; lÞ ¼
p=2 mod p if a ¼ �1;
0 mod p if a ¼ 1:

�

For fixed r; c and a; Y0ðr; c; a; �Þ is continuous decreasing.
(b) There is exactly one solution X0 of (3) with

lim
r-0

X0ðr; c; lÞ ¼ WþðcÞ;

all other solutions either being shifts of X0 by an integer multiple of p; or having

lim
r-0

Xðr; c; lÞ ¼ W�ðcÞmod p:

For fixed r and c; X0ðr; c; �Þ is continuous decreasing.

Now we show that the solutions X0 and Y0 become asymptotically close mod p at
some point for small a; this is a consequence of the convergence of the solution W0
(which is close to Y0) of the simplified equation (Proposition 2.3).

Lemma 3.2. For each e40 there are r0ðeÞAð0; e� and a040 such that for all lA½�1; 1�
and �a0oao0

jY0ðr0ðeÞ; c; a; lÞ þ mp� WþðcÞj o
2e
3
;

jX0ðr0ðeÞ; c; lÞ � WþðcÞj o
e
3
;

and consequently jY0ðr0ðeÞ; c; a; lÞ þ mp� X0ðr0ðeÞ; c; lÞjoe:

Proof. Let g40 be so small that ½c � g; c þ g�CCm: Then there is dAð0; gÞ such that
jWþðc7dÞ � WþðcÞjoe=3: By Proposition 2.3 there is R040 such that jW0ðR; c7dÞ �
Wþðc7dÞ þ mpjoe=3 ðRXR0Þ; so the function r/W0ðr=jaj; cÞ (which is a solution of
the simplified equation

*Y0ðrÞ ¼ c

r
þ k

r
þ ajaj

r2

� �
sin 2 *YÞ
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satisfies jW0ðr=jaj; c7dÞ � WþðcÞ þ mpjo2e=3 ðjajp r
R0
; r40Þ: Now let r0ðeÞ :¼

min fd=2; eg: Estimating in (3) and (2)

jm cos 2X � lj; jm cos 2Y� ljp2pd
r

ðrpr0ðeÞÞ;

Lemma A.1 yields the bounds

W0ðr=jaj; c � dÞpY0ðr; c; aÞpW0ðr=jaj; c þ dÞ ð0orpr0ðeÞÞ

and

Wþðc � dÞpX0ðr; cÞpWþðc þ dÞ ð0orpr0ðeÞÞ

and the assertion follows. &

The preceding lemma shows that the solutions converge to each other; however,
the point of comparison r0ðeÞ depends on e and tends to 0 rather rapidly. We now
show that the convergence remains stable, and hence also holds at a certain fixed
point R:

Proposition 3.3. There is R40 such that lima-0 Y0ðR; c; a; lÞ ¼ X0ðR; c; lÞ uniformly

w.r.t. lA½�1; 1�:

Proof. Consider the Riccati equations for zðrÞ :¼ tanX0ðr; cÞ and yðr; aÞ :¼
Y0ðr; c; aÞ;

rz0 ¼ ðc � ðlþ 1ÞrÞz2 þ 2kz þ c � ðl� 1Þr ð4Þ

and

ry0 ¼ ðc � ðlþ 1ÞrÞz2 þ 2ðk þ ajaj=rÞz þ c � ðl� 1Þr: ð5Þ

Let yþðcÞ :¼ tan WþðcÞ ¼ kþ
ffiffiffiffiffiffiffiffiffi
k2�c2

p

�c
: Choose 0odo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
=ð3jcjÞ and 0oRpd so

small that

3

d
j jlþ 1jðyþðcÞ þ dÞ2 þ jl� 1j jR; 6jlþ 1jðyþðcÞ þ dÞRo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p

for all lA½�1; 1�: For any r̂Að0;RÞ; set

a1ðr̂Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p

6ðyþðcÞ
d

þ 1Þ
r̂:

Now let e40; eoRpd: By Lemma 3.2, there is r0ðeÞoe and a040 such that

jzðr0ðeÞÞ � yþðcÞjoe=2; jyðr0ðeÞ; aÞ � yþðcÞjoe=2 ð0ojajoa0Þ:
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On ½r0ðeÞ;R�; the interval ½yþðcÞ � d; yþðcÞ þ d� is stable for (4) and (5) by Lemma
A.2 if jajoa1ðr0ðeÞÞ; since the right-hand side for yþðcÞ7d takes the value

ðc � ðlþ 1ÞrÞðyþðcÞ7dÞ2 þ 2ðk þ ajaj=rÞðyþðcÞ7dÞ þ c � ðl� 1Þr

¼ cd272ðk þ yþðcÞcÞd þ 2 ajaj
r
ðyþðcÞ7dÞ � ðlþ 1ÞrðyþðcÞ7dÞ2 � ðl� 1Þr

8d 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
7cd72

ajaj
r

yþðcÞ
d

71

� �
8ððlþ 1ÞðyþðcÞ7dÞ2 � l� 1Þr

d

� 
;

and the factor in square brackets is not less than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
:

Hence jyðr; aÞ � yþðcÞj; jzðrÞ � yþðcÞjpd for all rA½r0ðeÞ;R� if 0ojajo
minfa0; a1ðr0ðeÞÞg:
In the differential equation for the difference xðr; aÞ :¼ yðr; aÞ � zðrÞ;

rx0 ¼ ðc � ðlþ 1ÞrÞðy þ zÞ þ 2kÞ x � 2ajaj
r

y; ð6Þ

the factor of x on the right-hand side can be estimated

cðyðr; aÞ þ zðrÞÞ þ 2k � ðlþ 1Þrðy þ zÞ

p� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
þ cd

� �
þ 2Rjlþ 1jðyþðcÞ þ dÞ

p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
:

Hence, if a additionally satisfies

jajo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
r0ðeÞ

2ðyþðcÞ þ dÞ e;

then the interval ½�e; e� is stable for (6) on ½r0ðeÞ;R� by Lemma A.2, and because of
jxðr0ðeÞ; aÞjoe we find jyðR; aÞ � zðRÞjoe: &

For the proof of the main theorems, we need the following distinguished solution
of (3) at infinity, whose existence and properties can be proven along the lines of

Lemma 2.1. Let X7ðlÞA½0; p� such that cos 2X7ðlÞ ¼ ml and sin 2X7ðlÞ ¼
7m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
ðlA½�1; 1�Þ:

Lemma 3.4. For lA½�1; 1�; there is exactly one solution XN of (3) with

lim
r-N

XNðr; c; lÞ ¼ X�ðlÞ;
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all other solutions either being shifts of X0 by an integer multiple of p; or having

lim
r-N

Xðr; c; lÞ ¼ XþðlÞmod p:

For fixed r and c; XNðr; c; �Þ is continuous increasing.

Now we are in a position to prove the main results.

Proof of Theorem 1.1. Let a ¼ 1; m ¼ �1; k ¼ jkj ¼ �k; and R40 as in Proposition
3.3. It is sufficient to prove the assertion for the auxiliary Hamiltonian

H̃a ¼ �is2
d

dr
þ s3 þ

k
r
þ a

r2
wð0;RÞðrÞ

� �
s1 þ

c

r

instead of Ha; since the eigenvalues of Ha are within jaj=R of those of H̃a:
Introducing the Prüfer transformation

u ¼ juj
sin W

�cos W

� �

in the eigenvalue equation ðH̃a � lÞ u ¼ 0; we find the Prüfer equation for W

W0 ¼ �cos 2W� k
r
þ a

r2
wð0;RÞðrÞ

� �
sin 2Wþ c

r
� l;

which in view of the above choices for a; m and k coincides with (2) on ð0;RÞ and with
(3) on ðR;NÞ:
For the Prüfer radius juj we have

ðlogjujÞ0ðrÞ ¼ �sin 2Wþ k
r
þ a

r2
wð0;RÞðrÞ

� �
cos 2W:

Hence, if W ¼ Y0 on ð0;RÞ; where Y0 is the distinguished solution from Lemma

3.1(a) (with a ¼ 1), we find ðlogjujÞ0ðrÞBjaj=r2 ðr-0Þ; and hence
Z
0

juj2ðrÞ drBconst
Z
0

e�2jaj=r droN:

Thus Y0 is the Prüfer angle of an L2ð0; �Þ solution of the eigenvalue equation for H̃a:
Similarly, for a ¼ 0 we find for a solution u with Prüfer angle W ¼ X0; where X0 is

the distinguished solution from Lemma 3.1(b),

ðlogjujÞ0ðrÞB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p

r
;
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so jujðrÞBconst r
ffiffiffiffiffiffiffiffiffi
k2�c2

p
ðr-0Þ; whereas for all other solutions v

ðlogjvjÞ0ðrÞB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p

r

and hence jvjðrÞBconst r�
ffiffiffiffiffiffiffiffiffi
k2�c2

p
ðr-0Þ: Thus X0 is the Prüfer angle of the principal

solution of the eigenvalue equation for H0:
Analogously, if (for either ao0 or a ¼ 0) W ¼ XN on ðR;NÞ; where XN is the

distinguished solution from Lemma 3, we have

ðlogjujÞ0ðrÞ ¼ �sin 2XN � k

r
cos 2XNB�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
ðr-NÞ;

so Z
N

juj2ðrÞ drBconst
Z

N

e�2
ffiffiffiffiffiffiffiffi
1�l2

p
r droN:

Thus XN is the Prüfer angle of an L2ð�;NÞ solution of the eigenvalue equations for
H0 and H̃a:

As a consequence, the eigenvalues of H̃a are the (isolated) values of l at which the
monotone decreasing continuous function Y0ðR; a; c; �Þ and the monotone increasing
continuous function XNðR; c; �Þ take the same value mod p: Similarly, the
eigenvalues of H0 are the intersection points mod p of X0ðR; c; �Þ and XNðR; c; �Þ:
Hence the assertion follows in view of the uniform convergence of Y0ðR; a; c; �Þ to
X0ðR; c; �Þ as a-0 (Proposition 3.3). &

Proof of Theorem 1.2. Let a ¼ �1; m ¼ 1; k ¼ jkj ¼ k; and R40 as in Proposition
3.3. As in the preceding proof, it is sufficient to show the assertion for the auxiliary

Hamiltonian H̃a: We now use the Prüfer transformation

u ¼ juj
cos W

sin W

� �
;

which leads to the Prüfer equation

W0 ¼ cos 2Wþ k
r
þ a

r2
wð0;RÞðrÞ

� �
sin 2Wþ c

r
� l;

which in view of the above choices for a; m and k coincides with (2) on ð0;RÞ and with
(3) on ðR;NÞ: By studying the asymptotics of juj as above, we again find that Y0

from Lemma 3.1(a) corresponds to an L2ð0; �Þ solution of the eigenvalue equation for
H̃a; X0 from Lemma 3.1(b) corresponds to the principal solution of the eigenvalue

equation for H0; and XN corresponds to an L2ð�;NÞ solution of either eigenvalue
equation.
Hence the assertion follows as in the preceding proof. &
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Appendix A

In the proofs of this paper we frequently use the following fundamental observations
about first-order ordinary differential equations. The first lemma (cf. [6, p. 27]) is
sometimes called Čaplygin’s inequality, but actually goes back to Peano [6, p. 44].

Lemma A.1. Let ICR be an interval, x0AI and fj : I � R-R locally integrable in the

first, and locally Lipschitz continuous in the second argument, jAf1; 2g; with

f1ðx; yÞpf2ðx; yÞ ðxAI ; yARÞ: Furthermore, let y01py02; and yj be the solution of the

initial value problem

y0ðxÞ ¼ fjðx; yÞ; yðx0Þ ¼ y0j ðjAf1; 2gÞ:

Then y1ðxÞpy2ðxÞ ðxAI ; xXx0Þ:

An immediate consequence is the following stability criterion.

Lemma A.2. Let ICR be an interval, f : I � R-R locally integrable in the first, and

locally Lipschitz continuous in the second argument. The interval ½y1; y2� is stable for

the differential equation

y0ðxÞ ¼ f ðx; yÞ ðA:1Þ

on I if f ðx; y1Þ40; f ðx; y2Þo0 ðxAIÞ:

Here an interval J is called stable on I for (A.1) if yðx0ÞAJ )
yðxÞAJ ðxAI ; xXx0Þ for all x0AI :
We now use these observations to prove Lemma 2.1.

Proof of Lemma 2.1. (a) Let cAð�k; 0Þ: Define J7 :¼ fWAR j7ðc þ k sin 2WÞ40g;
and j

ðeÞ
7 :¼ fWAJ7j jW� W7ðcÞ þ jpj4eðjAZÞg ðe40Þ:

Then for each e40 there are g40; P04RþðcÞ such that for RXP0

7ðc þ ðk þ a=RÞsin WÞ4g ðWAJ
ðeÞ
7 Þ:

Now consider a solution Wð�; cÞ of (1). If for all e40 there is P40 and jAZ such
that

jWðR; cÞ � R�ðcÞjpe ðR4PÞ;

this means that limR-N WðR; cÞ ¼ R�ðcÞ � jp for some jAZ:
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Otherwise, let e be already so small that this is not true, and g;P040 as above.
Then there is R04P0 such that jWðR0; cÞ � W�ðcÞ þ jpj4e ðjAZÞ; and hence

WðR0; cÞAJ
ðeÞ
þ ,JðeÞ

� ,
[
jAZ

½WþðcÞ � jp� e; WþðcÞ � jpþ e�:

In J
ðeÞ
7 we have 7W0ðR; cÞ4g=R; so if WðR0; cÞAJ

ðeÞ
7 ; then

7WðR; cÞX7WðR0; cÞ � g log R=R0

as long as WðR; cÞ remains in J
ðeÞ
7 ; consequently there is R1 and jAZ such that

WðR1; cÞA½WþðcÞ � jp� e; WþðcÞ � jpþ e�:
The latter interval is stable by Lemma A.2. As e40 was arbitrary, it follows that

limR-N WðR; cÞ ¼ WþðcÞmod p:
(b) Let G be an open interval with %GCð�k; 0Þ; and #R4RþðcÞ ðcAGÞ: For #WAR and

cAG; denote by WðR; c; #WÞ the solution of (1) with initial value Wð#R; c; #WÞ ¼ #W; and
consider the sets

Sj :¼ ðc; #WÞAð�k; 0Þ � Rj lim
R-N

WðR; c; #WÞ ¼ WþðcÞ � jp
� �

;

jAZ: Sj is open. Indeed, let ðc0; W0ÞASj; d :¼ ðWþðc0 � p=4Þ=2: Since WþðcÞ depends
continuously on c; there is e40 such that

½WþðcÞ � d; WþðcÞ þ d�Cðp=4; pÞ ðcA½c0 � e; c0 þ e�Þ:

Now let R0X#R be so large that jWðR0; c0; W0Þ � Wþðc0Þ þ jpjod=2: As WðR0; c; #WÞ
depends continuously on ðc; #WÞ; there is positive *eoe with

jWðR0; c; #WÞ � Wþðc0Þ þ jpjod ðcA½c0 � *e; c0 þ *e�; #WA½W0 � *e; W0 þ *e�Þ

and therefore WðR0; c; #WÞ þ jp lies in the stable interval ðp=4; pÞ:
By (a) limR-N WðR; c; #WÞ ¼ WþðcÞ � jp; i.e.

ðc; #WÞASj ðcA½c0 � *e; c0 þ *e�; #WA½W0 � *e; W0 þ *e�Þ:

(c) For each cAð�k; 0Þ; there is exactly one solution WNð�; cÞ such that
limR-N WNðR; cÞ ¼ W�ðcÞ: Indeed, there is at least one, as c is in some suitable set

G and the corresponding sets

SjðcÞ ¼ f #WAð0; p=4Þjðc; #WÞASjg;

jAf0; 1g; are nonempty by (a) and open by (b).
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Assume there are two solutions W1oW2 with limR-N WiðRÞ ¼ W�ðcÞ; iAf1; 2g: Then
j :¼ 2ðW2 � W1Þ40 satisfies

R j0ðRÞ ¼ 2ðk þ a=RÞðsin 2W2 � sin 2W1Þ

¼ 2ðk þ a=RÞ sin 2W1
cos j� 1

j
þ cos 2W1

sin j
j

� �
j

B 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � c2

p
j40 ðR-NÞ;

contradicting jðRÞ-0:
(d) Finally, for fixed #R40; WNð#R; cÞ is strictly monotone decreasing: if c1oc2 and

WNð#R; c1ÞpWNð#R; c2Þ; then by Lemma A.1

W�ðc1Þ ¼ lim
R-N

WNðR; c1Þp lim
R-N

WNðR; c2Þ ¼ W�ðc2Þ;

which is not true.
Also, WNð#R; �Þ is continuous. Indeed, if cnsĉ ðn-NÞ; then WNð#R; cnÞ4WNð#R; ĉÞ

because of the monotonicity, so limn-N WNð#R; cnÞXWNð#R; ĉÞ: However, ‘4’ would
imply ðĉ; limn-N WNð#R; cnÞÞAS0 in contradiction to the facts that S0 is open and
ðcn; WNð#R; cnÞÞeS0 ðnANÞ: The right continuity follows in the same way.
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