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Abstract

We show that the point spectrum of the standard Coulomb-Dirac operator H is the limit
of the point spectrum of the Dirac operator with anomalous magnetic moment H, as the
anomaly parameter tends to 0. For negative angular momentum quantum number «, this
holds for all Coulomb coupling constants ¢ for which Hy has a distinguished self-adjoint
realisation. For positive k, however, there are some exceptional values for ¢, and in general an
index shift between the eigenvalues of Hy and the limits of eigenvalues of H, appears,
accompanied with additional oscillations of the eigenfunctions of H, very close to the origin.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In a 1930 letter to O. Klein [9, letter 261] and in a survey to be given at the 8th
Solvay Congress, planned for October 1939, Pauli suggested to describe the motion
of a particle with rest mass m >0, charge e, spin #/2 and magnetic moment (1 + a)up

(:“B:% the Bohr magneton) in an electric field —V® and a magnetic field
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B = curl A by means of the operator
H = co- (p—gA) +mc* B+ ed — aug(io - VP + o - B).

A revised version of this review appeared in [8] (the relevant equation is (91)); the
original manuscript was not published until 1993 in [10, pp. 827-901].

If &(x) = V(|x|) and 4 = 0, self-adjoint realisations of H in L2(R*)* are unitarily
equivalent to the orthogonal sum of self-adjoint realisations of
mc

h

K a
K, ang

r he

e

H, =0+ he

o3 + ( V'(r))m +—V(r)
in L2((0, 00))?, where ke Z\{0} is the angular momentum quantum number.

The first mathematical treatment of the operators H and H, is due to Behncke [2—
4]. He showed that H, has a unique self-adjoint realisation if a#0 for a very large
class of potentials ¥, including the Coulomb potential V' (r) = —% for all values of
the coupling constant Ze (for alternative proofs see [5,1]). This is in marked contrast

to the case a = 0 where it is well known that H, is essentially self-adjoint on its

minimal domain if and only if (4)* < x>

— %. For larger values of Z the singular end-
point 0 is in the limit-circle case; but as long as (Zh—i,z)2 <« one still has a distinguished
self-adjoint realisation of Hj defined by the requirement that functions in the domain
behave like the principal solution of the eigenvalue equation of Hj at 0.

The location of the essential spectrum of H, is comparatively easy to determine
and for a wide range of potentials, notably the Coulomb potential, coincides with
that of Hy [2-4].

In the following, we normalise constants and write the Coulomb Hamiltonian as

. d K a c
H, =—iocr—+o03+ (—+—2>01 + -
dr ror r
assuming a, ¢ <0. (The cases of positive ¢ and/or a can be reduced to this situation by
means of suitable unitary transformations.) The discrete spectrum of H,y accumulates
at the right end-point of the gap (—1, 1) in the essential spectrum. Since Cy° ((0, c0 ))?
is a common core for Hy and H, if (and only if) ¢* <x? — i, H, converges to H, in the
strong resolvent sense as ¢—0 [11, Theorem VIII.25(a)], and as a consequence, the
spectrum of H, cannot expand in the limit ¢ — 0 for this range of the parameters c, k.
However, it is reasonable to expect (and has been used as a basis for a perturbative
calculation of the eigenvalues of H,) that the point spectrum is stable in the limit
a—0 in the sense that the eigenvalues of H, converge to those of Hj, and each
eigenvalue of Hj is the limit of exactly one eigenvalue branch of H,. Decoupling the
eigenvalue equation of H, and using a comparison theorem for principal and non-
principal solutions of second-order equations, Behncke [4] proved this stability for
K2>c? 4 (3)7 if k<0, and k>c? 43 if k>0. He conjectured that x*>c? 4 3 might
be sufficient in the latter case. (Farther-reaching conjectures are to be found in
[12, p. 218 seq.])
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In the present paper, we study the convergence of the point spectrum of H, as a
tends to 0, for the whole parameter range for which a distinguished realisation of H
exists, i.e. for k* — ¢>0. We find a surprising qualitative difference in the limiting
behaviour depending on the sign of k. Indeed, for negative k, the eigenvalues of H
are exactly the limits of eigenvalues of H, for all values of ¢. For positive x, however,
there are (finitely or infinitely many) exceptional values ¢y>¢; > -+ in (—x,0); for
ce(cm, cm—1), the eigenvalues of H are still the limits of the eigenvalues of H,, but
with a shift of size m in the eigenvalue numbers. This shift is reflected in the
appearance of m additional oscillations of the corresponding eigenfunction of H,,
compared to that of Hj, very close to the origin. It seems a delicate question to
decide whether the number of exceptional values ¢, is finite or infinite; in any case it
grows beyond all bounds with increasing «.

More precisely, we have the following results.

Theorem 1.1 (Spectral convergence and stability for negative x). Let k<0, ce(k,0),
and let Ay [not] be an eigenvalue of the Coulomb—Dirac Hamiltonian

.d K c
Hy = —1025—1-03 +;01+;.

Let 0<e<dist(lo,a(Ho)\{40})/2. Then for a<O0 with sufficiently small |a| the
Hamiltonian with anomalous magnetic moment

Cd K a c
Ho=—io gt ot (7 5)on +

has exactly one [no) eigenvalue 2, in (1o — &, 2o + ¢€).

Theorem 1.2 (Spectral convergence and stability for positive k). Let k> 0; then there
are at least [(xlog4)/n — 1] values 0>cy>c;> - > — i, which can only accumulate
at —x, such that the following holds.

Let ce(—k,00\{co,c1,...}, and let Ay [not] be an eigenvalue of H,. Let
0<e<dist(do, a(Ho)\{A0})/2. Then for a<O0 with sufficiently small |a|, H, has exactly
one [no] eigenvalue 2, in (o — €, 2o + ¢€).

Here [x] = sup{meZ |m<x} (xeR) denotes the GauB bracket.

The proof of these theorems is based on oscillation theory, in particular on an
asymptotic study of the behaviour of the Priifer angle of solutions of the eigenvalue
equation for H, (i.e. the solutions of Eq. (2) below) as a tends to 0. After rescaling
0 = r/|a|, the mass term and spectral parameter are lower-order terms in the limit
and can be omitted in order to obtain an overview of solutions in the asymptotic
regime near the origin.

The direction field of the resulting simplified Eq. (1) (where k = |k| and
o = —sgnk), and hence the qualitative behaviour of its solutions, shows a
fundamental difference depending on the sign of «.
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For negative k (o« = 1), the (¢, ) plane is divided into essentially horizontal strips
in which the right-hand side of (1) is alternatingly positive and negative (cf. Fig. 1);
as a consequence, the distinguished angle 9 which corresponds to an L*(0,")
solution of the eigenvalue equation for H,, cannot change by more than =, and
eventually tends towards an asymptotic value 9, (¢) (Proposition 2.3(a)) which turns
out to be the limiting angle at 0 of the principal solution of the eigenvalue equation
for Hy as well (Lemma 3.1(b)). On the original r scale, the convergence becomes
faster as a—0.

A stability argument (Lemma 3.2, Proposition 3.3) then shows that for a certain
point R>0 the influence of the previously neglected mass and spectral parameter
terms can be controlled on (0, R), and that the solution of the full Priifer equation (2)
converges at that point to the Priifer angle of the principal solution of the equation
for a = 0.

Theorem 1.1 follows in view of the uniformity of this convergence with
respect to the spectral parameter, and the fact that the presence of the anomalous
magnetic moment does not significantly affect the behaviour of the solutions
at oo.

A curious phenomenon occurs, however, in the case of positive k¥ (« = —1). For ¢
close to 0 and for large ¢, one again has 9-regions of opposite sign of the right-hand
side of (1), and hence of essential confinement of the solutions, and for large g, the
distinguished angle 9 generically tends to the limit 9, (¢) mod z. In contrast to the
previous situation, there is now a g-interval (¢_(c), ¢, (c¢)) on which the right-hand
side of (1) has no zeros and is strictly negative (cf. Fig. 2).

Depending on ¢, the size of this gap increases, vanishing as ¢—0 and becoming
infinite as ¢c— — k. Moreover, one can show that the angle 9, changes by several
multiples of n in this interval if —c is large enough (Proposition 2.3(b)), and hence
will eventually converge to 3. (c) — mn for some meN,. Thus the corresponding
L?(0,-) solution of the eigenvalue equation for H, will perform m oscillations which

0
‘r[ e e e e e e e e e e e c e m e mm e e e m e —m——m o — o — o — —— = ——————————— -
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Fig. 1. Zones in the directional field of the simplified equation for = 1. The arrows indicate the sign of
the right-hand side of (1), the solid lines represent its zeros.
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Fig. 2. Zones in the directional field of the simplified equation for « = —1. The arrows indicate the sign of
the right-hand side of (1), the solid lines represent its zeros.

are absent in the principal solution of the eigenvalue equation for Hy, to which it
however converges in phase at the point R>0.

Theorem 1.2 then follows by way of the same stability argument as before (Lemma
3.2, Proposition 3.3).

As ¢ crosses the exceptional value, a transition of the asymptotic limit from
34 (¢) —mm to 34 (¢) — (m + 1)z takes place. At ¢ = ¢, the distinguished solution 9
of the simplified equation (1) approaches an unstable limit as ¢— oo. The
asymptotics of the solutions of the full Priifer equation (2) appear to be a rather
delicate matter in these cases, and the limiting behaviour of H, with ¢ = ¢,, remains
an interesting open question.

The basic analytical tool of the present paper is the study of the direction field of
Priifer and Riccati type ordinary differential equations near a singularity (for related
earlier but simpler results see [7] and the references therein). The underlying
comparison techniques are outlined in the appendix.

2. The simplified equation

In this section, we consider the scaled and simplified equation
0¥ =c+ (k+a/o)sin29 (1)
(with k>0, ce(—k,0) and ae{—1,1}) which arises from the Priifer equation (2)

equivalent to the eigenvalue equation for H, by omitting the O(1) (¢— o0) terms
after rescaling r = |a|o, which eliminates |a|.
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The asymptotic zeros 94 (¢) of the right-hand side of Eq. (1) satisfy

0<3_(c)<m/4<I:(c)<m/2,

. k+Vk* — 2
sin29. (c) = —c/k, tan 8, (c) = —_76‘7
Moreover, in case o= —1 there are the exceptional points ¢, (¢) =1/(k+c),

between which the right-hand side of (1) is strictly negative; for later convenience we
define ¢, (¢c) =0 if o = 1.

We first show that (1) has a stable and an unstable asymptotic critical point at
both singular end-points 0 and oo (Lemmas 2.1 and 2.2). The distinguished
(unstable) solution at 0, 3y, converges to the stable limit at oo for all ¢ if « = 1; if
o = —1, one has the convergence with a shift by an integer multiple of = unless c is
one of a sequence of exceptional values (Proposition 2.3).

Lemma 2.1 (The existence of a distinguished solution at c0). For each ce(—k,0), (1)
has a unique solution 3, (-, ¢) such that

lim 94 (g,¢) = 3_(c).

0=

All other solutions 3(-, ¢) satisfy either 3(g,c) = 3 (0, ¢) + mn(9>0) for some meZ,
or else lim,_, . 3o,c) =34 (c)modn. Furthermore, for each 9>0, 9,(o,-) is
continuous and strictly decreasing.

The proof of this lemma, based on an asymptotic study of the direction field of (1),
can be found in the appendix. Similarly, one can prove

Lemma 2.2 (The existence of a distinguished solution at 0). For each ce (—k,0) there
is a unique solution (-, c) such that

lim 9y(g,¢) =

0—0

{n/2 if o=1.

All other solutions are either shifts of 39 by an integer multiple of ©, or have

) n/2modn if a=—1,
lim 9(g,c) = .
0—0 Omod 7 if a=1.

For fixed >0, 90(0, ) is continuous non-decreasing.

Proposition 2.3.
(@) If o =1, we have lim,_, o, 9y(¢,c) = 31(c) (ce(—k,0)).
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(b) If a = —1, there are at least [(klog4)/n — 1] values 0>cy>c1>cr> > — k
(accumulating at —k if infinitely many) such that

lim 99(0,¢) = 3:(c) —mn  (c€bm)

[l

and lim,_, o, 30(0, ¢p) = I_(cn) — mm.
Here €,y = (Cmy cm—1) (Where c_y = 0) for all me Ny for which ¢, exists; if
there is a minimal ¢, > — k, define €, 11 = (—k, Cm,,, )-

Remark. For later convenience, we also define % .= (—k,0) in the case a = 1.

Proof. (a) The interval [n/4, 7] is stable for (1) by Lemma A.2 (cf. the appendix), so
3o(-, ¢) (which by Lemma 2.2 is close to 7/2 for small g) cannot tend to 3_(¢) mod 7.
The assertion follows by Lemma 2.1.

(b) In the limit ¢—0, we have, using ¥(¢)=(1/90)(c — |k —1/0]),

So(0+(¢), ) = Jole_(¢), ¢)

1/k 1 1 e.(0) 1 1
Z/ <c+k>dg+/ <c+k)dg
0(c)@ Q 1k @ 0

=k — Q_L(C) — (c+ k)log(ko_(c)) — Q; +k + (¢ — k)log(ko.(c))

= (¢ —k)log

— (c+k)log —0.

k
k+c¢ k—c

As a consequence, lim,_o 9(0,¢) = ) for ¢ <0 sufficiently close to 0.

3y (c
On the other hand, noting that ¥(¢)<(1/0)(c+ |k —1/g]) and 3 (0, (c),c)€
[0,7/4], we have

So(1/k,¢) — 30 (1/k,¢) < 99(0_(c), ¢) —i—/l/k) : (c—i—é—k) do

0+(")1
- /l/k Q(C__+k>dg
1
k+Q_(L)+(k )log(k ( ))‘Fm*
+ (k + c)log(ko (c)) »n —klog4 (c— —k).

The assertion follows, as 3y(1/k,-) and 3. (1/k,-) are continuous and monotone
non-decreasing and decreasing, resp. [

Remark. The first part of the proof of Proposition 2.3(b) yields a quantitative
estimate for the first exceptional value ¢y. Indeed, using Lemma A.1 one can see that
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90(e_(co), co) =3 and (e, (co), o) <%, s0

k+ ¢

<(cop — k)log — (co + k)log k-

oS

Setting x == —co/ke(0,1) and observing that
xlog1 —log(l —x*) = zoc: ! -4 —
- VAVAS

1 1
X3+ 7 x¥ +—
( Z: J+2 j+3
) x2(18 — 11x?%)
x(3+1x26) 6(1—x2)

we find 11x* — (18 + 37 /k)x? + 3n/k <0, and thus

cg/% (18k2 + 3mk — \/(18k2 + 3mk)? — 132nk3>.

For k = 1, this gives the bound ¢y < — 0.64157.
Hence, one has convergence and stability of the eigenvalues by Theorem 1.2 for all
keZ\{0} at least for nuclear charge number Z<87.

3. The convergence of the original equation for a—0, ce%,,

Throughout this section, we fix o, ue{—1, 1} and k>0, and assume that ce ), for
some admissible me N.
Consider the Priifer equation

) k )
@/:§+<;+%)sm2@+,ucos2@—i (2)

and the corresponding equation for a = 0,
, ¢ k.
X' =-+4—sin2X + ucos2X — 4. (3)
roor

We shall study the following distinguished solutions, whose existence and
properties can be proved in analogy to Lemma 2.1.
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Lemma 3.1.
(a) There is exactly one solution O of (2) with

b if a=-—1,

lim © ) =
lim O4(r.c.a./) {n/2 .

all other solutions either being shifts of © by an integer multiple of ©, or having

{n/2modn if a=-—1,

lim O(r,c,a,A) = :
0 Omod = if a=1.

r—

For fixed r,c and a, Oy(r,c,a,-) is continuous decreasing.
(b) There is exactly one solution Xy of (3) with

1in3 Xo(r,e,2) =94 (c),

all other solutions either being shifts of Xy by an integer multiple of ©, or having

lin’(l) X(r,e,2) =9_(c) mod x.

For fixed r and ¢, Xy(r,c,-) is continuous decreasing.

Now we show that the solutions X, and @, become asymptotically close mod « at
some point for small a; this is a consequence of the convergence of the solution 3
(which is close to ©y) of the simplified equation (Proposition 2.3).

Lemma 3.2. For each ¢>0 there are ry(¢) € (0, ¢] and ay> 0 such that for all Ae[—1, 1]
and —ay<a<0

e
1O0(ro(e), ., ) +mm = 9. (c)| <5,
) &
[ Xo(ro(e), ¢, 2) = 8+(c)] <3,
and consequently |O(ro(¢), ¢, a, ) + mn — Xo(ro(e), ¢, )| <e.

Proof. Let y>0 be so small that [¢c — 7, ¢ 4+ y] =%,. Then there is 6€(0,y) such that
[#4(c+0) — 9,4 (c)|<e/3. By Proposition 2.3 there is g, >0 such that |9y(g,c+9) —
34 (c+0) +mnl<e/3 (0=0,), so the function ri— 9y(r/|al, ¢) (which is a solution of
the simplified equation

r r2

o=+ (£+2)sn0
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satisfies  |90(r/|al,c+0) — 94 (c) + mn|<2¢/3 (|a|<g—rﬂ,r>0). Now let r(e) =
min {0/2,¢}. Estimating in (3) and (2)

0
|ucos2X — 2, |,ucosZ@—i|<2<; (r<ro(e)),

Lemma A.1 yields the bounds
So(r/lal,c — 8)<Oy(r,c,a)<Io(r/lal,c+0) (0<r<ry(e))
and
Fi(c—0)<Xo(r,c)<94(c+9) (0<r<ro(e))
and the assertion follows. [

The preceding lemma shows that the solutions converge to each other; however,
the point of comparison ry(¢e) depends on ¢ and tends to 0 rather rapidly. We now
show that the convergence remains stable, and hence also holds at a certain fixed
point R.

Proposition 3.3. There is R>0 such that lim,_,o ©¢(R, c,a, 1) = Xo(R, ¢, A) uniformly
w.r.t. Ae[—1,1].

Proof. Consider the Riccati equations for z(r):=tan Xo(r,c) and y(r,a) =
@0(7’, ¢, a)7

r? =(c—(A+ DN+ 2%kz+c—(A—r (4)
and
1 =(c— A+ D2 +2(k+alal/r)z+c— (h—1r. (5)

Let y.(c) = tan 9. (c) = “¥E=¢ Choose 0<d<vk? — c2/(3|c|) and 0<R<d so
small that

3 ,
21104 (0) + d) 12 = 1 R 6]+ 104 () + d)R< VR = &

for all 2e[—1,1]. For any /e (0, R), set

] k=
al(r) Z:T}’.

Now let ¢>0, e< R<d. By Lemma 3.2, there is ro(¢) <& and ay >0 such that

|2(ro(e)) — y+(e)l<e/2, [y(role), @) —yi(c)l<e/2 (0<lal<ap).
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On [ry(¢), R], the interval [y, (c) — d,y+(c) + d] is stable for (4) and (5) by Lemma
A2 if |a|<ai(ro(e)), since the right-hand side for y,(c¢)+d takes the value

(e = (A+ D) e(e) £d) +2(k + alal /r) v+ (e) £d) + ¢ = (A= D)r

oal

=cd® +2(k +y (c)e)d +2==(yy(c)+d) — (2 + Dr(y(c)+d)* — (2= Dr

r
r

3 )

Td|2Vi — c2icdiza76’|<y+€§c)il) F((A+ D) +d)}? —2—1)

and the factor in square brackets is not less than vVk2 — ¢2.

Hence |y(r,a) —yi(c)|,|z(r) =y (c)|<d for all refro(e),R] if 0O<|a|<
min{ay, a;(ro(¢))}.

In the differential equation for the difference x(r,a) = y(r,a) — z(r),

r = (e (24 D0+ + 2K x - 244, )

the factor of x on the right-hand side can be estimated
c(y(r,a) +2(r) + 2k = (A+ Dr(y +2)
<- 2(\/k2 —ay cd) F 2R+ 1|(v4(c) + d)

< —Vk?2 - 2.

Hence, if @ additionally satisfies

k2 —c2ry(e)

< Td)

then the interval [—e, ¢] is stable for (6) on [ry(e), R] by Lemma A.2, and because of
|x(ro(e),a)| <e we find |y(R,a) — z(R)|<e. O

For the proof of the main theorems, we need the following distinguished solution
of (3) at infinity, whose existence and properties can be proven along the lines of

Lemma 2.1. Let X4 (1)e[0,n] such that cos2X4 (1) =ul and sin2X,(4) =

+uvV1 =22 (Ae[-1,1)).

Lemma 3.4. For Ae[—1,1], there is exactly one solution X, of (3) with

lim X, (r,c,2) = X_(),

r— o0
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all other solutions either being shifts of Xy by an integer multiple of ©, or having

lim X(r,c,2) = X, (1) mod 7.

F— o0

For fixed r and ¢, X, (r,c,-) is continuous increasing.
Now we are in a position to prove the main results.

Proof of Theorem 1.1. Leta =1, u = —1, k = |k| = —k, and R>0 as in Proposition
3.3. It is sufficient to prove the assertion for the auxiliary Hamiltonian

~ ood K a c
H, = —102%4-03 + (;-i—r—z}((o,]z)("))al -I-;

instead of H,, since the eigenvalues of H, are within |a|/R of those of H,.
Introducing the Priifer transformation

in the eigenvalue equation (H, — A) u = 0, we find the Priifer equation for 9
, K oa. . c
¥ = —cos 29 — (; + r_2'{(0’R)(r)) sin 23 + P 2y

which in view of the above choices for o, u and k coincides with (2) on (0, R) and with
(3) on (R, o).
For the Priifer radius |u| we have

. K a
(loglul)'(r) = —sin 29 + (;+r—zx(07R)(r))cos 29.

Hence, if $ = @y on (0, R), where O is the distinguished solution from Lemma
3.1(a) (with o« = 1), we find (log|u|)'(r) ~ |a|/r* (r—0), and hence

/\“\2(7) dr ~ const /3*2&4\/" dr< oo
0 0

Thus @y is the Priifer angle of an L,(0, -) solution of the eigenvalue equation for H,,.
Similarly, for « = 0 we find for a solution u with Priifer angle 3 = X)), where X is
the distinguished solution from Lemma 3.1(b),

2 _ 2

(loglul) ()~
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50 |u|(r) ~const V¥ =< (r—0), whereas for all other solutions v

Vi _ &2
(logle]) () ~—5—=
and hence |v|(r) ~const V¥~ (5 0). Thus X; is the Priifer angle of the principal
solution of the eigenvalue equation for H.

Analogously, if (for either a<0 or a =0) 9 = X, on (R, o), where X, is the
distinguished solution from Lemma 3, we have

k
(loglu|)'(r) = —sin2X ., — . cos 2Xp~ = V1=22 (r— o),

SO
0 [e¢]
/ |u*(r) dr ~ const / e VIR < o

Thus X, is the Priifer angle of an L?(-, o0 ) solution of the eigenvalue equations for
H, and H,.

As a consequence, the eigenvalues of H, are the (isolated) values of / at which the
monotone decreasing continuous function @y(R, a, ¢, -) and the monotone increasing
continuous function X, (R,c,-) take the same value modz. Similarly, the
eigenvalues of Hj are the intersection points mod = of Xy(R,¢,-) and X (R,c,").
Hence the assertion follows in view of the uniform convergence of @¢(R,a,c,-) to
Xo(R,c,-) as a— 0 (Proposition 3.3). O

Proof of Theorem 1.2. Let « = —1, u =1, k = || = k, and R>0 as in Proposition
3.3. As in the preceding proof, it is sufficient to show the assertion for the auxiliary
Hamiltonian H,. We now use the Priifer transformation

which leads to the Priifer equation

K a . ¢
¥ =cos 23 + (;Jrfzx(&R)(”)) sin 29 +to- Ay

which in view of the above choices for o, u and k coincides with (2) on (0, R) and with
(3) on (R, o). By studying the asymptotics of |u| as above, we again find that O,
from Lemma 3.1(a) corresponds to an L?(0, -) solution of the eigenvalue equation for
H,, X, from Lemma 3.1(b) corresponds to the principal solution of the eigenvalue
equation for Hy, and X, corresponds to an L*(-, c0) solution of either eigenvalue
equation.

Hence the assertion follows as in the preceding proof. [
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Appendix A

In the proofs of this paper we frequently use the following fundamental observations
about first-order ordinary differential equations. The first lemma (cf. [6, p. 27]) is
sometimes called Caplygin’s inequality, but actually goes back to Peano [6, p. 44].

Lemma A.1. Let I =R be an interval, xoel and f; : I x R— R locally integrable in the
first, and locally Lipschitz continuous in the second argument, je{l,2}, with
Si(x,»)<fa(x,p) (xel,yeR). Furthermore, let <), and y; be the solution of the
initial value problem

V() =fxy), yx) =y Ge{l,2}).
Then y1(x)<y2(x) (xel,x=xg).
An immediate consequence is the following stability criterion.

Lemma A.2. Let I =R be an interval, f : I x R— R locally integrable in the first, and
locally Lipschitz continuous in the second argument. The interval [yy,y,] is stable for
the differential equation

V(x)=1(x) (A1)
on Iif f(x,y1)>0, f(x,12)<0 (xel).

Here an interval J is called stable on I for (A.l) if y(xo)eJ =
y(x)eJ (xel,x=x) for all xoel.
We now use these observations to prove Lemma 2.1.

Proof of Lemma 2.1. (a) Let ce(—k,0). Define J. = {3eR| £+ (c + ksin293) >0},
and /¥ = {9eJ1| |9 — 91 (c) +jn|>e(je2)} (£>0).
Then for each ¢>0 there are y>0, Py> ¢, (c) such that for o= Py

t(c+ (k+a/o)sin9) >y (9es?).

Now consider a solution 3(-,¢) of (1). If for all ¢>0 there is P>0 and jeZ such
that

19(0,¢) —o_(c)[<e (¢>P),

this means that lim,_, ., (¢, ¢) = ¢_(c¢) — jn for some jeZ.
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Otherwise, let ¢ be already so small that this is not true, and y, Py>0 as above.
Then there is g, > Py such that |3(gy,c) — 3_(¢) +jn|>¢ (jeZ), and hence

8(eg, )€Y LI U J194(c) —jm — &, 8. (c) —jm + ).
JjezZ

In Jg_f) we have +¥(o,¢)>7/0, so if 9(@07c)ej<£>, then

+3(0,¢)= +9(0p, ¢) — ylog /ey

as long as 9(p,c¢) remains in J ?; consequently there is ¢; and jeZ such that
o1, 0)€¥:(c) —jm—&,94(c) —jm+ e

The latter interval is stable by Lemma A.2. As ¢>0 was arbitrary, it follows that
lim, -, o» 3(g,¢) = 34 (c) mod 7.

(b) Let I be an open interval with I'= (—k,0), and 9>¢, (¢) (ceI). For JeR and
cel', denote by 9(o,c, §) the solution of (1) with initial value 9(@,c,§) =9, and
consider the sets

S = {(c,ﬁ)e(—k,O) x R| QlingC 9(0,¢,9) =9, (c) —jn},

JeZ. S; is open. Indeed, let (co, %) €S;, 0 = (94(co — n/4)/2. Since 3, (c) depends
continuously on ¢, there is ¢>0 such that

[F4(c) = 0,31 (c) + )< (n/4,m) (c€[co— &, co+ €.

Now let g,=¢ be so large that [3(gy,co,%0) — 94 (co) +jm|</2. As 9(gy, ¢, )
depends continuously on (c, .g), there is positive £<e with

19(09, ¢, 9) — 91 (co) +jm| <3 (celco —E.co+ ), 9[99 — & 9o + 7))

and therefore (g, ¢, $) + jn lies in the stable interval (r/4, 7).
By (a) lim,, o» 3o, ¢, 9) = 9, (c) —jm, ie.

(c,9)eS; (celco—& co+E],9€[9 — & 9 + 7).
(¢c) For each ce(—k,0), there is exactly one solution 3.,(-,¢) such that
lim,, & 94 (0,¢) = 3_(c). Indeed, there is at least one, as ¢ is in some suitable set
I' and the corresponding sets

Zi(e) = {§e(0,n/4)[(c, ) S},

j€{0,1}, are nonempty by (a) and open by (b).
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Assume there are two solutions 8; <% with lim,_, o, 9;(¢) = 3_(¢), ie{1,2}. Then
@ = 2($ — H)>0 satisfies

0@ (0) =2(k +a/0)(sin 29, — sin 29y)

1 i
=2(k+a/o) (sin 2% %—i— cos 2% Slr(;(p><p
~2Vk:— 2 p>0 (0— ),

contradicting ¢(g)—0.
(d) Finally, for fixed 9>0, 3. (9, ¢) is strictly monotone decreasing: if ¢; <c¢, and
300 (0,¢1) <35 (0, ¢2), then by Lemma A.1

3_(c1) = lim 34 (g,c1)< lim 34 (0,¢2) = I9-(c2),

Q— 0 Q0— 0

which is not true.
Also, 3, (0,) is continuous. Indeed, if ¢, ¢ (n— o0), then 3 (0, ¢,) >3 (0,7)

because of the monotonicity, so lim,_, o 3o (9, ¢x) =3 (8, ¢). However, ‘>’ would
imply (¢, lim,_, o, 3 (0,¢,)) €Sy in contradiction to the facts that Sy is open and

(cn, 30 (0,¢4)) €S0 (neN). The right continuity follows in the same way.
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