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A B S T R A C T

Vascular disorders, and in particular atherothrombosis, are currently a leading cause of morbidity and
mortality in Western societies. Proteomics research into these disorders has helped improving our
knowledge of the underlying mechanisms involved in the development of atherothrombosis, as well as
providing novel biomarkers to diagnose and for the prognosis of this disease. However, the application of
these advances into clinical use has not followed this trend. In this review we explore the potential of
Proteomics and Metabolomics for the management of vascular disorders, paying special attention to
atherothrombosis and aiming to guide the reader from the experimental design of proteomic analysis
through the initial discovery phase to the clinical implementation of biomarkers or therapeutic targets
(Fig. 1), providing state-of-the-art proteomic studies to exemplify the concepts addressed.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Atherothrombosis: pathogenesis and clinical needs

Fig. 1 Clinical outcomes of atherothrombosis, including acute
coronary syndromes (ACS), stroke and claudication from periph-
eral artery disease (PAD), represent the most important causes of
mortality and morbidity in Western societies. Atherosclerosis
originates through endothelial dysfunction, and sub-endothelial
LDL (low density lipoprotein) deposition and oxidation, particu-
larly at specific locations of the arterial tree (coronary, aorta,
carotid, cerebral, renal and femoral arteries) [1]. Several risk
factors predispose individuals to atherogenesis, including dyslipi-
demia, hypertension, tobacco use, diabetes and obesity. The high
prevalence of these factors in the population, together with the
increase in life expectancy, account for the overwhelming
incidence of atherothrombosis in developed countries. For all
these reasons, better clinical management of atherothrombosis
will help decrease the death rate from cardiovascular disease
(CVD) and improve the quality of life in the population. This goal
can be achieved in part by increasing efforts in educational
programs that make people aware of the benefits of a healthy
lifestyle, namely a healthy diet, avoidance of smoking and regular
physical activity [2]. On the other hand, a better understanding of
the molecular mechanisms underlying atherothrombosis, and the
incorporation of more efficient biomarkers of pathology, would
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benefit diagnosis, prognosis and may provide novel therapeutic
targets, thereby improving clinical management of such patients.

1.1. Cardiovascular risk assessment

The biomarkers widely used to assess the risk of clinical
outcomes derived from atherothrombosis are very often used in
combination with the Framingham Risk Score (FRS). This score
puts traditional cardiovascular risk factors together to calculate the
10-year risk of an adverse cardiovascular outcome, and constitutes
the most internationally used predictor of CVD. First defined in
1998 [3], this score owes its name to the Framingham Heart Study,
conducted on 2489 men and 2856 women aged 30–74 years old at
baseline and over a 12-year follow-up. The FRS is calculated by
adding or subtracting points in function of age, systolic blood
pressure, LDL-cholesterol, HDL-cholesterol and smoking habit,
evaluating the value according to gender. The higher the score, the
greater the risk of CVD. The FRS allows populations to be stratified
into three categories associated with the probability of developing
cardiovascular events in the following 10 years: low (<10%),
intermediate (10–20%) and high-risk (>20%). Nevertheless, and
despite its great utility in the clinic, the imperfect discriminatory
capability of FRS [4,5] requires further refinement of the algorithm
in order to improve its value as a CV risk stratification tool.

In terms of molecular biomarkers for CVD, several soluble
molecules are currently used to diagnose and predict future
outcome, including C-reactive protein (CRP), an inflammatory
marker used for CVD risk prediction [6], B-type natriuretic
peptides, biomarkers of heart failure (HF) diagnosis [7], and
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. A schematic view of the flowchart of a comprehensive proteomic/metabolomic analysis in the search for disease biomarkers and therapeutic targets.

4 F. de la Cuesta et al. / Translational Proteomics 7 (2015) 3–14
cardiac troponins (cTnI, cTnT) to ensure the detection of acute
myocardial infarction (AMI) [8] (Fig. 2). Although atherosclerosis is
the underlying cause of the majority of cardiovascular events, none
of the aforementioned biomarkers are specific biomarkers for the
early diagnosis of atherothrombosis.

1.2. Biomarkers of plaque vulnerability

Markers of plaque vulnerability represent a useful tool for
clinicians, since unstable plaques are more likely to rupture and
provoke thrombosis. The development and vulnerability of an
atherome plaque reflects multiple molecular processes associated
with lipid accumulation, inflammation, proteolysis, angiogenesis,
hypoxia, apoptosis and calcification. Among the biomarkers of
plaque vulnerability, lipoprotein-associated phospholipase A2
(Lp-PLA2) [9,10] and myeloperoxidase (MPO) [11–13] are probably
those best demonstrated to be clinically useful. MPO is a heme
protein involved in many secondary reactions that generate
reactive species and in LDL oxidation, and it contributes to
endothelial dysfunction and foam-cell formation [14]. This protein
has been proven to predict risk and mortality in ACS patients
[11,13], and it constitutes an early biomarker of atherosclerosis, as
determined in a prospective study on healthy individuals [12]. Lp-
PLA2 is secreted by inflammatory cells and it binds to circulating
LDL, and its deposition is greater in vulnerable plaques [15]. Thus,
elevated levels of this protein in plasma have been associated with
a higher risk of coronary heart disease [9,10]. Moreover, during
atherogenesis, LDLs are deposited in the sub-endothelium and
they are oxidized as a result of the pro-oxidative inflammatory
milieu therein. Indeed, oxLDL levels are associated with advanced
atherosclerosis and they constitute a well-established biomarker
for outcome prediction [16].

Plaque rupture is frequently produced by the disruption of the
fibrous cap from the atherome plaque, which is mediated by
apoptosis of vascular smooth muscle cells (VSMCs) and proteolysis.
Matrix metalloproteinases (MMPs) play a crucial role in these
events as they degrade the extracellular matrix (ECM). Therefore,
blood MMP-9 levels have been associated with cardiovascular risk
in a variety of studies [14]. In addition, tissue factor (TF) is a
pro-coagulant protein secreted by foam cells and VSMCs during
plaque development and it initiates thrombosis after its release
with plaque rupture. Elevated blood levels of TF have been
associated with unstable angina [17] and increased blood
thrombogenicity in type 2 diabetes mellitus [18]. One particularly
interesting alternative is to evaluate TF-positive circulating
extracellular microvesicles, which exert pro-coagulant ability
and constitute a novel biomarker of thrombosis [19,20].

Recently, the fibrotic marker Gal-3 that has proved useful to
predict heart failure [21], has been shown to modulate inflamma-
tion during the development of atherosclerosis [22], and its blood
levels are associated with unstable angina [23] and increased
cardiovascular mortality [24]. Moreover, several inflammatory
biomarkers that are associated with plaque vulnerability have
been shown to be useful to predict cardiovascular outcomes
(sCD40L, IL-6, IL-18, MCP-1, etc.), although such results should be
“handled with care”, since underlying inflammatory pathologies
may account for the observed changes in these biomarkers.
Conversely, adhesion molecules that are over-expressed in
endothelial dysfunction (VCAM-1, ICAM-1) are widely used as
biomarkers of vascular function in the follow-up of high-risk
cardiovascular patients [25].

Despite of the availability of these biomarkers, which are crucial
for the diagnosis and risk assessment of CVD, more research
focusing on the molecular mechanisms driving atherothrombosis,
and on the identification of earlier, more discriminating and more
specific biomarkers of the disease is still needed. In this sense,
panels of biomarkers may be of great utility for diagnostic and
prognostic purposes, providing better sensitivity and specificity.
Indeed, the discrimination of particular patient sub-groups
expressing specific panels of these biomarkers would increase



Fig. 2. From a clinical perspective, atherosclerosis has a silent and very progressive development, which constitutes the greatest issue for diagnosis. Unfortunately the
symptoms only become evident when disease is in an advanced and irreversible state. Biomarkers such as CK-MB, troponins, and myoglobin provide the basis for the
diagnosis of acute myocardial infarction. These biomarkers’ levels rise twice within 3 6 h following symptom onset. Discovery of new biomarkers with real clinical value to
predict the disease and stratifying individual cardiovascular risk are critical for early diagnosis of atherosclerosis.
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their utility, as well as matching the outstanding desire of the
clinical community to progress towards more personalized
medicine.

2. “What to study?” Sample sources

With the rise of proteomics and other advances in molecular
biology, biomarker studies have entered a whole new era and they
hold particular promise for early diagnosis and effective treatment
of many diseases. Different sample types can be used for this
purpose, such as biological fluids (i.e. urine, blood) or tissue
biopsies.

2.1. Biological fluids

Serum/plasma and urine and are the most commonly used
biological matrices in cardiovascular research. A major goal in the
field of clinical proteomics is to identify disease biomarkers in
biological fluids that can be measured relatively inexpensively for
early diagnosis of disease. Because urine can be obtained
non-invasively in large quantities and it is more stable than other
biofluids, it provides an attractive alternative to blood as a
potential source of disease biomarkers. However, technical/
methodological issues have hindered urinary proteomics from
contributing significantly to our pathophysiological understanding
of CVDs. Although proteinuria is an established risk factor for
cardiovascular morbidity and mortality [26], the analysis of less-
abundant and naturally existing urinary proteins and peptides in
proteinuric patients still remains a challenge [27,28]. Serum and
plasma have been the focus of extensive proteomics studies for
decades [29]. Plasma/serum is one of the best clinical samples for
diagnosis and prognosis, given the low cost and easy access to the
sample. Furthermore, as a fluid of “communication” between cells
and organs, most biological functions can be studied in this matrix.
Indeed, the concentration of proteins involved in inflammatory
processes and disease progression (interleukins, proteases,
enzymes, etc.) often increases in plasma in the disease state,
and this can be used to monitor the clinical status of patients.
However, several limitations to study the plasma proteome exist,
such as its complexity and the wide dynamic range of protein
concentrations (more than ten orders of magnitude), a factor that
makes proteomic analysis very challenging [29]. It is not
uncommon that the identification of proteins truly secreted into
biological fluids is not possible due to differences in the dynamics
of release and clearance of proteins from circulation. In the context
of stroke, cerebrospinal fluid (CSF) and brain extracellular fluid
[30] are very good samples in which local biomarkers of disease
can be studied, even though they involve invasive collection
procedures.

2.2. Circulating cells and extracellular vesicles

An interesting alternative to plasma for vascular proteomic
studies is to analyze circulating cells, which can be obtained from
blood and therefore, in a similarly mildly invasive manner.
Proteomic analyses of circulating cells like monocytes [31,32],
platelets [33,34] or endothelial cells [35], have contributed to a
better understanding of their role in atherothrombosis, besides
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providing novel disease biomarkers. Moreover, circulating extra-
cellular vesicles or microparticles have been widely shown to be
relevant in thrombosis [36] and endothelial dysfunction [37],
constituting a promising and easy-accessible source of potential
biomarkers [38].

2.3. Tissues

Although most proteins are ubiquitously expressed, other
proteins have a limited cellular or tissue distribution [39]. It is
Table 1
Compilation of studies reported so far in the field of proteomics in human atheroscleros
proteomics: principles, analysis and applications. Garcia and Senis (2011), John Wiley 

Sample source Pathology Methodology 

Serum/plasma Ischemic stroke
(atherothrombotic
cardioembolic stroke)

2-DE 

Serum/plasma Peripheral arterial disease
(PAD)

SELDI–TOF–MS 

Carotid secretome Atherosclerosis SELDI–TOF–MS 

Urine Severe coronary artery disease
(CAD)

Capillary electrophoresis + E

Circulating cells
(monocytes & T-
cells)

AMI Microarray 

Circulating
monocytes

ACS 2-DE 

Circulating
lipoproteins (LDL,
HDL)

CAD MS 

Platelets Atherosclerosis 2-DE
LC-MS/MS

Carotid Atherosclerosis 2-DE 

Carotid Atherosclerosis 2-DE 

Carotid Atherosclerosis 2-DE 

Aorta Atherosclerosis 2-DE 

Carotid Atherosclerosis Antibody arrays 

Carotid Atherosclerosis Western arrays 

Coronary Atherosclerosis LC-MS/MS
LMD (layers) + LC-MS/MS

Carotid Atherosclerosis Manual microdissection
(intima) + proteoglycan
extraction + LC-MS/MS

Coronary Atherosclerosis LMD (intima) + 2-DE 

Coronary Atherosclerosis LMD (media) + 2-DE 

Coronary Atherosclerosis agLDL treated explants cultu
VSMCs + 2-DE

Carotid secretome Atherosclerosis 2-DE 

Coronary secretome Atherosclerosis LC-MS/MS 

Carotid and iliac
secretome [52]

Atherosclerosis Subtractive phage display + L
ORBITRAP

Plasma purified VLDL,
LDL and HDL [53]

Atherosclerosis 2-DE 

Coronary thrombus
[44]

Myocardial infarction 2-DE MALDI MS/MS
1DE LC-MALDI MS/MS
LC-ESI-MS/MS

Circulating
granulocytes [54]

Atherosclerosis Two-dimensional LC-MS/MS

Extracellular
microvesicles [36]

Myocardial infarction 2D-DIGE-MS/MS 

Plasma [55] Atherosclerosis Quantitative proteomics 

Plasma [56] Aortic aneurysm Protein array 

Arterial thrombus
[57]

Aortic aneurysm LC-MS/MS 

Brain extracellular
fluid [30]

Acute stroke 1D-MS/MS 

Carotid [58] Atherosclerosis Secretome LC-MS/MS 

Intraluminal
thrombus [50]

Aortic aneurysm LC-MS/MS 

Atheroma derived
SMC [59]

Atherosclerosis 2-DE-MS/MS 

Brain tissue [60] Hemorrhagic stroke Bioinformatic-MS/MS 

Urine [61] Atherosclerosis CE–MS 
this latter group of proteins that is of potential interest for
biomarker discovery, as they may reflect the physiological state of a
specific cell population or tissue. Tissue proteomics in the context
of atherothrombosis has allowed the atherosclerotic plaque
[40–43], and the thrombus [44] to be characterized in greater
depth. In comparison to blood, which may constitute an
intermediary between organs and physiological activity, tissue
proteome analysis is more directly linked to specific pathological
states. Thus, this analysis has the potential to identify proteins that
are deregulated in the disease state and which may potentially
is (Table 1 was modified from Cardiovascular proteomics by Vivanco et al. platelet
& Sons. Inc.). New added references are indexed in the manuscript.

Potential biomarkers

SAA haptoglobin

b-microgobulin

TWEAK
SI-TOF/MS Collagen a 1 (I), collagen a 1 (III)

CD2, CD5, CD7, CD13, CD45, CD45RA, CD49e, CD52, CD64, CD66c

Protein profile

Calgranulin A, lysozyme C, complement regulatory proteins, serine
protease inhibitors

14-3-3 z

a1-antitrypsin
hsp27
Fibrinogen fragment D, ferritin light subunit, SOD2, annexin A10,
glutathione, transferase P1-1, hsp20, hsp27, Rho GDI, SOD3
Annexin A5, decoy receptor 1, 14-3-3g
TRAF4, Gads, GIT1, Caspase-9, c-src, TOPO-I I-a, JAM-1
TSP-2, MnSOD, apo B100, PTP1C, ALG-2, GSK-3b
PEDF, periostin, MFG-E8, annexin I

Lumican

Annexin 4, myosin regulatory light 2, ferritin light chain
Filamin A, gelsolin, vinculin, vimentin

re p-myosin RLC

HSP27, cathepsin D
Gelsolin, vinculin
lamin A/C, phosphoglucomutase 5

TQ- Alpha 2 macroglobulin, annexin 5, caspase-14, junction plakoglobin,
lipocalin-1, mucin 5A, serpin B3 etc
Apo J, ApoAIV, Apo D, Acute phase serum amyloid A protein, ApoCII,
ApoCIII, Apo B100, Apo SAA etc
DIDO 1

 S100 proteins, myeloperoxidase, gelatinase, MMP9

Alpha 2 macroglobulin, fibrinogen

Vinculin
IGFBP-1
Thrombospondin, clusterin

Glutathione S-transferase, peroxiredoxin-1, protein S100-B

Thrombospondin-1, vitamin D binding protein, vinculin
C3, C9

ATP synthase b, aldehyde dehydrogenase 2, annexin I

S100B, NSE, GFAP, a-Inx, MBP, NFM, b-Syn
Collagen type I, alpha(1)-antitrypsin, EGF



Table 2
Pros and cons of the different methodologies available for proteomic and metabolomic analyses.

Methodology Pros Cons

Proteomics

Gel based
Two-dimensional
electrophoresis (2-
DE)

Conventional Inexpensive equipment, easy
handling, isoforms
information

Gel-to-gel variability (reproducibility), sample loading variability, time consuming, basic,
hydrophobic, very high and very low molecular weight proteins under-represented

Minimal
labeling
2D-DIGE

(All conventional 2-DE pros)
Internal standard for:

1 Normalization

2 Diminish gel-to-gel vari-
ability

Fluorochromes, scanner and image processing software price

Saturation
labeling
2D-DIGE

(All conventional 2-DE pros)
Scarce samples analysis,
redox analysis

Only 2 fluorochromes available: individual gels per sample

–

Gel-free
LC-MS/MS MudPIT Sensitivity, high-throughput Specialized personnel required, high-cost equipment, resistance of certain peptides to ionization

Label-free Inexpensive, sample
preparation ease

Quantification accuracy

Isobaric
labeling

Quantification accuracy,
reproducibility (due to
multiplexing)

Loss of individuality due to sample pooling, reactive costs

SRM High specificity, optimal for
validation, multiple analytes
in a single run

Targeted analysis, limited number of analytes

CE–MS No interference of
contaminants (i.e. urine),
high separation efficiency

Moderate sensitivity

Arrays Protein
arrays

Characterization of specific
pathways

Targeted analysis, limited number of analytes

TMA High sample throughput One analyte per array, small tissue regions analyzed
MS-imaging Spatial distribution of

analytes, direct comparison
with histology

Identification difficulties, incompatibility of staining protocols

–

Metabolomics
LC–MS No derivatization, diversity of

metabolites analyzed
Lack of spectral libraries

GC–MS Reproducibility and
robustness, spectral libraries
available (NIST and Golm GC–
MS)

Derivatization methods required, limited mass range

1H NMR Minimal sample preparation,
sample preserved,
reproducibility

Sensitivity, spectral resolution
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serve as novel biomarkers if biopsy material is accessible or if the
observed alteration is reflected in any biological fluid. Direct tissue
proteomic studies may also enhance the understanding of
the molecular mechanisms associated with the disease. However,
obtaining sufficient human tissue for reliable proteomic analyses is
often difficult, especially when considering control material
required for comparative analyses.

2.4. Sub-proteomes: zooming in on specific proteomes

The complexity of samples often represents a challenge when
searching a complete proteome for clinically useful molecules. In
terms of tissue proteomics, the sample collected may be
heterogeneous containing numerous cell types and stromal
elements, or normal and abnormal cells), which may hamper
the proteomic analysis. Tissue fractionation may be necessary
when analyzing whole tissue in order to study the contribution of
specific cell populations, or of cellular/extracellular components,
to disease pathogenesis [42]. Moreover, immunohistochemistry
can help to characterize the expression of proteins of interest,
providing useful information for whole-tissue proteomic analyses.
Nevertheless, proteomic analysis of cells isolated from tissues,
without subsequent culture in vitro, can provide abundant
information regarding an anatomic structure or cell type in the
tissue, preserving the in vivo state. In this sense, non-contact laser
microdissection (LMD) represents an ideal approach, since cells or
regions in a tissue can be isolated by means of a laser beam that
encompasses the delimited area of interest, preserving tissue
integrity and avoiding sample overheating [45]. However, this
approach has yet to be explored extensively in arterial proteomics.
Nevertheless, in our experience coupling of LMD and proteomic
analysis is now feasible due to the enhanced sensitivity of mass
spectrometers and the appearance of fluorescent labeling dyes for
two-dimensional electrophoresis (2-DE, e.g., saturation labeling
DIGE [46,47]). Indeed, this has allowed us to perform differential
layer-specific analysis of protein abundance in the atherosclerotic
human coronary artery [41,42].

The aforementioned complexity is also applicable to the
dynamic range in concentrations and in the number of proteins
present in biological fluids, especially in blood serum and plasma.
Thus, sub-fractionation provides access to less-abundant proteins,
which might otherwise be masked in a complete proteome
analyses. On the other hand, fractionation steps are detrimental to
comparative analyses, potentially representing an additional
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source of experimental error, which should be taken into account
when evaluating the results obtained. Blood plasma constitutes the
most complex proteomic sample, with more than 10,000 proteins
identified to date and much more expected to be expressed within.
With the goal of reducing the orders of magnitude of the dynamic
range in protein concentrations within blood plasma, two different
methods are widely used: (1) immunodepletion of highly
abundant proteins; and (2) employing a combinatorial peptide
ligand library (CPLL) to equalize the dynamic concentration range.
The former consists in a pre-fractionation of the sample by means
of affinity chromatography, in which the most abundant plasma
proteins (1–20 proteins; depending on the manufacturer) are
mainly eliminated through their binding to specific antibodies
present on the affinity or spin column. The methodology associated
to CPLLs is based on the use of a mixture of porous beads on which
hexapeptides are covalently attached. When a plasma sample is
exposed to the library, the beads with affinity for abundant
proteins will become saturated, thereby leaving the rest of the
molecules of this protein unbound. Conversely, less abundant
proteins will not saturate their ligands and therefore all their
molecules would be captured. As a result, plasma is equalized by
reducing the number of copies of very abundant proteins while
preserving those that are less abundant.

Another approximation to overcome the complexity of serum
and plasma, as well as to focus on the site-of-injury, involves
studying the proteins released by the damaged tissue in culture:
the so-called secretome. Through this approach, proteins released
into the blood from the vascular tissue can be discovered,
constituting a potentially reliable source of disease biomarkers.
In this sense, a characteristic secretome of atherosclerotic arteries
[48], aortic valves with stenosis [49] and aortic intraluminal
thrombi [50] has been reported, that is potentially relevant in the
diagnosis of these pathologies and/or in the definition of novel
therapeutic targets.

3. “How to perform such studies?” Methodologies

3.1. Sample preparation

Using an appropriate method to prepare the proteome/
metabolome under study is critical for a successful molecular
analysis, and the depth of such analysis may rely in this step. For
this reason, several considerations must be taken into account
when dealing with biomolecules, including degradation, solubility
and sample storage. First of all, sample preparation should always
be performed at low temperatures (4 �C) to avoid degradation and
the inclusion of protease inhibitors is recommended. However, in
metabolomics analyses elevated temperatures may be needed for
GC separation methods, which may imply the need to incorporate
a derivatization step when analyzing thermolabile metabolites.
Depending on the sample origin, extraction may imply tissue
dissociation and/or cell lysis, or direct solubilization of proteins/
metabolites. Components of the lysis and extraction buffers should
be carefully selected to ensure efficient tissue/cell disruption,
protein/metabolite extraction, and compatibility with subsequent
analytical techniques. In particular, the polarity of the metabolites
under study will determine which are the most adequate
extraction protocols. Storage of the extracts at �80 �C is mandatory
to preserve the biomolecules present and repeated freeze/thawing
should be avoided.

Obtaining optimal results requires selecting the appropriate
experimental methodology, contemplating all aspects of the study,
based on: (a) the characteristics of the analytes to be studied; (b)
the selection of the technological platform, in terms of sensitivity,
selectivity, specificity, linear dynamic range and throughput; and
(c) the step in the biomarker research pipeline being addressed
(discovery or validation).

3.2. Proteomics

A proteomic approach allows changes in protein expression
between several conditions to be monitored in order to shed light
on physiological or pathological processes, and it is a very useful
tool in the search for biomarkers of CVDs [51]. With the appearance
of the improved proteomic separation techniques, the evaluation
of thousands of proteins at once is now possible. Such techniques
include gel based methods like 2-DE, and non-gel based techniques
like liquid chromatography tandem mass spectrometry (LC-MS/
MS) and capillary electrophoresis-mass spectrometry (CE–MS).
Table 1 identifies different studies in which such techniques were
applied in recent years [30,36,44,50,52–61].

Gel based methods are techniques for the high-resolution
separation of complex protein samples. As a genuine top-down
analytical approach, 2-DE is an excellent tool but an improved
method has appeared in the recent years, 2D-DIGE, which involves
fluorescent labeling of protein mixtures and that allows two
protein samples and an internal standard to be compared on a
single gel. Although gel-free techniques have developed immense-
ly, 2D-DIGE has been used for important studies focusing on the
search for biomarkers involved in the development of atheroscle-
rosis. In this sense, the study of the atherosclerotic plaque tissue
has been carried out by means of 2D-DIGE by different groups
focusing on either early lesion development [41,42] or plaque
instability [40,43].

With the evolution of Proteomics, LC-MS/MS has become the
method most commonly employed due to its sensitivity and high-
throughput performance. Although several combinations of LC
methods are available, a typical approach used when analyzing a
complete proteome is 2D-LC-MS/MS. There are different alter-
natives to perform differential abundance analysis by LC-MS/MS,
such as label-free LC–MS quantification and isobaric tags for
quantification. The latter are gaining in popularity, and they
include isobaric tags for relative and absolute quantification
(iTRAQ, AB Sciex), and tandem mass tags (TMT, Protein Sciences).
For example, increased protein levels were found in human brain
extracellular fluids (ECFs) following acute stroke using TMT. These
proteins could be of interest for the diagnosis and prognosis of
stroke, indicating that ECF may be a useful source of blood
biomarkers for this disease [30]. Recently, vinculin was identified
as a novel candidate biomarker using iTRAQ, since elevated
circulating levels of this protein were associated with atheroscle-
rotic disease [55].

When interest focuses on analyzing a large number of
heterogeneous samples that contain interfering compounds, such
as lipids and precipitates, capillary electrophoresis coupled to mass
spectrometry (CE–MS) is very useful [62]. In this sense, CE–MS
constitutes an ideal technique for the proteomic analysis of urine,
and it has enabled novel candidate biomarkers of atherosclerosis
[61,63,64] and stroke [65] to be defined in the recent years in this
non-invasive sample.

Many researchers have taken advantage of array-based
techniques to search for biomarkers of atherosclerosis and a very
recent study revealed that carotid plaque vulnerability is
modulated by the up-regulation and down-regulation of
pro-inflammatory and anti-inflammatory factors, respectively
[66]. The levels of these proteins were measured on a multiplex
bead array system and one of these proteins, pentraxin 3 (PTX3),
may potentially be a predictive marker of plaque vulnerability. An
advanced variant of protein arrays consists of paraffin blocks in
which myriads of separate tissue cores are assembled in an array
fashion to allow multiplex histological analysis, the so-called tissue
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microarray (TMA) [67]. Using this approach in combination with
transcriptomics, the proprotein convertase subtilisin/kexin type 6
(PCSK6) was associated with key processes in plaque rupture, such
as inflammation and extracellular matrix remodeling [68].

An emerging platform to directly study the distribution of
proteins and small molecules within tissues is imaging mass
spectrometry (IMS). Only a few groups have utilized this method
on cardiovascular tissues, although a few studies on atheroma
plaques have been performed. By means of the imaging variant
secondary ion mass spectrometry (SIMS), optimal for small
molecule profiling, the distribution of lipids in human atheroscle-
rotic plaque tissue has been correlated with the stability or
vulnerability of a particular region of the plaque [69]. Moreover,
IMS-based histopathological examination of atherosclerotic
lesions from aortic roots of ApoE-deficient mice and of femoral
arteries of humans with peripheral artery occlusive disease
revealed characteristic peak profiles defining lipid localization,
SMCs and calcification within the plaque [70]. Very recently,
5 sample preparation protocols for IMS analysis of human
atherosclerotic and healthy arteries were evaluated, achieving
remarkable spatial resolution (30 mm) and situating specific
proteins to the intimal and medial layers [71].

Table 2 summarizes the pros’ and cons’ for a given proteomic
technology.

3.3. Metabolomics

Although Metabolomics is a science per se, nowadays many
groups include it in their proteomic projects since both disciplines
together permit integrated and comprehensive analyses of
metabolic routes involved in pathological processes. Metabolomics
facilitates the unbiased analysis of many different molecules at a
time, detecting and identifying the set of final products and
by-products of metabolic pathways, thereby reflecting the
metabolic state of the cell [72,73]. Different metabolomics
approaches must be adopted to cover the broad range of
metabolites that exists in terms of polarity, solubility and volatility.
Fortunately, great advances are being made in high throughput
technologies like mass spectrometry (MS) and nuclear magnetic
resonance (NMR). On the one hand, this makes it easier for
researchers to identify biomarkers and elucidate the mechanisms
underlying disease. On the other hand, it allows clinicians to
measure such molecules for diagnostic purposes [74]. NMR and
MS, the latter coupled with a separation method such as liquid or
gas chromatography (LC–MS or GC–MS), are the main platforms
used in metabolomics analysis [75]. Metabolomics analyses can be
divided into untargeted and targeted approaches, which primarily
differ in the sensitivity and the number of metabolites detected.
Untargeted or unbiased studies identify as many metabolites as
possible, although their sensitivity is drastically affected. However,
if there is any idea about the sub-group of compounds that are
relevant to the pathology under study, these methods can
be optimized to improve the limits of detection by restricting
the number of molecules analyzed.

High resolution 1H NMR spectroscopy, which detects the
hydrogen atoms present in a molecule, is one of the preferred
platforms to analyze urine and plasma [76]. NMR requires
relatively little sample preparation, it is a non-destructive and
very reproducible technique, and it provides detailed information
on molecular structure. It also constitutes a valuable approach to
identify unknown metabolites. However, NMR is limited in terms
of sensitivity and spectral resolution, and thus, it is not a good
technique to identify metabolites that are found in low concentra-
tion [77]. NMR has been widely used to study lipoprotein
composition and its relationship with atherosclerosis [78–80].
Indeed, high-throughput metabolite quantification has allowed a
risk prediction model for subclinical atherosclerosis to be defined
based on a combination of lipoprotein lipids along with the novel
biomarkers docosahexaenoic acid and tyrosine, in addition to
non-laboratory risk factors [81]. NMR analysis of plasma has also
been confirmed as a weak predictor of coronary artery disease [82].

In a typical metabolomics platform, MS is usually coupled to
chromatographic methods that allow a wide number of metab-
olites to be analyzed with enhanced sensitivity. GC–MS is a
first-rate choice to analyze volatile samples or when the expected
compounds can be easily made volatile by derivatization. GC–MS
analysis of human plasma has allowed a panel of biomarkers with
utility in early diagnosis of acute coronary syndrome (ACS) to be
identified [83]. Moreover, a characteristic metabolic fingerprint
reflecting the oxidative and hypoxic stress that myocardial cells
suffer in ACS was reported with a similar approach [84]. GC–MS
and 1H NMR have been used together to compare the plasma from
patients with stable carotid atherosclerosis and healthy patients
[85]. The association of both techniques provided complementary
information regarding altered metabolic pathways and enabled a
clearer picture of the metabolic state of patients with carotid
atherosclerosis to be defined.

LC–MS has also been applied in studies to uncover metabolic
pathways relevant to cardiovascular disease. Thus, three metab-
olites of the dietary lipid were identified as predictors of risk for
cardiovascular disease in an untargeted LC–MS approach [86], and
subsequent targeted studies validated this finding and the
relationship between intestinal microbial metabolism and the
development of atherosclerosis [87,88] (Table 3 shows different
studies in which metabolomics has been applied in recent years
[89,90]).

Table 2 summarizes the pros’ and cons’ for a given metabolomic
technology.

4. Integrative bioinformatics analysis to build molecular
networks: systems biology

The “omics” platforms offer a range of opportunities to study
biological systems as a whole from different perspectives. An
“omics” approach provides significant amounts of data at multiple
biological levels from gene sequence and expression, to protein
and metabolite patterns, all of which underpins the variability in
cellular networks and activity in whole organ systems [91,92]. In
this review, we focus on two such “omics” disciplines: Proteomics
and Metabolomics. Proteins are the ultimate expression of genes
and metabolites represent the end-products of the genome and
proteome, providing an instantaneous snapshot of the physiology
of a cell, tissue or organism. Given that atherothrombosis is a
multifactorial disease, integrating “omics” data through a systems
biology approach is a valuable means to identify protein and/or
metabolite networks associated to atherothrombosis. Such a global
approach, consider under the auspices of systems biology, has
enabled protein networks or metabolites associated with CVD to
be identified [93,94].

It is also important to consider the possibility of integrating our
results with those of other groups, not only at the proteomic,
transcriptomic or metabolomic level but also, taking into account
that biological networks exist at higher levels such as organelles,
cells and organs. In the case of atherothrombosis, interactions
between multiple cell types (macrophages, endothelial cells,
VSMC, lymphocytes, etc.) and organ systems (vascular, endocrine,
adipose, renal . . . ) have been described, with a myriad of
interconnected molecules that are expressed by each of the
different components. The existence of vast databases derived
from high-throughput studies (e.g., GenBank sequence database
[95], UniProt [96] or Golm Metabolome Database [97]) is
particularly useful when comparing and integrating results from



Table 3
Compilation of studies reported so far in the field of animal and human metabolomics in atherothrombosis pathology. (Table 2 has been modified from Application of
metabolomics to cardiovascular and renal disease biomarker discovery by Alvarez-Llamas et al. Applications of Advanced Omics Technologies: From Genes to Metabolites, 64,
Elsevier B.V.; 2014 [chapter 11]). New added references are indexed in the manuscript.

Sample source Pathology Methodology Potential biomarkers

Human plasma NSTEACS GC/MS Citric acid, 4-hydroxyproline, aspartic acid, fructose, lactate, urea, glucose, valine
Human urine and
plasma

Atherosclerosis CE–MS Collagen a1

Human aneurysm
wall

Human intramural
thrombosis

LC–QTOF–MS Hippuric acid

Rat urine Myocardial infarction LC–QTOF–MS Creatine, uridine, glutamate, pantothenic acid oxalosuccinic acid, nicotinamide
mononucleotide, phenylacetylglycine, xanthosine, shexiang, baoxin, pill

Human blood
samples

Myocardial infarction Mass spectrometry-based
metabolite profiling platform

Alanine, aminoisobutyric acid, hypoxanthine, isoleucine/leucine, malonic acid,
threonine and trimethylamide N-oxide 1-methylhistamine, choline, inosine, serine,
proline, xanthine taurine, ribose-5-phosphate DMPC, lactic acid, AMP, malic acid,
succinic acid, glycertae-2-phosphate

Rat plasma and urine Atherosclerosis UFLC/MS-IT-TOF Plasma: leucine, phenylalanine, tryptophan, acetylcarnitine butyrylcarnitine,
propionylcarnitine, spermine. Ursodeoxycholic acid, chenodeocycholic acid, urine: 3-O-
methyl-dopa, ethyl N2-acetyl argininate, leucylproline, glucuronate, N(6)-(N-
threnylcarbonyl)-adenosine methyl-hippuric acid, hippuric acid

Rabbit and rat
myocardial cells
and tissue

Atherosclerosis ESI–MS Plasmalogens

Human plasma Cardiovascular status
in healthy voluntaries

NMR 3-Hydroxybutyrate, A ketoglutarate, threonine
dimethylglycine

Atherosclerosis NMR
GC–MS

Glutamate, ketoglutarate, succinyl CoA, 4-OH-L-proline, creatine, pyruvate, malate,
glycolate

Peripheral blood Coronary artery
disease

Quantitative mass
spectrometry based
metabolic profiling

Arginine, ornithine, alanine, proline, leucine/isoleucine, valine, glutamate/glutamine,
phenylalanine glycine

Human plasma [89] Coronary heart
disease

NMR Creatinine, serine, glucose, 1,5-anhydrosorbitol, trimethylamine N-oxide (TMAO),
ornithine, citrate, glutamate, glycoproteins, an unsaturated lipid structure, valine

Human plasma [90] Peripheral arterial
disease

H NMR Lipid molecules of lipoproteins, such as the eCH3 group of triglycerides, cholesterols,
phospholipids, and glycophospholipids
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different studies. Moreover, a systems biology approach could be
applied to biomarker discovery, situating putative biomarkers
from previous experimental analysis in the context of a network of
biological interactions, such as gene–gene, gene–protein or
protein–protein interactions, subsequently performing different
‘guilt-by-association’ analyses [98]. Different bioinformatics tools
are able to generate biological networks, most of them based on
Cytoscape Web, a freely available network visualization tool that
integrates biomolecular interaction networks with high-through-
put expression data and other molecular states into a unified
conceptual framework [99]. Moreover, the free web-accessible
programs PANTHER [100] and DAVID [101], and the commercial
software Ingenuity Pathways Analysis (IPA: Ingenuity1 Systems,
http://www.ingenuity.com) provide a comprehensive set of
functional annotation tools (including gene function, ontology
and pathways) to extract biological meaning from large lists of
genes. These software tools allow enrichment analysis to be
performed, which defines molecular/biological functions and
pathways, and sub-cellular localizations significantly over-repre-
sented in a sub-set of proteins. Another useful software to build
molecular networks is STRING, a database of reported and
predicted protein interactions that includes direct (physical) and
indirect (functional) associations [102].

Network analysis can also be used to design targeted experi-
ments, which somehow constitutes an alternative “in silico
discovery phase” to that of traditional proteomics analysis. Using
this approach, the regulation of selected biomarkers belonging to
pathways that are related to coronary artery disease (CAD) has
been studied [103,104]. Specifically, network models based on
regulatory transcription factors implicated in stress, inflammation,
coagulation, oxidative stress, cell adhesion, obesity and renal
function were developed (using STRING and Cytoscape), which
were validated by transcriptomics alone [103], or in conjunction
with proteomics [104], using plasma from CAD patients.
To summarize, with systems biology in mind, an integrative
approach can provide a more holistic picture of the molecular
mechanisms at play during the development of atherosclerosis.

5. The long and winding biomarker pipeline

Biomarkers are very important because they can be used in
research studies to predict disease risk, monitor disease status and
to provide information that might be useful for life-saving or
health-promoting interventions. The clinical utility of molecular
biomarkers relies on their specificity to predict pathological risk,
although it must be considered that the biomarker must be
accepted by the patient, it should be easy to interpret and able to
explain a reasonable proportion of the outcome. Accuracy,
reproducibility, availability, feasibility of implementation in a
clinical setting and specificity are additional characteristics that
must be fulfilled, and in this sense, panels of biomarkers are
gaining acceptance as opposed to individual molecules [105].

In the discovery phase, proteomics gel-based platforms (2D-
DIGE) and liquid chromatography (nLC-MS/MS) set-ups are most
commonly used for protein analysis, although the combination of
capillary electrophoresis with mass spectrometry (CE–MS) for
peptidomes is gaining in popularity [106]. For those pathologies
where the spatial distribution of proteins, peptides and metabolites
is useful, mass spectrometry imaging (MSI) is the platform of choice.
Differential metabolomics analysis is currently addressed through
LC-MS/MS, gas chromatography on-line coupled to mass spectrom-
etry (GC–MS) and nuclear magnetic resonance (NMR) [107].

Once a potential biomarker candidate has been discovered, its
validation in a different cohort of samples must be undertaken. In
this step, candidate biomarkers are analyzed in an independent
and larger cohort of patients to that used in the discovery phase,
preferably using an orthogonal technique, such as western
blotting, ELISA or immunohistochemistry. Indeed, analysis by

http://www.ingenuity.com
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selected reaction monitoring (SRM) is becoming more established
in current proteomics platforms. This strategy is typically
performed in a triple-quadrupole configuration of the MS
apparatus to simultaneously monitor and quantify hundreds of
molecules per sample by measuring specific fragments of the
proteins/metabolites of interest [108]. A novel method, denoted
“Stable Isotope Standards and Capture by Anti-Peptide Antibodies”
(SISCAPA) was described in 2004 [109], which represented a
step-forward in the fractionation of serum or plasma for the
validation of biomarkers using targeted proteomics. In this
approach, targeted peptide enrichment is achieved by nanoaffinity
chromatography to improve quantification by SRM. Immuno-SRM
provides an average 120-fold enrichment of peptide antigens and
therefore, it constitutes a valuable method to perform the tedious
task of quantifying proteins that are not very abundant in blood.
Using this methodology, cTpn I and interleukin-33 have been
efficiently quantified in human plasma with high precision,
reproducibility and sensitivity [110].

Although limited, validation data can indicate whether the
differences in protein levels observed might be associated with
differences in the genetic background of the selected patients.
Moreover, when validated in an adequate patient population,
potential biomarkers may complete the final steps of the pipeline
before being implemented in clinical practice.

The translation of a biomarker into routine clinical use is a clear
step-forward, requiring the collaboration of the research labora-
tory, the diagnostics industry and the clinical laboratory [111].
Once the technological battle has been won and the sensitivity
required for the detection of the specific candidates can be
achieved, the final issue is to find a suitable, clinically relevant
application and to gain the acceptance of industry. Achieving this
will indicate that the benefit to patients, industry and society has
reached its maximum expression. Careful design of the clinical trial
(in terms of the number of patients, clinical characteristics of the
cohort, measurement technique, etc.), as well as the collection of
reliable results indicating an improvement in the discriminative
capacity with respect to the available biomarkers, will determine
whether a biomarker can be accepted by the scientific community.

6. Functional validation of therapeutic protein targets

Demonstrating the utility of a protein as a therapeutic target
requires validating its actual implication in the disease. A range of
strategies exists to modulate protein expression in vitro and in vivo.
However, it is hoped that targeted discovery and validation will
concurrently identify and validate therapeutic targets for the best
intervention in human diseases.

6.1. In vitro

One of the abiding weaknesses of in vitro experiments is that they
fail to replicate the precise cellular conditions in the organism. Such
approaches can focus on the molecular mechanisms that regulate
the process under study, and they are intended to investigate the
mode of action and/or effects of a substance in relation to its desired
therapeutic target. In the first level of the functional validation,
potential protein targets can be validated using cell cultures of a
known tissue affected by the disease. In our experience, in vitro
studies allowed us to elucidate the role of the PDGF-BB protein in
vascular tissue repair [112], which has been also implicated in
vascular remodeling during atherosclerosis [113].

6.2. In vivo

Functional validation in animal models is the next step as it is
closer to the reality of the human disease. Physiological processes,
particularly those involving complex interactions of different cell
types over time, can only be analyzed within the context of intact
organisms. Animal models of atherosclerosis (apoE-mice, hyper-
cholesterolemic rabbit) or ischemia/reperfusion (artery ligation
models) allow the analysis in vivo of the effect of protein
modulation. Furthermore, the generation of transgenic or knock-
out (KO) mice, allow the role of proteins to be studied in certain
physiological/pathological conditions [114]. One attractive alter-
native to KO mice is the generation of transgenic mice expressing
shRNAs that are subsequently processed to yield functional siRNAs
inducing the silencing of specific mRNAs [115]. Since the
expression of such shRNA constructs can be controlled by inducible
and tissue specific inhibitors, it is conceivable that this transgenic
RNAi system will become an interesting technology of choice to
validate potential therapeutic targets in vivo [116].

To exemplify how proteomics can be used in the discovery and
functional validation of a therapeutic target as discussed here, we
provide the noteworthy example of the pharmacological enhance-
ment of aldehyde dehydrogenase-2 by Alda-1 that was demon-
strated to reduce ischemic damage in the heart [117].

7. The limitations of proteomics and metabolomics analyses

Although “omics” approaches are ideal to discover and
characterize biomarkers of atherothrombosis, several limitations
of the available proteomic and metabolomics platforms should be
taken into account when evaluating the potential of our results. In
the first place, mass spectrometry can identify thousands of
proteins and metabolites per sample, yet it is not capable of
defining the entire proteome or metabolome since particular
peptides, proteins and metabolites may be difficult to detect given
their resistance to extraction and ionization. The chemical
complexity of metabolites constitutes a limitation in metabolomic
analysis, which implies the need to employ diverse extraction
methods for the extraction of the entire metabolome. Furthermore,
enzymatic digestion of proteins prior to MS is not very reproduc-
ible, resulting in incomplete digestion and the appearance of
missed-cleavages, which affects identification.

Concerning comparative studies, the limited reproducibility of
the available quantification methods constitutes a major issue,
which must be counteracted by employing normalization techni-
ques, and which may indeed benefit from the use of internal
standards.
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