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a b s t r a c t

The dynamics of biological networks are fundamental to a variety of processes in many areas of biology
and medicine. Understanding of such networks on a systemic level is facilitated by mathematical models
describing these networks. However, sincemathematicalmodels of signalling networks commonly aim to
describe several highly connected biological quantities and many model parameters cannot be measured
directly, quantitative dynamic models often present challenges with respect to model calibration. Here,
we propose an iterative fitting routine to decompose the problem of fitting a system of coupled ordinary
differential equations describing a signalling network into smaller subproblems. Parameters for each
differential equation are estimated separately using a Differential Evolution algorithm while all other
dynamic quantities in the model are treated as input to the system. The performance of this algorithm
is evaluated on artificial networks with known structure and known model parameters and compared to
a conventional optimisation procedure for the same problem. Our analysis indicates that the procedure
results in a significantly higher quality of fit andmore efficient reconstruction of the true parameters than
the conventional algorithm.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A quantitative description of biological networks is critical to an
understanding of biological processes at different scales. In partic-
ular, signalling networks regulate a plethora of biological systems
[1] and play a key role in the control of immune functions, e.g. in
intracellular signal transduction like T cell receptor signalling or
intercellular communication by a network of cytokines [2]. While
the interactions between the constituents of such biological net-
works are often unknown, there is an increasing amount of quan-
titative data on their dynamics. The complex behaviour that can
emerge even from simple interactions [3] has motivated increas-
ing interest in dynamic models of signalling networks (see [4–6]
and references therein).
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In the common case where quantitative knowledge about the
underlying kinetic properties of modelled reactions is missing, ei-
ther due to a lack of data or because there is no direct physical
equivalent, model parameters have to be estimated by fitting the
model output to suitable data. This problem usually involves the
minimisation of a function measuring the disagreement between
model output and data. Although this problem is well-studied [7],
parameter estimation can be challenging, as biological data are of-
ten noisy, contain measurement errors and are incomplete. Fur-
thermore, especially in the case of signalling networks, the systems
under study can be too complex. Even parameter estimation prob-
lems in simplified network models can be high-dimensional and
almost inevitably have multiple local minima.

Among the various optimisation methods, the most traditional
are gradient descent based methods. While these are widely em-
ployed and very efficient in the case of local minimisation prob-
lems, they tend to converge prematurely in case of multiple
minima or areas in the parameter space where the objective
function is flat [8]. Hence, stochastic optimisation algorithms are
widely used, like Genetic Algorithms and Simulated Annealing
[9] or Particle Swarm Optimisation [10]. A particularly interesting
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metaheuristic algorithmhas been proposed by Storn and Price [11]
who coined the term Differential Evolution (DE). The general idea
of the algorithm is very simple: A number of random parameter
vectors is generated and the parameter vectors aremutated in sub-
sequent iterations, called ‘‘generations’’ in the DE terminology. For
each parameter vector to be computed in a generation, three vec-
tors from the previous generation are picked and the new param-
eter vector is created by adding the weighted difference between
two parameters to the third one. Furthermore, a process recom-
bining parameter vectors called ‘‘crossover’’ is introduced to fur-
ther increase the diversity within the vectors. If themutated target
vector performs better in the minimisation of the objective func-
tion than the corresponding vector from the previous generation, it
is retained for the next generation and otherwise discarded. While
the general strategy outlined above is simple, the algorithm has
been directly compared to six other global optimisation algorithms
by Moles et al. [12], where DE outperformed the other algorithms
in terms of finding the best solution.

Even though the success of the DE algorithm in terms of finding
good parameter estimates is convincing, high-dimensional param-
eter spaces of real biological networks still are a major challenge
calling for innovative fitting procedures. Here, we define a gener-
alised network structure with randomised interactions and arbi-
trary units in order to test the performance of a new fitting strategy
combining an iterative parameter estimation procedure inspired
by [13] with the DE algorithm. The idea of the iterative strategy
is the decomposition of the parameter fitting into subproblems in
which data for all but one quantity are used as fixed input to the
fitting process. To show the advantages of the iterative fitting rou-
tine, we use it on noisy data generated from a model with known
parameters and compare it to the results of a conventional appli-
cation of the DE optimiser in terms of quality of the fit, variation
within the results and distance of the estimated parameters from
the true parameter vector.

2. A hypothetical signalling network

The proposed optimisation method has been developed in the
context of biological networks. To motivate the development of
this newmethod and analyse its performance,we consider systems
of coupled ordinary differential equations (ODE) describing hypo-
thetical biological networks of known structure and known true
parameters. These models are used to introduce the methodology
and to compare its performance to a conventional parameter esti-
mation method that requires similar computational effort. To this
end, synthetic data are generated by solving the ODE systems nu-
merically and adding artificial noise. These generated data are then
used in an inverse modelling approach, i.e. adjusting the model
parameters to fit the generated data. The advantage of this pro-
cedure is (a) that the performance at estimating parameters is iso-
lated from any uncertainties in the model structure, since the true
network structure is known, and (b) that not only goodness of fit,
but also the distance from the known true parameter values can be
compared to assess the algorithm’s performance. Many biological
signalling networks consist of highly complex, densely connected
structures and the true network structure is often not known. Even
with good biological information about the network, it is difficult
to find reliable parameter estimates as a reference point for the as-
sessment of new estimation methods. Hence, only synthetic data
were used to avoid any bias introduced by assumptions about the
network structure and model parameters in real biological data.

2.1. Network structure

In many biological networks such as gene regulatory or neural
networks, sigmoid and log-sigmoid functions are commonly used
to describe regulatory interactions between nodes [14–16]. The
network considered here consists of several nodes connected by
a network of regulatory relationships similar to those described in
[16]. The dynamics of the network can be described by a system of
the general form

Ẋ = f (Θ, X) =



α1 ·

k
j=1

σ1j(Xj) − γ1 · X1

...

αi ·

k
j=1

σij(Xj) − γi · Xi

...

αk ·

k
j=1

σkj(Xj) − γk · Xk


, (1)

where X is an k-dimensional vector of quantities (nodes) in the
network. Θ is a vector with model parameters, αi and γi are pro-
duction and degradation rates of the quantity Xi, respectively, and
σij(Xj) is the regulation of node Xi as a function of all quantities Xj.

The sigmoid regulatory interaction functions denoted by σij
modulate the production of the quantity Xi. In general, function
values >1 have an activating effect and values <1 are inhibiting.
The sigmoid functions are defined by

σij(Xj) = pij + (qij − pij) ·
X

nij
j

K
nij
ij + X

nij
j

. (2)

Each sigmoidal is uniquely defined by the parameters p, q, K and n.
Whether the sigmoidals can have an activating or inhibiting effect
is determined by the parameters p and q. q is the maximum value
of the function in case of an activating and the minimum function
value in the case of an inhibiting interaction. The parameter p gives
the minimum value in case of an activation and the maximum in
case of an inhibition, accordingly. K denotes the half-maximal con-
centration of Xj, i.e. the value of Xj where the sigmoidal reaches
1
2 of its maximal effect, and n is the Hill coefficient that regulates
the width of the sigmoidal. Here, a known equilibrium concentra-
tion of 1 for all quantities is assumed and the sigmoid functions
are defined to be exactly 1 under these equilibrium conditions. The
parameter p is fixed according to this equilibrium concentration,
effectively leading to three free parameters for each sigmoidal:

pij =
1 + K

nij
ij − qij

K
nij
ij

. (3)

It follows from Eqs. (2) and (3), that the sigmoid function is acti-
vating (for Xj > 1) if q > 1 and inhibiting if 0 < q < 1. Hence,
the type of an interaction function, either activating, inhibiting or
no regulation, can be defined by choosing q accordingly.

A hypothetical biological network following this structure was
constructed to produce the synthetic data in this study. The net-
work consists of five quantities, a, . . . , e. For each of these network
nodes, a connection with any other node can be either activating,
inhibiting, or absent and each connection was assigned by picking
randomly from these choices with equal probabilities. The result-
ing network is depicted in Fig. 1 and the network structure was
used throughout this project if not stated otherwise.

2.2. Synthetic data

A parameter search space was defined and model parameters
were chosen randomly from this search space (Table 1). The whole
model is defined in arbitrary dimensions. The coupled ODE system
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Fig. 1. The structure of the hypothetical network considered here (system 01 in
Table 2). Dynamic quantities (network nodes) are depicted as circles, arrows depict
an activating and crossbars an inhibiting relationship between two nodes. These
interactions are sigmoid functions of the type in Eq. (2). In addition, each node has
a base production rate α and degradation rate γ (not shown). Combined with the
interactions, the dynamics of each network node are given by Eq. (1).

Table 1
Lower and upper boundaries defining the parameter search space (arbitrary units).
Themaximum effect q of the sigmoid function was chosen from [1, 100] in the case
of an activating interaction and from [0.01, 1] in the case of an inhibiting interaction
in order to ensure the right type of sigmoidal as given by the network in Fig. 1.

qact qinh K n α γ

Minimum 1 0.01 0.5 1 10−5 10−5

Maximum 100 1 100 3 1 1

defined by the network in Fig. 1was solved numerically in the time
interval [0, 100]. Data were generated for nt = 100 time points.
For each time point, 5 values were generated from the model out-
put by adding 10% noise. These data are shown in Fig. 2.
2.3. Other network topologies

To assess the influence of different network sizes and topolo-
gies, networks with 2, 3, 5, 7, and 10 variables were generated, pa-
rameters randomly chosen and data generated by simulations as
described above. In these networks, interactions were only consid-
ered between two different nodes in the network.

In order to test the influence of autofeedback, i.e. the regulation
of one node by itself, an additional network with five nodes
was generated and autofeedback was introduced with the same
probability as all other regulatory relationships.

To test the influence of the interaction function used to describe
the connections in the network, a logistic function given by

gij(Xj) = pij + (qij − pij) ·
1

1 + e−βx
(4)

was used instead of the sigmoidal function for the network in Fig. 1;
simulation and data generation were performed as before.

Table 2 shows a summary of all networks and their properties
as used in our simulations. For all networks, the CPU time until no
significant improvement of the RSS value could be detected any-
more was recorded in order to estimate the computational effi-
ciency. The threshold for termination was set to an improvement
of 0.005% over 100 generations.

3. Iterative parameter estimation strategy

3.1. Parameter estimation

Weconsider the case that only the synthetic data (Fig. 2) and the
network structure (Fig. 1) are known while the model parameters
Θ are unknown. Parameters were estimated by minimising the
error between the model output and the synthetic data for each
Fig. 2. Mean values of the synthetic data for the quantities a–e (network nodes in Fig. 1, system 01 in Table 2) generated as described in the text (black dots). The curve
depicts the error-free values generated by numerically solving the ODE system.
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Table 2
Different networks used to test the influence of network size and structure.

System Variables Interaction
functions

Parameters Remarks

01 5 16 53 See Fig. 1
02 2 8 2
03 3 12 3
04 7 13 46
05 10 23 79
06 5 10 35 Including autofeedback
07 5 16 53 Same structure as 01,

but logistic interaction
time point as measured by the sum of all squared (weighted)
residuals:

RSS =

k
j=1

nt
i=1


xij − xij

sij

2

, (5)

where k is the number of nodes, nt the number of data time points,
xij is the mean of the synthetic data point i for the jth node, sij is
the standard deviation at data point i and xij is the current model
output.

The Differential Evolution (DE) algorithm [11] with the classical
DE/rand/1/bin search strategy and parameters F = 0.8 and CR =

0.5was used forminimisation of the error function. A 10-fold of the
number of parameters to estimate was used as the population size,
i.e. as the number of random vectors considered in each generation
of the algorithm.

3.2. Decomposing into smaller sub-problems

To decompose the high-dimensional parameter estimation
task into several sub-problems, each of the coupled differential
equations is analysed separately. The dynamics of all regulating
quantities Xj are considered as fixed input to the system. Since
the ODE integration routine requires dense data for all input
nodes at different times depending on the adaptive step size used,
data between two points are approximated by piecewise linear
interpolation. Hence, the dynamics of one quantity Xi can be given
by a single ODE:

Ẋi = αi ·

k
j=1

σij(X̂j(t)) − γi · Xi, (6)

where X̂j(t) are linear piecewise functions interpolating the given
synthetic data (Fig. 2) for the node Xj.

The objective function for parameter estimation (the weighted
sum of squared residuals as defined in Eq. (5)) is then minimised
using the DE algorithm. This procedure is repeated for all nodes
in the system, each step resulting in an optimised subset of the
parameter vector Θ (see Eq. (1)). These subsets are then combined
and the resulting parameter vector is used as an initial guess for
a final optimisation step with the whole ODE system. In this final
optimisation step, parameter variation is restricted to a factor of
δ = 10% from the initial guess.

3.3. Assessment of parameter estimation success

The stochastic nature of the DE optimisation algorithm requires
statistical evaluation of the properties of the tested fitting proce-
dure. Thus, both procedures, the simple simultaneous estimation
of all parameters and the iterative procedure, were repeated 50
times and the results after the final optimisation step were com-
pared. In case of the global optimisation, the DE algorithm was
terminated after 600 generations regardless of the RSS value and
relative convergence, as the success should be assessed with a
comparable computational effort in both fitting approaches. Since
the iterative fitting strategy consists of six distinct steps, a maxi-
mum of 100 generations was allowed for each of these steps.

The goodness of fit of the synthetic data generatedwith the net-
work (Fig. 1) is evaluated using Eq. (5). Since the true parameter
values are known, the success of the parameter estimation proce-
dure can also be assessed based on the difference between the esti-
mated and the true parameter vector. The concordance correlation
coefficient (CCC) [17] was used as a measure of the agreement be-
tween the true parameters and the estimated vectors. Similar to
other correlation coefficients, CCC can assume values between −1
and 1, where 1 indicates perfect agreement between twomeasure-
ments. For each parameter, a vector of 50 estimated values from
the 50 optimisation runs exists. In addition to the network in Fig. 1,
this procedure was repeated with all other systems in Table 2.

Furthermore, the DE algorithm itself has two central parame-
ters that control its behaviour, the crossover probability CR and
the differentialweight F . Both parameter estimationmethodswere
testedwith varying CR and F to detect any differences between the
two strategies in terms of the optimal DE parameters and to ex-
clude that the results are biased by the choice of DE parameters.
Due to the high computational effort of screening the whole pa-
rameter space of F and CR by repeating both fitting procedures,
this screening was only repeated three times. To compare the re-
sults from the iterative fitting strategy outlined below to the results
of a conventional fitting procedure using the well-known DE algo-
rithm, the best fit was first determined by fitting all free param-
eters in one step. The procedure was repeated with optimisation
by Simulated Annealing in place of the DE algorithm in order to
compare DE to another global optimisation algorithm.

3.4. Software and libraries

The R statistics software was used for synthetic data generation
and handling, statistical tests, plotting and implementation of
the iterative fitting routine. The Differential Evolution algorithm
was used in the excellent implementation by Mullen et al. in the
DEoptim package [18] that offers a variety of search strategies
implemented in C as library for R. For performance reasons, the
model was implemented in C++ and numerically solved using a 5th
order Dormand–Prince algorithm. Rcpp [19] was used to integrate
the compiled library into the fitting routines in R. Plots were
generated with the help of the ggplot2 package [20]. Generalised
Simulated Annealingwas performed using the GenSA package [21]
using the default settings for complex fitting problems.

4. Results

4.1. Quality of the fit and reconstruction of true parameter values

When attempting to fit all parameters simultaneously (called
global in the following), the mean of the best RSS values in 50
runs was 689.3. The achieved RSS values in each generation of
the optimiser is depicted in Fig. 3. After 300–400 generations, the
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Fig. 3. Best RSS values in each generation of the optimiser when fitting all
parameters of the model in Fig. 1 (system 01 in Table 2) simultaneously (global
fit). The curve shows the mean of 50 runs, the shaded area represents the standard
deviation.
decrease in RSS values is rather small, indicating that running the
algorithm for more generations is unlikely to further improve the
model fit to the data. When the optimisation was stopped at 600
generations, the achieved RSS value can thus be considered to be
close to the best RSS value achievable in the fitting procedure.

In contrast, the iterative strategy (called iterative in the follow-
ing) led to better results with a mean RSS value of 417.95. Directly
comparing the distributions of the best RSS values achieved in both
procedures indicates a statistically significant difference in the
quality of the fits (Fig. 4(a)). The distribution of RSS values after the
global fit is comparatively wide (Fig. 4(b), blue), indicating a strong
variation in the quality of the fit, whereas the RSS values achieved
by the iterative fit are closer to each other (Fig. 4(b), green).

In a final optimisation step which starts from the result of
the iterative fit, simultaneous optimisation of all parameters is
allowed in a small region of the parameter space with a maximum
of 10% variation for each parameter (called iterative + global in
the following). Interestingly, this final optimisation step leads to
a further improvement of the quality of fit to an average RSS value
of 266.5 (Figs. 4(a) and (b), red), indicating that the failure of the
simultaneous parameter estimation to produce better fits might
result from local minima or flat regions of the objective function in
regions of the parameter space that were excluded by constraining
the search to a reasonable range.

It is noteworthy that the average RSS value achieved by the
iterative+global fit is below the RSS value of 273.22 achieved by
comparing the simulation generated with the true parameters
to the synthetic (noisy) data generated by the same parameters,
Fig. 4. Comparison of the best fits achieved in 50 attempts to estimate parameters of themodel in Fig. 1 (system01 in Table 2) using the global (blue), the iterative (green), and
the iterative+ global (red) fitting procedure. (a) Boxplots of the RSS values, (b) Density distribution (kernel density estimate) of the RSS values from 50 runs, (c) Concordance
Correlation Coefficient as ameasure of agreement between estimates and true parameters, (d) Euclidean Distances between all 50 estimated parameter sets are calculated by
comparing each vector against each other and indicate variation within the results. Statistical significance was tested using theWelch two-sample t-test. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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indicated by the vertical line in Fig. 4(b). This does not represent
a limitation of the fitting procedure but more generally illustrates
the limits of estimating parameters from fits to data with higher
amounts of noise, since the parameter vector minimising the
objective function obviously differs from the true parameter vector
used to generate the data. Although this certainly limits the
information that can be gained from these data, time series data
frombiological systems frequently consist of sparsemeasurements
with high variation and it is often desirable to have a reasonably
close estimate of the parameters, even if the true parameters
cannot be estimated from the data. Hence, an algorithm that
estimates parameters closer to the true parameters can be helpful
in the case of sparse or noisy data.

Whether or not the improved quality of fit seen with the iter-
ative strategy also corresponds to better parameter estimates is
assessed by calculation of their distances from the true parame-
ter vector. While all three procedures did not reconstruct the ex-
act true parameter values, the average CCC of the true parameters
with the parameters estimated by the iterative strategywas signif-
icantly higher than that of the parameters estimated by the global
fit (Fig. 4(c)). Furthermore, the stochastic nature of the optimisa-
tion algorithm leads to some degree of variation in the results. As
shown in Fig. 4(d), the distances betweenparameter sets generated
by simply repeating the fitting procedure are significantly lower
when using the iterative strategy, indicating a reduced impact of
randomness on the parameter estimates and a lower sensitivity to
local minima and flat regions in the objective function.

The advantage of the iterative + global fit in comparison to the
iterative fit seen in the quality index (Figs. 4(a) and (b)) is not re-
flected in the average distance from the true parameter vector
(Fig. 4(c)). While there is a strong difference between the iterative
and the global fit, no significant improvements by a final optimi-
sation step could be detected. The quality of fit can be improved
by optimising within a local region defined by the iterative fit, but
this does not result in better estimates of the true parameters. It
follows that after reasonably close parameter estimates are found,
further optimisation is of limited relevance for the reconstruction
of true parameter values. Furthermore, while there is a statistically
significant difference in the variation between the estimates found
in individual runs of the algorithmwhen a final optimisation step is
applied (Fig. 4(d)), the improvement is relatively minor. We con-
clude that the main improvement is achieved by the iterative fit
alone and the global final optimisation step is not required.

The number of generations was intentionally chosen very
conservatively with respect to the computational effort in the
iterative strategy by interrupting the fitting after the same number
of generations in total as in the global fitting of all parameters (100
generations in six steps including the final optimisation vs. 600
generations in one iteration). The number of parameter vectors per
generation was set to 10 times the number of parameters to fit
in all cases, which means that the average computational effort
in terms of function evaluation and CPU cycles per generation
can be assumed to be significantly lower in the iterative strategy.
The results are likely to underestimate the performance of the
iterative strategy. For practical applications and exploration of the
limitations of the procedure, the algorithm should be terminated
by a convergence criterion instead, i.e. it should terminate if it
fails to produce a significant difference in the best value of each
generation after a certain number of generations.

4.2. Quality of fit and reproduction of true parameter values in other
network topologies

To assess the quality of parameter estimates in different net-
work topologies, simulations were repeated in seven different sys-
tems ranging in complexity, number of parameters and structural
details (see Table 2 for details). The iterative strategy produced sig-
nificantly better parameter estimates and quality of fit than the
global strategy in all cases (Fig. 5). The advantage for both agree-
ment between parameter estimates and true parameters (Fig. 5(c))
and quality of fit (Fig. 5(d)) was consistent in all tested networks
and slightly increased with the numbers of variables.

Although the quality of fit was significantly improved by adding
a final optimisation step in four of the tested networks (Fig. 5(a)),
this did not correspond to an improvement in the quality of the
parameter estimates (Fig. 5(b)). In the most complex of the sys-
tems, system 05 (see Table 2), the parameter estimates were even
worse with the iterative + global strategy than with iterative alone
although the quality of fit was slightly, albeit not significantly, im-
proved by the final optimisation step. The reason for this behaviour
is the same as discussed for system 01: the quality of fit may be
improved by further optimisation, but the data are not sufficient
to lead to a corresponding improvement in parameter estimates.

Neither the presence of autofeedback (system 06) nor the
choice of a logistic function as interaction function instead of the
sigmoidals (system 07) resulted in qualitatively different results,
indicating that the observed behaviour is robust in the tested
networks.

The variation δ (see Section 3.2) for the final optimisation step
in the iterative + global strategy was kept at a low level in order to
make sure that parameters are only optimised in a local neighbour-
hood of the vector estimated in the preceding iterative strategy.
The final optimisation step can generally not be recommended, as
an increase in quality of fit did not result in better parameter esti-
mates and larger variations are, hence, unlikely to improve param-
eter estimates.

4.3. Robustness of results under different optimiser parameters

Comparing the quality of the fits produced by the two strate-
gies, it is obvious that the RSS is consistently lower with the itera-
tive fitting strategy in a wide region of DE parameters (Fig. 6). The
performance of the iterative fitting routine is stable over most of
the scanned parameter space, although large crossover probabili-
ties CR seem to slightly decrease the quality of the results. Although
these results show that the advantage of the iterative routine is in-
dependent of the DE parameters, optimisation of DE parameters
and DE search strategies other than the classical DE strategy with
fixed parametersmight lead to further improvements. The integra-
tion of adaptive meta-optimisation of the DE parameters as pro-
posed in [22] or [23] might significantly improve convergence and
performance of the algorithm.

4.4. Results using generalised simulated annealing

The advantage of the iterative strategy is maintained even using
a completely different algorithm for each optimisation step Fig. 7.
However, the differences were less pronounced and the variation
was higher than with Differential Evolution. Overall, the quality of
the parameter estimates was worse with Generalised Simulated
Annealing than with the DE algorithm. Since DE has been shown
to produce parameter estimates of better quality than other opti-
misation algorithms for large nonconvex problems [12], its general
advantage for the problem class in this study is expected. It should
be noted that the CCC values achieved by Simulated Annealing in-
dicate a poor fit between parameter estimates and true parame-
ters. Furthermore, the computation time required was on average
more than ten times higher with Simulated Annealing compared
to Differential Evolution.
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Fig. 5. Comparison of the best fits achieved in 50 attempts to estimatemodel parameters using the global (blue/left bar), the iterative (green/centre), and the iterative+ global
(red/right bar) fitting procedure in different network topologies (see Table 2). (a) Concordance correlation coefficient, (b) RSS values, (c) Ratio of concordance correlation
coefficients of the iterative to the global method, (d) Ratio of RSS values of the global to the iterative method. Asterisks indicate statistical significance between methods;
****: p < 0.0001, ***: p < 0.001, **: p < 0.01, *: p < 0.05 as determined by theWelch two-sample t-test. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 6. Comparison of the best fits achieved for parameters of the model in Fig. 1 (system 01 in Table 2) using the iterative and the global fitting procedure with different
values for the DE parameters F and CR. The RSS values are indicated by the colour. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
4.5. Computational efficiency

In order to estimate the computational efficiency of the differ-
ent methods, computation times were recorded. Fig. 8 shows the
CPU time until termination of the algorithm in seconds for optimi-
sations of the systems in Table 2 and the numbers of parameters.
Regardless of the complexity of the system and the number of pa-
rameters, there is a significant advantage in terms of computa-
tional efficiency for the iterative method. The advantage is higher
in more complex systems, as the computation time grows faster
with the number of parameters for the global than for the iterative
method.
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Fig. 7. Concordance correlation coefficient for parameters of the model in Fig. 1
(system 01 in Table 2) optimised by Simulated Annealing instead of Differential
Evolution. Comparison of the best fits achieved in 50 attempts to estimate model
parameters using the global (blue), the iterative (green), and the iterative + global
(red) fitting procedure. Statistical significance was tested using the Welch two-
sample t-test. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Computation times in seconds CPU time in 50 attempts to estimate
parameters of the model in Fig. 1 (system 01 in Table 2) using the global (blue),
the iterative (green), and the iterative+ global (red) fitting procedure. The algorithm
was terminated if no significant improvement (more than 0.005%) could be detected
over 100 generations of the optimisation algorithm. Asterisks indicate the statistical
significance between the iterative and the global method (top) and between the
iterative and the iterative+ globalmethod (bottom); ****: p < 0.0001 as determined
by the Welch two-sample t-test. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

5. Conclusion

In the given class of parameter estimation problems from bi-
ological networks, iteratively optimising model parameters for
single equations by the classical Differential Evolution algorithm
while considering data for all other nodes as input to the system
offers significantly improved performance compared to using the
same optimisation algorithm and the same dataset to estimate all
parameters simultaneously. This was shown in terms of the re-
quired CPU time, the quality of the fit produced by estimated pa-
rameters and distance from the true parameters. The estimates
gained by the iterative routine were consistently closer to the true
parameters. Further optimisation in this region of the parameter
space improved the quality of fit, but not the parameter estimates.

The proposed iterative method robustly provided advantages
in different network topologies. This advantage increased with the
size of the networks andwas confirmed for both tested interaction
functions.

Under practical aspects, the procedure is limited by the avail-
ability of data, since it requires known data for all modelled quan-
tities. An iterative strategy could be imagined for cases where data
for one or more state variables are missing that would involve si-
multaneous fitting of a subset of the state variables with a larger
number of parameters.
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