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SUMMARY

The urothelium is a multilayered epithelium that
serves as a barrier between the urinary tract and
blood, preventing the exchange of water and toxic
substances. It consists of superficial cells special-
ized for synthesis and transport of uroplakins that
assemble into a tough apical plaque, one or more
layers of intermediate cells, and keratin 5-expressing
basal cells (K5-BCs), which are considered to be
progenitors in the urothelium and other specialized
epithelia. Fate mapping, however, reveals that inter-
mediate cells rather than K5-BCs are progenitors in
the adult regenerating urothelium, that P cells, a tran-
sient population, are progenitors in the embryo, and
that retinoids are critical in P cells and intermediate
cells, respectively, for their specification during
development and regeneration. These observations
have important implications for tissue engineering
and repair and, ultimately, may lead to treatments
that prevent loss of the urothelial barrier, a major
cause of voiding dysfunction and bladder pain
syndrome.

INTRODUCTION

The urothelium is a stratified epithelium derived from endoderm

(Wells andMelton, 1999) that extends from the renal pelvis to the

proximal urethra that serves as a crucial barrier between the

blood and urine. The mature urothelium consists of a layer of

keratin 5-expressing basal cells (K5-BCs), intermediate cells

(I cells), and a luminal layer of superficial cells (S cells). S cells

are terminally differentiated and are specialized for synthesis
Developmen
and transport of uroplakins (Upks), a family of molecules that

assemble into apical crystalline plaque that is waterproof and

damage resistant (reviewed in Khandelwal et al., 2009; Wu

et al., 2009). Damage to the urothelial barrier can compromise

bladder function, lead to inflammation, and expose suburothelial

nerve fiber receptors to urinary toxins, a possible mechanism

behind chronic bladder pain or interstitial cystitis (Wyndaele

and De Wachter, 2003). Thus, identification of urothelial pro-

genitors and the signaling pathways that regulate them will be

important for designing strategies for tissue augmentation and

regeneration.

The urothelium is distinguishable in the mouse embryo on

E11.5 when the bladder begins to form at the anterior aspect

of the urogenital sinus. It is thought to assemble in a linear

sequence, beginning with K5-BC progenitors that produce I cells

and S cells that populate upper layers (Shin et al., 2011). The

adult urothelium is quiescent but can rapidly regenerate in

response to acute damage such as urinary tract infection or

exposure to drugs and toxins (reviewed in Khandelwal et al.,

2009). The injury response begins with desquamation of the

damaged urothelium, followed by a massive wave of pro-

liferation that reconstitutes the urothelial barrier within 72 hr,

observations that suggest the existence of a progenitor popula-

tion. Fate mapping studies using a tamoxifen (TM)-inducible

ShhCreERT2;mTmG to indelibly label Shh+ cells support the exis-

tence of a population of Shh-expressing progenitors in the adult

that are proposed to be K5-BCs (Shin et al., 2011). It remains

unclear, however, whether these progenitors are also important

for generating the urothelium during embryonic development.

Retinoic acid (RA) is a potent signaling molecule that regulates

self-renewal and pluripotency and specification in embryonic

stem (ES) cells and other progenitors, by inducing chromatin

modifications in regulatory regions of RA-responsive genes

(Kashyap et al., 2011). Retinoids are important in adults for vision

and fertility, maintaining a wide variety of specialized epithelia

(Wolbach and Howe, 1925), and are critical regulators of
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organogenesis. RA is synthesized from retinol, an inactive

precursor that is taken up by cells and converted to RA in a

two-step process by retinol dehydrogenase-10 (Rdh10) and ret-

inaldehyde dehydrogenase-2 (Raldh2), enzymes that are selec-

tively expressed in cells where active RA signaling is required

(Duester, 2008; Niederreither and Dollé, 2008). Once available,

RA regulates transcription by binding to and activating RA recep-

tors (Rars), a family of eight transcription factors that are widely

expressed in adults and embryos. Rars control transcription by

binding to RA-response elements in promoter regions of target

genes in association with Rxrs, a second family of nuclear recep-

tors. In the absence of RA, Rar/Rxr heterodimers are frozen in an

inactive conformation; however, RA binding to the Rar/Rxr heter-

odimer induces a conformational change, converting the inac-

tive complex to a transcriptionally active state (Samarut and

Rochette-Egly, 2012).

The observations that RA regulates the adult steady-state

urothelium (Liang et al., 2005), together with recent studies

showing that RA can induce ES cells to differentiate into urothe-

lial cells (Mauney et al., 2010), suggest that retinoids may be

important regulators of urothelial differentiation in vivo. To

address this, we examined the requirement for RA signaling in

urothelial cells by expressing a dominant inhibitory form of Ret-

inoic acid receptor alpha (RaraT403) in urothelial progenitors.

RaraT403 lacks the ligand-dependent activation domain that is

critical for recruiting histone modifiers (Kashyap et al., 2011)

and is thus a potent inhibitor of endogenous RA signaling in vivo

and in vitro (Blumberg et al., 1997; Damm et al., 1993). RaraDN

has been inserted into the Rosa26 locus (Soriano, 1999) after a

floxed STOP sequence to generate (Gt(ROSA)26Sor)) mice

(hereafter called RaraDN mice). We showed previously that

Cre-dependent expression of RaraDN generates a collection of

defects that are virtually identical to those observed in RA defi-

ciency and in mutants lacking components of the RA-signaling

pathway (Table S1 available online) that increase the severity

of phenotypes in a dose-dependent manner (Chia et al., 2011;

Rosselot et al., 2010). Importantly, defects induced by expres-

sion of RaraDN appear to be specific for Rar signaling because

we have not observed abnormalities that could be linked to inhi-

bition of transcription via other nuclear receptor family members

(Table S1).

The Shh-expressing population in the adult urothelium con-

tains progenitors that have long-term regenerative capacity

and that have been proposed to be K5-BCs (Shin et al., 2011).

We show here that the Shh-expressing population in embryos

contains K5-BCs as well as two additional cell types: P cells,

which are present in the embryonic urothelium, but not in the

adult; and I cells, which are present in the embryonic and adult

urothelium. Lineage studies using a Krt5CreERT2 line to indelibly

label K5-BCs and their daughters indicate that K5-BCs are

unlikely to be progenitors in the embryo or in adults. On the other

hand, we find that P cells, a transient urothelial cell type, are pro-

genitors in the embryo, and I cells are progenitors in the adult

regenerating urothelium, andwe show that retinoids are required

both in P cells and I cells for their specification. These observa-

tions could have important implications for tissue engineering

and repair and may lead to treatments for patients with voiding

dysfunctions and/or painful bladder syndrome that are associ-

ated with loss of the urothelial barrier function.
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RESULTS

Shh-Expressing Cells Are Progenitors in the Embryonic
Urothelium
The mature urothelium is composed of a layer of basal cells that

are positive for Krt5 and P63 (K5-BCs), one to two layers of I cells

that express Upk and P63, but not Krt5, and a luminal layer of S

cells that express Upk, but not Krt5 or P63 (Figures 1A and 1F; in

this figure and in subsequent figures, yellow arrowheads desig-

nate S cells, purple arrowheads designate I cells, and green

arrowheads designate K5-BCs). Recent fate mapping studies

using ShhCreERT2+/�;mTmG mice to indelibly label Shh+ cells

and their daughters support the existence of a population of

Shh-expressing progenitors with long-term regenerative poten-

tial (Shin et al., 2011). Based on the colocalization of Shh and

Krt5, amarker of K5-BCs, it was proposed that the urothelial pro-

genitor is a K5-BC. An interesting question, however, is whether

this progenitor population also participates in de novo urothelial

formation in the embryo.

ShhCreERT2+/� mice, which harbor a TM-inducible form of Cre

(Harfeetal., 2004),werecrossedwithGt(ROSA)26Sor tdTomato,-EGFP

(Rosa26-membrane-Tomato/membrane-GFP reporter mice;

hereafter called mTmG mice). In TM-treated ShhCreERT2+/�;
mTmG mice, membrane-bound GFP is expressed in cells

that undergo Cre-mediated recombination, and membrane-

bound Tomato is expressed constitutively from the Rosa26

promoter in cells where recombination has not taken place

(Muzumdar et al., 2007). We used this reporter line in fate

mapping experiments to evaluate the potential of the Shh+

population in the developing urothelium. We first examined

the specificity of Cre-dependent recombination by comparing

the distribution of Shh mRNA with the GFP lineage tag in

ShhCreERT2;mTmG embryos. In situ hybridization analysis indi-

cates that Shh mRNA is expressed in virtually all urothelial cells

between E10 and E13, becoming restricted to the basal and

intermediate layers by E14, when S cells begin to form in the

upper layer (Figures S1A–S1C). To evaluate the initial distribution

of Cre recombination, we analyzed the urothelium in TM-treated

ShhCreERT2;mTmG embryos after a short chase. TM was admin-

istered at E11, when the urothelium begins to form, and at E14,

when the urothelium is stratified, and embryos were analyzed

24 hr later. In E12 ShhCreERT2;mTmG embryos exposed to TM

at E11, GFP labeling was throughout the developing urothelium

in a pattern that overlaps well with endogenous Shh mRNA

(Figures 1B, 1G, and S1; compare Figures S1A and S1D). In

E15 ShhCreERT2;mTmG embryos exposed to TM on E14, GFP

labeling was present in the intermediate and basal layers

where Shh-mRNA is expressed but was undetectable in the

S cell layer, where Shh mRNA is downregulated (Figures S1B

and S1E–S1I). Together, these findings indicate that Cre-depen-

dent recombination in ShhCreERT2;mTmG embryos is restricted

to Shh-expressing cells.

To evaluate whether Shh+ cells can generate S cell daughters,

ShhCreERT2;mTmG embryos were exposed to TM on E11 or E14

and analyzed at E18 when the urothelium is stratified andmature

S cells occupy the luminal layer. In E18 embryos exposed to TM

at E11, GFP expression was present in 70% of urothelial cells,

including the S cell compartment where labeling was in 45% of

the population (Figures 1C, 1D, and 1H–1K). In E18 embryos
evier Inc.



Figure 1. Shh-Expressing Cells Are Progen-

itors in the Developing Urothelium

(A) A section from an adult urothelium stained with

Upk (green) and P63 (pink).

(B) A section from an E12 ShhCreERT2;mTmG

embryo treated with TM at E11.

(C) Upk expression (red) in an E18 ShhCreERT2;

mTmG embryo exposed to TM on E11.

(D) Higher magnification of (C).

(E) Upk expression (red) in a section from

an E18 ShhCreERT2;mTmG embryo exposed to TM

on E14.

(F) A section from an adult urothelium stained with

Krt5 (green) and P63 (pink).

(G) P63 expression in the urothelium from an

E12 ShhCreERT2;mTmG embryo treated with TM

on E11.

(H) P63 expression (pink) in an E18 ShhCreERT2;

mTmG embryo exposed to TM on E11.

(I) Krt5 expression (red) in an E18 ShhCreERT2;

mTmG embryo exposed to TM on E11.

(J) Krt5 expression (red) in an E18 ShhCreERT2;

mTmG embryo exposed to TM on E14.

(K) A table showing the labeling efficiency

after TM treatment at E11 versus E14, and the

percentage of S cells in E18 ShhCreERT2;mTmG embryos expressing the GFP lineage tag 7 and 4 days after TM treatment, respectively.

Yellow arrowheads point to S cells, green arrowheads indicate K5-BCs, and purple arrowheads show I cells. mTmG GFP-positive cells are green.

Magnifications, 203 (C) and 403 (A, B, and D–J). Scale bars, 50 mm. See also Figure S1.
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exposed to TM at E14, 25% of urothelial cells were GFP labeled,

including 6% of the S cell population (Figures 1E, 1J, and 1K).

Because Cre-mediated recombination peaks between 6 and

48 hr after TM exposure (Hayashi and McMahon, 2002), these

observations suggest that Shh-expressing progenitors are pre-

sent in the urothelium between E11.5 and E16.

The Urothelium Stratifies in a Unique Manner
According to the current thinking, the urothelium stratifies in a

similar fashion, as does the skin, beginning with K5-BC progen-

itors that produce mature cell types that progressively populate

the upper layers. A surprising observation, however, is that Krt5,

an early marker of K5-BCs, is barely detectable prior to E15, a

stage when S cells and I cells have already formed (Figures

S2A–S2I). We therefore examined the composition of the Shh+

population to determine the ontogeny of different cell types

and to identify potential progenitor populations. Shh is secreted,

and Upk, the definitive marker of both I cells and S cells, is

expressed on the apical surface making it difficult to distinguish

individual positive cells (e.g., Figures S2G–S2L). We therefore

used ShhGFP/Cre and ShhnLacZ reporter mice (Harfe et al., 2004;

Lewis et al., 2004) to define cell types present in the Shh+ popu-

lation, and we generated Up2-Cfp reporter mice that express

Cfp driven by Up2 regulator sequences to evaluate the distribu-

tion of Upk-expressing cells (Figures S2M and S2N).

Marker analysis of ShhGFP/Cre and Shh-nlacZmice revealed that

the Shh-expressing population in the embryonic urothelium con-

tains four cell types: an undifferentiated endodermal population

(Foxa2+ Upk� P63+ Shh+ Krt5�); P cells (Foxa2+ Upk+ P63+

Shh+ Krt5�), which are a transient cell type abundant between

E11 and E13 but undetectable at later stages (Figures 2A–2E);

I cells (Foxa2� Upk+ P63+ Shh+ Krt5�), which are abundant in

the basal and intermediate layers at E14 and in adults, reside
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in the intermediate layer where they comprise 5% of the urothe-

lial population (Figures 2H, 2I, 2K, and 2O); and K5-BCs (Foxa2�

Upk� P63+ Shh+ Krt5+), which are first detected between E14

and E15 and by E18, are the majority of cells in the urothelium

(Figures 2J, 2K, 2N, and 2O). S cells, which are negative for

Shh expression (Foxa2�Upk+P63�Shh�Krt5�), are first detect-
able in an immature mononucleated form at E14 (Figure 2F) and

by E18, are multinucleated, resembling their mature counter-

parts (Figure 2G). Analysis of the distribution of UP2-Cfp activity

confirmed these observations: Up2-Cfp+ P cells coexpressing

Foxa2 were detected between E11 and E13, whereas Up2-Cfp

expression was restricted to I cells and S cells at later stages

(Figures 2L and 2M; data not shown). At birth, 90% of cells in

the urothelium are K5-BCs, which occupy the basal layer, 5%

are I cells, and 5% are S cells (Figure 2P).

Fate Mapping Indicates that the K5-BCs Are Not
Urothelial Progenitors in the Embryonic or Adult
Urothelium
The observations that (1) K5-BCs are undetectable in the urothe-

lium between E11 and E14when progenitor potential is high, and

(2) K5-BCs form after S cells, I cells, and P cells, suggest that K5-

BCs are unlikely to be urothelial progenitors during development.

To directly address this question, we performed fate mapping

studies using Cre-lox recombination to indelibly label K5-BCs

and their daughters. Tg(KRT5CreERT2) mice (hereafter referred

to as K5CreERT2 mice) express a transgene containing Krt5 regu-

latory sequences fused to the TM-inducible Cre/ERT2 cassette

that drives Cre-dependent recombination in Krt5-expressing

cells, including epidermis (Indra et al., 1999). Based on the distri-

bution of Krt5 expression, K5-BCs appear between E14 and E15.

We therefore exposed Krt5CreERT2;mTmG embryos to TM on E14

and analyzed the distribution of GFP-positive cells after 4 days,
tal Cell 26, 469–482, September 16, 2013 ª2013 Elsevier Inc. 471



Figure 2. The Shh Population Contains Multiple Cell Types

(A) A section from an E11 ShhGFP/Cre embryo immunostained for expression of GFP (green nuclear staining).

(B) A serial section from the same embryo as in (A) stained for expression of P63 (pink).

(C) A serial section from the same embryo as in (A) stained for expression of Foxa2.

(D) A section from an E12 embryo showing P cells expressing Foxa2 (pink) and Upk (green).

(E) A section from an E14 embryo stained with Foxa2 antibody (pink), which is undetectable.

(F) A section from an E14 embryo stained for expression of Upk (green) and P63 (pink).

(G) A section from the urothelium of an E18 embryo stained for expression of P63 (pink) and Upk (green).

(H) A section from an E14 ShhGFP/Cre embryo (GFP is green nuclear staining) stained for expression of Upk (pink).

(I) A section from an adult ShhnlacZ embryo (nlacZ is green nuclear staining) stained with Upk antibody (pink).

(J) A section from an E14 ShhGFP/Cre embryo (GFP is green nuclear staining) stained for expression of Krt5 (pink).

(K) A section from an adult ShhnlacZ embryo (nlacZ is green nuclear staining) stained for expression Krt5 (pink).

(L) A section from an E12 Up2-Cfp embryo (Cfp detected with anti-GFP antibody is shown in green) stained for expression of Foxa2 (pink).

(M) A section from an E13 Up2-Cfp embryo stained for expression of P63 (pink). Cfp detected with anti-GFP antibody is shown in green.

(N) A section from an E15 Up2-Cfp embryo stained for expression of Krt5 (Cfp detected with anti-GFP antibody is shown in green).

(O) A section from an E18 Up2-Cfp embryo stained with Krt5 antibody (pink). Cfp detected with anti-GFP antibody is shown in green.

(P) A schematic showing the color code for different urothelial cell types and the relative proportions in the embryonic and adult urothelium.

In this and subsequent figures, S cells are marked with yellow arrowheads, I cells with purple arrowheads, K5-BCs with green arrowheads, and P cells with

blue-green arrowheads. Magnifications, 203 (A–D, L, and M), 103 (E), and 403 (F–K, N, and O). Scale bars, 50 mm. See also Figure S2.
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which in experiments with theShhCreERT2;mTmG line as a lineage

marker, was sufficient time to label 6% of the S cell population

(Figures 1E, 1J, and 1K). In E18 Krt5CreERT2;mTmG embryos

exposed to TM on E14, Cre-dependent recombination occurred

in about 22%of urothelial cells, and labelingwas confined almost

exclusively to the K5-BC population (Figures 3A and 3C). Similar

findings were obtained in experiments where TM was adminis-

tered at E14 in utero, and embryos were analyzed after either 1

or 3 months; lineage-tagged cells were almost exclusively K5-

BCswith an occasionalGFP-labeled cell in the intermediate layer

(Figures 3B, 3D, and 3K; data not shown). These results suggest

that K5-BCs are not urothelial progenitors during development.
472 Developmental Cell 26, 469–482, September 16, 2013 ª2013 Els
K5-BCs have been proposed to be progenitors with long-term

regenerative capacity in the adult urothelium based on fate map-

ping experiments using the ShhCreERT2;mTmG line (Shin et al.,

2011), which drives Cre-dependent recombination in I cells as

well as in K5-BCs (Figures 2I, 2K, and S1F–S1I). To directly

determine whether K5-BCs have regenerative potential in the

adult urothelium, we performed parallel fate mapping experi-

ments using the Krt5Cre/ERT2;mTmG and ShhCreERT2;mTmG as

lineage markers for K5-BCs and Shh-expressing cells, respec-

tively, after treatment with cyclophosphamide (CPP), which

induces a rapid cycle of injury and repair (Farsund and Dahl,

1978). To assess the kinetics of regeneration in our experimental
evier Inc.



Figure 3. K5-BCs Are Unlikely to Be Urothelial Progenitors

(A–D) Lineage studies in the embryonic urothelium using the Krt5CreERT2;mTmG line to follow the fate of K5-BCs.

(A) A section from a Krt5CreERT2;mTmG E18 embryo exposed to TM at E14 stained for expression of Krt5 (pink). Cells expressing theGFP lineagemarker detected

with GFP antibody are green.

(B) A section from a Krt5CreERT2;mTmG embryo exposed to TM at E14 and analyzed 1 month later stained for expression of P63 (pink). Cells expressing the GFP

lineage marker detected with GFP antibody are green.

(C) A higher magnification of the section in (A).

(D) A section from a Krt5CreERT2;mTmG embryo exposed to TM at E14 and analyzed after 1 month stained for expression of Krt5 (pink). Cells expressing theGFP

lineage marker detected with GFP antibody are green.

(E) A section from a TM-treated adult ShhCreERT2;mTmGmouse that did not receive CPP, stained for expression of Krt5 (pink). Cells expressing the GFP lineage

marker detected with GFP antibody are green.

(F and G) Sections from adult TM-treated Krt5CreERT2;mTmG mice that did not receive CPP, stained for expression of Krt5 (pink in F) and Upk (pink in G).

(H) A section from a TM-treated adult ShhCreERT2;mTmG mouse analyzed 2 weeks after CPP administration stained for expression of Krt5 (pink).

(I and J) Sections from a TM-treated adult Krt5CreERT2;mTmGmouse stained for expression of Krt5 (pink in I) or Upk (pink in J) 2 weeks after CPP treatment. Cells

expressing the GFP lineage marker detected with GFP antibody are green.

(K) A graph showing the distribution of lineage-tagged cells in the K5-BC and superficial compartments in Krt5CreERT2;mTmG mice exposed to TM on E14, in

utero, and analyzed at E18 or P31.

(L) A graph showing a comparison of lineage-tracing studies in Krt5CreERT2;mTmG and ShhCreERT2;mTmG mice with and without CPP treatment.

S cells are marked with yellow arrowheads, I cells with purple arrowheads, and K5-BCs with green arrowheads. For quantification, a minimum of three

independent experiments were performed, and the average ± SEM was plotted. Magnifications, 103 (A), 203 (C and E–J), and 503 (B–D). Scale bars, 50 mm.

See also Figure S3.
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setting, CPP-treated and untreated controls were injected with

EdU (5-ethynyl-20-deoxyuridine) to label cells in S phase, and

proliferation was measured at 24, 48, and 72 hr. Consistent

with the low rate of turnover in the adult urothelium, few prolifer-

ating cells were present in controls that had not been treatedwith

CPP (Figure S3A); however, in CPP-treated animals, proliferation

increased after 24 hr, peaking at 48 hr when 33% of cells in the

urothelium were Edu+ (Figures S3B and S3C). To evaluate the

kinetics of urothelial regeneration during this 3-day period, we
Developmen
stained CPP-treated adults and controls for expression of Upk,

which labels both I cells and S cells. Analysis 24 and 48 hr after

CPP treatment revealed a decreased thickness of the urothelium

and downregulation of Upk expression compared to untreated

controls, indicating that extensive exfoliation had taken place

(Figures S3D–S3F). By 72 hr after CPP treatment, the thickness

of the urothelium and expression levels of Upk distribution

were similar to controls, indicating that the urothelium was

reconstituted (Figures S3D and S3G).
tal Cell 26, 469–482, September 16, 2013 ª2013 Elsevier Inc. 473
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We next performed damage and regeneration experiments

with the ShhCreERT2;mTmG and Krt5CreERT2;mTmG lines. Adult

mice were given three doses of TM over a 1-week period to acti-

vate Cre-dependent recombination and expression of the GFP

lineage tag. CPP was administered 1 week after the last TM

injection to induce a round of damage and repair. Analysis was

performed 2 weeks after CPP exposure when regeneration is

complete, and the urothelium has returned to a quiescent state.

Analysis of ShhCreERT2;mTmG mice that did not receive CPP

revealed a small number of lineage tag-expressing cells (Fig-

ure 3E); however, in CPP-treated ShhCreERT2;mTmG mice, GFP

expression was present in 70% of the cells in the urothelium,

including 50%of the S cell population (Figures 3H and 3L). These

findings demonstrate that Shh-expressing cells can generate S

cell daughters after CPP-induced injury. In parallel experiments

with K5CreERT2;mTmG mice as a lineage marker, 60% of the

urothelium was GFP positive after TM induction, indicating that

recombination was robust; however, expression of the lineage

tag was almost entirely restricted to the K5-BC population in

both CPP-treated and untreated adults (Figures 3F, 3G, 3I, 3J,

and 3L). The observation that K5-BCs do not generate detect-

able numbers of S cells during regeneration suggests that I cells

rather than K5-BCs must be the superficial progenitor.

P Cells Are a Progenitor Population in the Developing
Urothelium
Our studies suggest that P cells (Foxa2+ P63+ Shh+ Upk+ Krt5�)
are a transient population present in the embryonic urothelium

between E11 and E13; a period when fate mapping indicates

that progenitor potential is high (Figure 1). To evaluate whether

P cells can produce other urothelial cell types, we used a

TM-inducible Foxa2CreERT line (Frank et al., 2007) in fatemapping

experiments. We first examined the specificity of Cre-dependent

recombination in the Foxa2CreERT;mTmG line by exposing

embryos to TM at E11 and analyzing the distribution of the

GFP lineage marker after a short, 24 hr chase. GFP expression

was seen in a small number of P cells that coexpress Foxa2,

P63, and Upk, whereas GFP-labeled cells were undetectable

in the urothelium of embryos that were not exposed to TM (Fig-

ures 4A and 4B; data not shown), indicating that Cre-dependent

recombination is TM dependent and is initially confined to

P cells. Analysis of TM-pulsed embryos after a longer, 7-day

chase revealed expression of GFP in 10%–14% of cells in

the intermediate and superficial populations (Figures 4C–4F).

Although almost 90% of urothelial cells are K5-BCs at this stage,

expression of theGFP lineage tagwas rare or undetectable in the

K5-BC population (Figures 4C–4F), suggesting that K5-BCs

arise from a distinct progenitor cell type.

In parallel experiments, we traced the fate of P cells using the

Upk3aGCE;mCherry line (http://www.gudmap.org), in which

TM-induciblemCherry expression is detected by antibody stain-

ing (mCherry is shown in green in Figure 4 and in subsequent

figures). Analysis of E12Upk3aCCE;mCherry embryos 24 hr after

TM exposure revealed mCherry labeling in a small number of P

cells coexpressing Foxa2, Upk, and P63 (Figures 4G and 4H),

indicating that recombination at this stage is restricted to the

P cell compartment. Analysis after a 7-day chase period

revealed expression of the mCherry lineage tag in about 33%

of the S cell population and 10% of the I cell population (Figures
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4I and 4J), but again, we did not observe expression in K5-BCs.

Together, these studies suggest that P cells are I cell and S cell

progenitors. However, because I cells and S cells form within

24 hr of one another (E13 and E14, respectively), it is unclear

from our studies whether S cells are direct descendants of

P cells or whether they are derived from I cells, which are

P cell daughters.

I Cells Are Likely to Be S Cell Progenitors in the
Regenerating Adult Urothelium
Fate mapping studies indicate that the Shh-expressing popula-

tion contains urothelial progenitors in adults (Shin et al., 2011).

We find that Shh is localized in K5-BCs, which fate mapping

studies suggest are unlikely to be urothelial progenitors (Fig-

ure 3), and in I cells that have not been assessed for progenitor

potential. We therefore used the Upk3aGCE;mCherry line in

fate mapping studies to determine whether I cells can generate

S cells in the adult regenerating urothelium. Upk3aGCE;mCherry

adults were treated first with TM, then 1 week later with CPP to

induce a round of regeneration, and analysis was performed

2 weeks later to evaluate the distribution ofmCherry-expressing

cells.

Analysis of TM-inducedUpk3aGCE;mCherry control mice that

had not received CPP revealed mCherry labeling in I cells and S

cells; however, few were Edu+ (Figure 5A), consistent with the

low rate of proliferation in the adult steady-state urothelium

(Jost, 1989). However, analysis of Upk3aGCE;mCherry adults

after CPP treatment revealed Edu labeling in 45% of I cells and

in 67% of S cells (Figure 5E). CPP induces death and desquama-

tion of the superficial layer (Figure S3); thus, the presence of Edu+

lineage-tagged S cells strongly suggests that they are I cell

daughters. To evaluate whether I cells can self-renew and pro-

duce S cell daughters after serial CPP damage and regeneration,

Upk3aGCE;mCherry adults were given TM three times over a

1-week period to activate Cre-dependent recombination, then

CPP was administered 1, 3, and 5 weeks after the last dose of

TM. Edu was given 48 hr after the first CPP dose to label cells

in S phase. Analysis after three rounds of injury and repair

revealed an increase in the percentage of lineage-labeled S cells

(92% compared to 67% after one dose of CPP; Figures 5B–5D

and 5F–5I). The observation that the numbers of lineage-marked

S cells increase after serial damage and regeneration suggests

that I cells are S cell progenitors and that they can self-renew.

Because the Edu concentration is reduced by half each time a

cell divides, the presence of S cells expressing high levels of

Edu suggests that they are derived from I cell progenitors that

divide slowly.

Retinoid Signaling Is Selectively Expressed in P Cells
during Development and Is Upregulated in the
Regenerating Urothelium
RA can induce ES cells to differentiate into urothelial cells in

culture (Mauney et al., 2010), suggesting that retinoids may be

important for controlling urothelial specification in vivo. To begin

to address this, we analyzed wild-type embryos to assess the

distribution of RA-responsive cells using the RARE-LacZ

reporter line. RARE-LacZ mice harbor a transgene containing

LacZ fused to an RA-response element that is expressed in cells

where RA is available and Rar signaling is active (Rossant et al.,
evier Inc.
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Figure 4. P Cells Are a Transient Progenitor Population in the Embryonic Urothelium

(A–F) Lineage tracing with the Foxa2CreERT2;mTmG line.

(A) Expression of the GFP lineage tag (detected with antibody and shown in green) in P cells stained for expression of Foxa2 cells (pink) in an E12 embryo, 24 hr

after TM exposure on E11.

(B) Expression of theGFP lineage tag (detectedwith antibodyand shown ingreen) inPcells expressingUpk (pink) in anE12embryo 24hr after TMexposure onE11.

(C) A section from an E18 Foxa2CreERT2;mTmG embryo exposed to TM on E11 stained for expression of P63 (pink).

(D) A section from an E18 Foxa2CreERT2;mTmG embryo exposed to TM at E11 stained for expression of Upk (pink) and P63 (red).

(E) A section from an E18 Foxa2CreERT2;mTmG embryo exposed to Tam on E11stained for expression of Krt5 (pink).

(F) A section from an E18 Foxa2CreERT2;mTmG embryo exposed to Tam at E11, stained with Krt5 (pink) showing a cluster of lineage-marked cells (detected with

GFP antibody and shown in green).

(G) Expression of the mCherry lineage tag (green, detected with an antibody directed against Rfp) in P cells in an E12 Upk3aGCE;mCherry embryo exposed to

Tam on E11 and stained for expression of Foxa2 (pink).

(H) Expression of the mCherry lineage tag (green, detected with an antibody directed against Rfp) in P cells in an E12 Upk3aGCE;mCherry embryo exposed to

Tam on E11 and stained for expression of P63 (pink).

(I) Expression of the mCherry lineage tag (green, detected with an antibody directed against Rfp) in I cells and S cells in an E18 Upk3aGCE;mCherry embryo

exposed to Tam on E11 and stained for expression of P63 (pink).

(J) Expression of the mCherry lineage tag (green, detected with an antibody directed against Rfp) in I cells and S cells in an E18 Upk3aGCE;mCherry embryo

exposed to Tam on E11 and stained for expression of Krt5 (pink).

Magnifications, 203 (A–C, E, and G–J) and 403 (D and F). Scale bars, 50 mm.
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1991). Analysis of RARE-LacZ expression during development

revealed that LacZ-positive cells were most abundant between

E11 and E14 and decreased to low levels at later stages (Figures

6A–6D). Analysis of the distribution of RARE-LacZ activity at E12

revealed expression in P cells (Figure 6E), and by E14, LacZ

expressionwas localized predominantly in I cells and S cells (Fig-

ure 6K). These studies suggest that the RA-responsive cells are

most abundant in the embryonic urothelium between E11 and

E14, when urothelial progenitors are also present (Figure 1).

RA deficiency in mammals results in squamous metaplasia in

the adult urothelium (Liang et al., 2005; Wolbach and Howe,

1925), indicating that retinoids are normally required for mainte-
Developmen
nance of the adult steady-state urothelium. Analysis of the adult

RARE-lacZ mice revealed low numbers of RA-responsive cells

(Figure 6G), suggesting that low levels of RA signaling are

adequate to maintain S cell renewal in the steady-state urothe-

lium, which has a very slow rate of turnover. To evaluate whether

RA signaling increases in response to injury, RARE;LacZ mice

were treated with CPP, then analyzed during the first 3 days

posttreatment to determine the numbers and distribution of

LacZ-expressing cells. This analysis revealed a dramatic in-

crease in the LacZ+ population, which followed similar kinetics

as proliferation (Figures 6G, 6H, and S3C). Marker analysis dur-

ing this 72 hr period revealed that themajority of LacZ+ cells were
tal Cell 26, 469–482, September 16, 2013 ª2013 Elsevier Inc. 475



Figure 5. I Cells Are a Superficial Progenitor

Population in Adults

(A) A section showing the urothelium of a

Upk3aGCE;mCherry adult that did not receive

CPP mCherry detected with an antibody directed

against Rfp is shown in green, and Edu-expressing

cells are pink.

(B–H) Sections from a Upk3aGCE;mCherry adult

after three rounds of CPP-induced damage and

repair.

(B) Stained with Edu and mCherry.

(C) Stained with P63 and mCherry.

(D) Stained with Krt5 and mCherry.

(E) A section of a Upk3aGCE;mCherry adult after

1 round of CPP-induced damage and repair,

showing the distribution of mCherry expression

(green) and Edu (pink).

(F–H) Higher magnification of (B)–(D), respectively.

(I) Comparison of the numbers of mCherry-

expressing superficial cells inUpk3aGCE;mCherry

mice after one round or three rounds of CPP-

induced damage and regeneration.

For quantification, a minimum of three indepen-

dent experiments were performed, and the

average ± SEM was plotted. Magnifications, 203

(A–E), 403 (F–H), and 23 (insets in B–D and F–H).

Scale bars, 50 mM.
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I cells and S cells (Figures 6I and 6J), suggesting that RA

signaling may be important in these populations for regeneration

after damage. These findings suggest that low levels of RA

signaling maintain steady-state urothelial cell renewal, whereas

high levels of RA signaling may be important for renewal of the

superficial layer after injury.

Rars are only active when bound to RA, which is synthesized

from retinol (vitamin A) in a temporally and spatially restricted

manner by RA-synthesizing enzymes. To identify the source of

RA that regulates urothelial formation and regeneration, we per-

formed in situ hybridization analysis to assess the distribution of

Aldh1a2 (hereafter called Raldh2), an enzyme required for RA

synthesis (Niederreither et al., 1999). These experiments reveal

that Raldh2 expression in the bladder is restricted to the mesen-

chyme just below the urothelium where expression was highest

between E12 and E13 (Figure 6F). In adults, Raldh2 expression

persisted in the suburothelial stroma (Figure 6L), a domain

important for regulating urothelial maintenance and regeneration

via Wnt, Bmp, and Shh signaling (Mysorekar et al., 2009; Shin

et al., 2011). These observations suggest that RA synthesized

in the stromal compartment may be important for regulating

Rar signaling in the embryonic and adult urothelium.

RA Signaling Is Required for Urothelial Specification
Although the above experiments demonstrated that RA signaling

is active in P cells at a stage in embryonic development when

progenitor potential is high, it was still unclear what role, if any,

RA signaling has in urothelial specification. To directly address

this question, we used Cre-Lox recombination to express

RaraDN, a dominant inhibitory Rar, in the Shh-positive popula-

tion in the embryo, which our studies indicate contains urothelial

progenitors (Figure 1). To do this, we used theShhCre/+ line (Harfe

et al., 2004), which drives Cre-dependent recombination in more

than 90% of cells in the developing urothelium in combination
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with the Rosa26 mTmG reporter (Muzumdar et al., 2007; Fig-

ure S1J). RaraDN is a truncated form of Rara that has been

inserted in the Rosa26 locus downstream of a floxed stop

cassette where it is activated by Cre-mediated recombination.

Our previous studies demonstrated that expression of the

RaraDN mutant receptor blocks transcription by endogenous

Rars, and importantly, we found that defects in embryos

expressing two copies of the RaraDN allele are more severe

than those in embryos expressing one allele (Chia et al., 2011;

Rosselot et al., 2010), indicating that RaraDN inhibits RA

signaling in a dose-dependent manner.

To evaluate whether RaraDN is an efficient suppressor of RA

signaling in the urothelium, we generated ShhCre/+; RaraDN +/+

mutants expressing two copies of theRaraDN, andwe examined

whether expression of the RaraDN led to a reduction in expres-

sion of RA-responsive genes. Analysis of E18 ShhCre/+ controls

and ShhCre; RaraDN+/+ mutants revealed that Ret and Rarb2,

two genes whose expression is RA dependent, were downregu-

lated in mutants compared to controls (Figures S4A, S4B, S4D,

and S4E). These findings suggested that the RaraDN was

efficiently inhibiting RA signaling. For further confirmation, we

compared the distribution of RA-responsive cells in mutants

and controls using the RARE-lacZ reporter line. Analysis of

ShhCre;RARE-LacZ controls at E11 revealed large numbers of

LacZ+ cells (Figure S4C); however, in ShhCre; RaraDN;RARE-

LacZ mutants, the number of LacZ-expressing cells was greatly

reduced (Figures S4C and S4F). The observation that Rarb and

Ret are downregulated in ShhCre; RaraDN mutants, together

with the reduction in the numbers of RA-responsive cells in the

mutants, suggests that RaraDN driven by ShhCre efficiently

inhibits RA signaling in urothelial cells.

In E18 ShhCre/+ control embryos, the urothelium is a fully

stratified epithelium containing K5-BCs, one to two layers of

I cells, and a layer of mature, multinucleated S cells (Figure 7A).
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Figure 6. RA Signaling Is Selectively Upregulated in the Embryonic Urothelium and in the Adult Urothelium during Regeneration

(A) A section showing the urothelium in an E11 RARE-lacZ reporter embryo showing LacZ expression (red) detected with antibody staining.

(B) A section showing the distribution of RA-responsive cells in the urothelium of an E12 RARE-lacZ reporter (red).

(C) A section from an E14 RARE-lacZ reporter embryo stained for lacZ expression (red).

(D) A section from an E16 RARE-lacZ embryo stained for lacZ expression (red).

(E) A section from an E12 RARE-lacZ reporter embryo stained for lacZ expression (red) and Foxa2 (green).

(F) In situ hybridization showing expression of Raldh2 in suburothelial mesenchyme in an E12 embryo.

(G) A section from the urothelium of an adult RARE-lacZ reporter mouse stained for lacZ expression (red).

(H) A section from the urothelium of an adult RARE-lacZ reporter mouse 48 hr after administration of CPP stained for lacZ expression (red).

(I) A section from the urothelium of an adult RARE-lacZ reporter mouse 48 hr after administration of CPP, stained for lacZ expression (red) and Krt5 (green).

(J) A section from the urothelium of adult RARE-lacZ reporter mouse 48 hr after administration of CPP, stained for lacZ expression (red) and Upk (green).

(K)A section fromanE14Up2-Cfp;RARE-lacZ reporter embryostained for lacZexpression (red). Inset: Lowermagnificationshowing lacZ (red) andUp2-Cfp (green).

(L) In situ hybridization showing expression of Raldh2 in suburothelial stroma in a wild-type adult mouse.

(M) Quantitation of the numbers of lacZ-expressing cells in RARE-lacZ embryos between E11 and E16.

(N) Quantitation of the numbers of lacZ-expressing cells in untreated (control) adultRARE-lacZmice and inRARE-lacZmice 24, 48, and 72 hr after CPP treatment.

For quantification, a minimum of three independent experiments were performed, and the average ± SEMwas plotted. Magnifications, 103 (E and F), 203 (A–D,

G–I, K, and L), and 403 (J). Scale bars, 50 mm.
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However, in five out of seven ShhCre; RaraDN +/+ mutants exam-

ined, there was only a single layer of P63-expressing cells, few if

any morphologically distinguishable S cells, and Upk, a marker

of I cells and S cells, was downregulated (Figure 7F). On the other

hand, K5-BCs expressing Krt5 and P63 lined the basal layer in

mutants, suggesting that formation of this population is retinoid

independent (Figures 7B and 7G). Transmission electron micro-

scopy (TEM) analysis of the urothelium in controls revealed the

prominent apical plaque, and fusiform vesicles that are unique

features of S cells (Figure 7C, black and white arrowheads

mark apical plaque and vesicles, respectively) were absent

from S cells in mutants, which instead displayed microvilli (Fig-

ure 7H, black arrowhead), structures not found on the surface

of wild-type S cells. These studies suggest that RA signaling is

normally required for formation of I cells and S cells.
Developmen
We next investigated which cell types normally mediate RA

signaling. To begin to examine the temporal requirement for RA

signaling, we used the TM-inducible ShhCreERT2;mTmG line to

express RaraDN at E11, when our studies indicate that P cell

progenitors are abundant. ShhCreERT2;mTmG controls and

ShhCreERT2;mTmG; RaraDN mutants were exposed to TM at

E11 and analyzed at E18. This analysis revealed a moderate

reduction in overall numbers of I cells and S cells compared to

the controls, and a dramatic reduction in the numbers of GFP-

labeled S cells (Figures 7K and 7L), supporting the suggestion

that RA signaling is normally required in urothelial progenitors

for formation of S cells. Because RaraDN inhibits RA signaling

in a dose-dependent manner (Blumberg et al., 1997; Damm

et al., 1993; Rajaii et al., 2008), the reduced severity of the urothe-

lial phenotype in ShhCreERT2;mTmG; RaraDNmutants compared
tal Cell 26, 469–482, September 16, 2013 ª2013 Elsevier Inc. 477



Figure 7. Retinoids Are Required for Urothelial Formation

(A) P63 (pink) and Upk (green) staining in an E18 control ShhCre/+ embryo.

(B) Krt5 (green) and P63 (pink) staining in the urothelium of an E18 control ShhCre/+ embryo.

(C) TEM showing the apical surface of an ShhCre/+ embryo.

(D) A section from an E14 ShhCre/+ control embryo stained with Upk (green) and P63 (pink).

(E) A section from an E14 ShhCre/+ embryo stained with Foxa2 (pink) and P63 (green).

(F) P63 (pink) and Upk (green) staining in a section from an E18 ShhCre/+; RaraDN mutant embryo.

(G) Krt5 (green) and P63 (pink) staining in the urothelium of an E18 ShhCre/+; RaraDN mutant embryo.

(H) TEM showing the apical surface of an E18 ShhCre/+; RaraDN mutant urothelial cell.

(I) A section from an E14 ShhCre/+;RaraDN mutant embryo stained with Upk (green) and P63 (pink).

(J) A section from an E14 ShhCre/+;RaraDN mutant embryo stained with Foxa2 (pink) and P63 (green).

(K) P63 (pink) staining in an E18 control ShhCreERT2;mTmG embryo exposed to TM on E11 (the GFP lineage tag is green).

(L) P63 (pink) staining in an E18 ShhCreERT2;mTmG;RaraDN mutant embryo exposed to TM on E11 (the GFP lineage tag is green).

(M) P63 (pink) staining in an E18 Upk3aGCE;mCherry control embryo exposed to TM on E11 (mCherry is shown in green).

(N) P63 (pink) staining in an E18 Upk3aGCE;mCherry;RaraDN mutant embryo exposed to TM on E11 (mCherry is shown in green).

For quantification, a minimum of three independent experiments were performed, and the average ± SEMwas plotted. Magnifications, 203 (D, E, I, J, M, and N),

403 (A, B, F, G, K, and L), and 31,0003 (C and H). Scale bars, 50 mm. See also Figure S4.
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to the constitutive ShhCre; RaraDN +/+ line is likely to be due to

expression of one versus two copies of DN, respectively.

Impaired S cell formation at E18 could indicate a role for reti-

noids for survival of urothelial progenitors or could indicate a

role for RA in specification of urothelial progenitors. We did not

detect I cells or S cells in ShhCre+/�; RaraDN +/+ mutants at any

stage examined (Figures 7D and 7I), suggesting that these cell

types failed to form. Consistent with this, TUNEL analysis of

mutants did not reveal increased apoptosis in the urothelium

compared to controls (data not shown). P cells, the first urothelial

cell type, are transiently present in the urothelium between E11

and E13 (Figure 4). They are distinguishable from endoderm by

expression of Upk, and from other urothelial cell types by
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expression of Foxa2, which is downregulated after E13 (Figure 2).

Immunostaining of E14 ShhCre+/� controls revealed undetect-

able expression of Foxa2, as expected; however, E14 ShhCre+/�;
RaraDN +/+mutants contained large numbers of Foxa2-express-

ing cells, which were also positive for Shh and P63, but lack

expression of Upk or Krt18, Krt20, and other urothelial markers

(Figure 7J; data not shown). The persistence of this population

expressing endodermal markers in ShhCre+/�; RaraDN +/+

mutants and absence of I cells and S cells suggest that retinoids

may normally be important in endoderm for specification of

P cells.

To directly examine the requirement for RA signaling in P cells,

we first attempted to use the Foxa2CreERT2;mTmG line to express
evier Inc.



Figure 8. Retinoids Are Required for Urothelial Regeneration

(A) P63 expression in a control ShhCreERT2;mTmG adult that has not received CPP.

(B) P63 expression (pink) in an ShhCreERT2;mTmG adult analyzed 2 weeks after CPP treatment.

(C) P63 expression in a mutant ShhCreERT2;mTmG; RaraDN adult that has not received CPP.

(D) P63 (pink) expression in a CPP-treated ShhCreERT2;mTmG;RaraDN mutant adult analyzed 2 weeks after CPP treatment.

(E) P63 expression (pink) in a control Upk3aGCE;mCherry adult that has not received CPP (mCherry is shown in green).

(F) P63 (pink) expression in a CPP-treated Upk3aGCE;mCherry adult analyzed 2 weeks after CPP treatment. mCherry is shown in green.

(G) P63 (pink) expression in a Upk3aGCE;mCherry;RaraDN mutant adult that did not receive CPP. mCherry is shown in green.

(H) P63 (pink) expression in a Upk3aGCE;mCherry RaraDN mutant 2 weeks after CPP treatment. mCherry is shown in green.

For quantification, a minimum of three independent experiments were performed, and the average ± SEM was plotted. Magnifications, 203 (A–H). Scale

bars, 50 mm.
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a single copy of RaraDN, which in ShhCreERT2;mTmG mice,

resulted in reduction of the number of lineage-tagged S cells.

We were, however, unable to obtain Foxa2CreERT2;mTmG;

RaraDNmutants, most likely due to embryonic lethality because

Foxa2CreERT2 labels cells in the heart and vasculature, which are

also regulated by RA signaling (Li et al., 2012). We therefore used

the Upk3aGCE line to express the RaraDN, which our studies

indicate selectively labels P cells after a TM pulse at E11 (Figures

4G and 4H). E11 Upk3aGCE;mCherry controls and Upk3aGCE;

mCherry;RaraDN mutants were exposed to TM and analyzed

at E18 to determine the distribution of lineage-tagged I cells

and S cells. Analysis of controls revealed abundant mCherry-

labeled S cells and I cells as expected (Figure 7M); however,

the number of mCherry-labeled cells in mutants was greatly

reduced (Figure 7N). This phenotype was virtually identical to

that obtained in ShhCreERT2;mTmG;DN mutants, which also

express one allele of RaraDN (compare Figures 7K and 7L).
Developmen
Together, these results suggest that retinoids control urothelial

formation by regulating P cell specification.

RA Signaling Is Required for Urothelial Regeneration
We found that RA signaling is selectively upregulated in the

urothelium following CPP-induced injury, suggesting that reti-

noids may control regeneration (Figure 6). To address this

further, we first used the ShhCreERT2 line, which drives expres-

sion in urothelial progenitors, to express RaraDN. ShhCreERT2;

RaraDN;mTmG mutants and ShhCreERT2;mTmG controls were

treated with TM, and CPP was administered after 1 week to

induce damage and repair. Controls and mutants were analyzed

after 2 weeks to evaluate the distribution of lineage-tagged cells

in the CPP-treated urothelium. In animals that had not received

CPP, GFP-labeled cells were predominantly in the basal and

intermediate layers, and a small number of lineage-tagged

S cells were detectable (Figures 8A and 8C). Analysis of
tal Cell 26, 469–482, September 16, 2013 ª2013 Elsevier Inc. 479
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ShhCreERT2;mTmG controls after CPP treatment revealed

expression of theGFP lineage tag in 40%of the S cell population,

indicating that these were daughters of Shh+ progenitors (Fig-

ure 8B). In ShhCreERT2;RaraDN;mTmG mutants, however, there

were 10-fold fewer GFP-labeled S cells compared to controls

(Figure 8D). These results indicate that RA signaling is important

in an Shh-expressing cell type for urothelial regeneration.

To evaluate the requirement for RA signaling in I cells, which

our studies suggest are S cell progenitors, we performed CPP-

induced injury using Upk3aGCE;mCherry as a lineage marker.

Upk3aGCE;mCherry mice were treated with TM, then 1 week

later with CPP. Edu was administered 48 hr after CPP treatment

to label proliferating cells. Analysis of Upk3aGCE;mCherry

control mice 2 weeks after CPP treatment revealed extensive

mCherry labeling in the I cell and S cell populations (Figures 8E

and 8F). In Upk3aGCE;mCherry; RaraDN mutants, however,

the overall numbers of S cells were reduced by about 40%

compared to controls, and the proportion of mCherry-labeled

S cells was also reduced by nearly 50% (Figures 8G and 8H),

suggesting that RA signaling is normally required in I cells for

regeneration of the adult urothelium. As expected, we did not

observe defects in regeneration in Krt5CreERT2;RaraDN mutants

(data not shown).

Previous studies suggest that K5-BCs, which are progenitors

in skin and other stratified epithelia, are also progenitors in the

adult urothelium (Shin et al., 2011). We show by fate mapping,

however, that K5-BCs are unlikely to be progenitors either in

the embryo or adult regenerating urothelium. Our studies sug-

gest that formation and regeneration of the urothelium depend

on distinct progenitor populations: P cells, a transient cell type

present in the developing urothelium, and I cells, that serve as

progenitors in the adult regenerating urothelium. We show that

retinoids, potent signaling molecules that regulate specification

and self-renewal of ES cells and other progenitor cell types,

are required in P cells for their specification during development

and in I cells for regeneration in response to injury. The identifica-

tion of urothelial progenitors and the observation that urothelial

formation and regeneration depend on retinoid signaling in these

progenitors could have important implications for tissue engi-

neering and repair. Ultimately, these findings may lead to treat-

ments that prevent loss of the urothelial barrier associated with

chronic injury, a major cause of voiding dysfunction and bladder

pain syndrome in humans.

DISCUSSION

Recent studies indicate that the adult urothelium contains a pop-

ulation of Shh-expressing cells that have long-term regenerative

potential, and these cells have been proposed to be K5-BCs

(Kurzrock et al., 2008; Shin et al., 2011; Thangappan and Kurz-

rock, 2009). Our fate mapping studies, however, suggest that

K5-BCs rarely if ever produce I cells or S cells and that the I

cell/S cell compartment arises from a separate lineage. We

show that P cells are transient progenitors in the embryonic uro-

thelium, and we show that I cells are S cell progenitors in the

regenerating adult urothelium. Retinoids are potent transcrip-

tional regulators that can induce ES cells to form urothelial cells

in vitro (Mauney et al., 2010). Our studies demonstrate that

impaired RA signaling leads to loss of the I cell and S cell popu-
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lations during development due to failure in P cell specification,

and we find that RA signaling is also important in I cells in adults

for regeneration after injury. That K5-BCs are unlikely progeni-

tors in the embryo or adult challenges the current thinking and

raises the possibility that other specialized epithelia may develop

from novel progenitor populations.

K5-BCs and I Cells/S Cells Arise from a Common
Endodermal Progenitor that Is Not Maintained in the
Developing or Adult Urothelium
The epithelia lining a number of organs including the bladder, ure-

thra, prostate, and gut derive from the endodermal germ layer

(Wells andMelton,1999),whereP63 is localized.Recent fatemap-

ping studies using a constitutive P63Cre line (DeltaNp63(+/Cre);

ROSA26(EYFP)) to indelibly label P63-expressing cells and their

daughters indicate that all cell types in the urothelium arise from

this endodermal population (Pignon et al., 2013). However, our

fate mapping studies using inducible Cre lines to selectively label

cell types in the developing and adult urothelium indicate that

K5-BCs rarely if ever generate other urothelial cell types and

vice versa. Taken together, these observations suggest that

K5-BCs, P cells, I cells, and S cells arise from a progenitor popu-

lation that is present in endoderm but is not maintained at later

stages in the developing or mature urothelium. Krt5-expressing

cells are present in the urethra at early stages of development

but are only detected in the urothelium after other urothelial cell

types form. That the urothelial K5-BC population derives from

these K5-expressing urethral cells is an interesting possibility.

RA-Dependent Transcription Regulates Multiple Steps
of Urothelial Development and Regeneration
The endoderm is patterned along the rostro-caudal axis to

generate a number of organs, including the thyroid, thymus,

lung, stomach, intestine, pancreas, and the bladder, and reti-

noids have been shown to be important in endoderm for estab-

lishing this regional patterning and cell-type specification (Bayha

et al., 2009). An example of the multiple functions of RA signaling

in organ formation is the pancreas, where RA acts at the stage of

specification (Martı́n et al., 2005; Molotkov et al., 2005), and at

later stages, is required for formation of insulin-producing b cells

(Dalgin et al., 2011; Stafford and Prince, 2002). In addition, RA

can also induce stem cells in culture to differentiate into pancre-

atic cell-type culture (Shim et al., 2007).

Retinoids may act in a similar manner in the urothelium. Reti-

noids induce ES cells to differentiate into urothelial cell types

(Mauney et al., 2010), and our studies suggest that RA signaling

controls specification of P cell progenitors in the embryonic uro-

thelium and I cell progenitors during regeneration. It would not be

surprising if RA is also an important regulator of I cells in the

steady-state adult urothelium, a question that we will address

in future studies.

Retinoids control pluripotency and specification of progenitors

and stem cell populations (Soprano et al., 2007; Wang et al.,

2011; Wichterle and Peljto, 2008). Recent studies suggest that

this RA regulates the state change from pluripotency/self-

renewal to differentiation via an epigenetic mechanism in which

RA binding to Rar/Rxr complexes in regulatory regions of target

genes relieves polycomb repression by inducing a conforma-

tional change in the Rars (reviewed in Gudas and Wagner,
evier Inc.
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2011). This RA-induced conformational change is mediated by

the ligand-dependent activating domain (AF2), which is deleted

in the RaraDNmutant receptor; hence, it would not be surprising

if RaraDN expression in urothelial progenitors inhibited their abil-

ity to undergo a state change. It will be interesting to determine

whether RA signaling acts by positively regulating sets of target

genes in urothelial progenitors or by relieving repression. The

identification of urothelial progenitors whose specification is

regulated by retinoids could have important implications for

tissue engineering and repair and, ultimately, may lead to treat-

ments that prevent loss of the urothelial barrier, a major cause

of voiding dysfunction and bladder pain syndrome in humans.

EXPERIMENTAL PROCEDURES

Mice

Animals were housed in the animal facility of Irving Cancer Research Center,

Columbia University; all animal works were approved by IACUC protocol. Lit-

termateswere used for all experiments inwhichwild-type andmutant embryos

were compared, and three animals were analyzed unless otherwise specified.

Chemical Injury

For chemical injury, CPP (Sigma-Aldrich; catalog #C7397) was dissolved in

PBS (15 mg/ml) and given to mice at a dose of 150 mg/kg by IP injection.

Proliferation

Mice were injected IP with EdU at a dose of 0.1 mg/20 g. Proliferating cells

were detected on frozen sagittal bladder sections according to the manufac-

turer’s protocol (Click-iT EdU cell proliferation assay kit, Invitrogen; catalog

#C-10419).

Histology, Immunohistochemistry, and Nonradioactive In Situ

Hybridization

Tissues were fixed overnight with 4% PFA. Cryosections were 7 and 14 mm for

immunostaining and in situ hybridization, respectively. In situ hybridization

analysis with digoxigenin-labeled riboprobes was essentially as described

elsewhere (Mendelsohn et al., 1999).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.devcel.2013.07.017.
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