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We investigate the global in time stability of regular solutions with
large velocity vectors to the evolutionary Navier–Stokes equation
in R3. The class of stable flows contains all two-dimensional weak
solutions. The only assumption which is required is smallness of
the L2-norm of initial perturbation or its derivative with respect to
the z-coordinate in the same norm. The magnitude of the rest of
the norm of initial datum is not restricted.
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1. Introduction

The paper examines global in time regular solutions to the evolutionary Navier–Stokes equations
in the whole three-dimensional space. Since the problem of regularity of weak solutions is open and
stays one of main challenges of the present mathematics, the study in this area is directed mainly
onto finding special classes of solutions with large velocity vectors or developing the theory of so-
called conditional regularity begun by Serrin [21]—see also [11,20,22,27,28].

The known theory allows to find nontrivial classes of global in time solutions to the Navier–Stokes
equations with full regularity [9,17,23,24,29] guaranteeing the uniqueness. Here we will follow this
direction. One approach is to consider the issue of stability of known generic solutions. The problem
is well investigated for the equations in bounded domains. Thanks to the Poincare inequality it is
possible to improve information following from the dissipation of the system [3,15,18]. The method in
these cases is just modifications of techniques for problems for “pure” small data. However in more
complex cases as in [10,19,26] the idea of proofs is not so elementary.
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In the whole space the problem is more advanced, there is no Poincare inequality and there is
a need to find extra tools. We point two approaches to this case. In the first one [2,14], authors
assume sufficiently largeness of the vorticity, then using not standard theory as the Navier–Stokes
equations they are able to obtain a large class of nontrivial regular solutions. The second type [7,8]
is a consequence of development of the theory of semigroups. Thanks to it we are able to prove
existence of global in time solution for a class of initial data even with linear growth.

Our paper will show that two-dimensional solutions are stable in R3 under a small perturbation
of the L2-norm—or even under weaker assumptions. The main idea is based on a “reduction” of the
original problem to the two-dimensional case. We will follow the old idea of Olga Ladyzhenskaya
[12,13]. In main steps the imbedding H1(R2) ⊂ BMO(R2) and the Marcinkiewicz-type interpolation
for general spaces will play an essential role. This enables a two-dimensional point of view on the
estimation for the case in the whole R3. The class of generic solutions can be extended, but two-
dimensional solutions with finite Dirichlet integrals (in R2) seem to be the best identification of this
set. Note that, because of a geometrical structure, the total energy of obtained solutions is infinite.
An exception is the zero solution. We then obtain a wide class of global solutions with finite energy.
This case is the motivation of our main result and it is carefully examined in Section 2. Our results
show a new large class of globally in time regular solutions with large velocity vectors. This way a
new argument for the regularity of weak solutions in the general case is pointed, again.

From the mechanical point of view our result can give an interpretation that flows with two-
dimensional symmetry are stable independently from the magnitude of the constant in the Poincare
inequality for the considered domain.

The subject of the paper is the evolutionary Navier–Stokes equations in the whole three-
dimensional space

v,t + v · ∇v − ν�v + ∇p = F in R3 × (0, T ),

div v = 0 in R3 × (0, T ),

v|t=0 = v0 on R3, (1.1)

where v = (vx, v y, vz) is the sought velocity of the fluid, p its pressure, ν is the constant positive
viscous coefficient, F represents the external data, v0 is an initial datum of the sought velocity which
by (1.1)2 is required to satisfy the compatibility condition div v0 = 0 and comma ‘ , ’ denotes the
differentiation.

The solutions to system (1.1) are viewed in the form

v = w + u, (1.2)

where w is a known smooth solution and u is a perturbation of it. Our analysis will concentrate on
the system describing function u. From system (1.1) we obtain

u,t + v · ∇u − ν�u + ∇p = −u · ∇w in R3 × (0, T ),

div u = 0 in R3 × (0, T ),

u|t=0 = u0 on R3, (1.3)

where initial datum u0 = v0 − w|t=0.
Let us define the class of generic solutions w .

Definition. We say that w ∈ Ξ is a generic solution to system (1.1) iff w is a smooth solution to the
Navier–Stokes equations (1.1) with external force F such that

∇w ∈ L2
(
(0,∞)t; L2

(
R2

xy

); L∞(Rz)
)
. (1.4)
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We distinguish one direction in R3 prescribed by the z-coordinate (we denote x̄ = (x, y, z)).
A good identification of the class Ξ is the set of two-dimensional solutions, i.e.

w(t, x, y, z) = w̃(t, x, y), (1.5)

where w̃ is a solution to the two-dimensional Navier–Stokes equations

w̃,t + w̃ · ∇̃ w̃ − ν�̃w̃ + ∇̃ p̃ = F̃ in R2 × (0, T ),

˜divw̃ = 0 in R2 × (0, T ),

w̃|t=0 = w̃0 on R2 (1.6)

with an analogical description as for system (1.1). If F̃ ∈ L2(0,∞; Ḣ−1(R2)), then the energy estimate
for solutions to (1.6) yields the inclusion

∇̃ w̃ ∈ L2
(
0,∞; L2

(
R2

xy

))
. (1.7)

In the force-free case the description of properties of solution w̃ can be more precise. The results
from [1,25] imply that

∇̃ w̃ ∈ L1
(
0,∞; L∞

(
R2)), (1.8)

provided suitable assumptions on the initial datum w̃0. The class defined by (1.8) is the kernel of the
set of generic solutions. As we will see, we will be able to “extend” feature (1.8) on the whole class
of functions from set Ξ .

The main result of the paper is the following.

Theorem 1. Let w ∈ Ξ . If u0 ∈ H1(R3) ∩ W 2−2/4
4 (R3). Additionally one of two conditions below is satisfied:

(i) ‖u0‖L2(R3) is sufficiently small; or
(ii) ‖u0,z‖L2(R3) is sufficiently small, provided

‖w,z‖L5(R3×(0,∞)) and ‖∇w,z‖L5/2(R3×(0,∞)) are sufficiently small

comparing to the norm ‖u0‖H1(R3)∩W 2−1/2
4 (R3)

; (1.9)

then there exists regular, unique, global in time solution to Eqs. (1.1) of the form (1.2), where u is the solution
to system (1.3) such that u ∈ W 2,1

4(loc)(R3 × (0,∞)) and

〈u〉W 2,1
4 (R3×(0,∞))

:= ‖ut‖L4(R3×(0,∞)) + ∥∥∇2u
∥∥

L4(R3×(0,∞))
� DATA, (1.10)

where DATA depends on norms of initial datum v0 and vector field w.

The above result points a large class of regular global in time solutions to the Navier–Stokes
equations in R3. From (1.10)—by the classical results [23]—solutions delivered by Theorem 1 become
smooth provided smoothness of initial data. In particular by (1.7) we obtain that any two-dimensional
weak solution—being sufficiently smooth—is stable in the whole three-dimensional space. Obviously
smallness of a possible perturbation depends on the magnitude of the whole norm of the perturbed
flow, however it is restricted to cases (i) or (ii), and only one of them have to be fulfilled. Comparing
to results from [18] where stability of two-dimensional flows were considered, too, our assumption
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(1.4) admits a larger class of generic flows. In [18] the authors required ∇w ∈ L4(0,∞; L2(Ω)), addi-
tionally the whole H1(R3)-norm of the initial datum has been assumed to be sufficiently small.

The proof of Theorem 1 is based on the classical energy method, however the novel idea is to
reduce the view of the nonlinear term with respect to the geometrical structure of a given flow w .
The energy method allows us to obtain an information about solutions omitting the influence of the
nonlinear convective term v · ∇v . Similar techniques for simpler versions of the presented problem
have been applied in [15,16].

An alternative approach can be given by the theory of semigroups. However this technique requires
the smallness of the whole norm and in the most optimal case in the three dimensions—by Kato’s
results [9] we ought to assume smallness of the L3-norm of the initial datum. Here for any given
initial norm in space H1(R3) ∩ W 2−1/2

4 (R3) we describe the required smallness of the L2-norm. In
particular the L3-norm (even any L2+ε ) can be arbitrary large.

Theorem 1 can be stated in spaces W 2,1
p with p � 2 defined by the norm

‖u‖W 2,1
p (R3×(0,T ))

= ‖u‖Lp(Rn×(0,T )) + 〈u〉W 2,1
p (R3×(0,T ))

=
( T∫

0

∫
R3

|u|p dx dt

)1/p

+
( T∫

0

∫
R3

|ut |p dx dt

)1/p

+
( T∫

0

∫
R3

∣∣∇2
x u

∣∣2
dx dt

)1/p

. (1.11)

The trace of a function from the W 2,1
p -space for fixed time as for t = 0 belong to the Besov W 2−2/p

p -
class introduced by the norm (for p > 2)

‖u‖
W 2−2/p

p (R3)
= ‖u‖Lp(R3) + 〈u〉

W 2−2/p
p (R3)

=
(∫

R3

|u|p dx

)1/p

+
(∫

R3

∫
R3

|∇xu(x) − ∇xu(y)|p

|x − y|3+(2−2/p)p
dx dy

)1/p

. (1.12)

Such regularity would also guarantee smoothness of solutions—however in our considerations the case
p = 4 is distinguished and simplifies our calculations. Since we are interested in smooth solutions we
will not relax regularity of initial data.

Throughout the paper we try to use the standard notation [13,23]. Generic constants are denoted
by the same letter C .

The paper is organized as follows. First we show a particular case of Theorem 1 for w ≡ 0. In
Section 3 we construct the main estimate for case (i). Next, we show an analogical bound for case (ii).
And in Section 5 we present a proof of global in time existence in both cases.

2. Motivation

The aim of this section is to show the main idea and tools of the techniques which will be applied
to prove Theorem 1. We analyze a special case of system (1.1), we consider system (1.3) for the trivial
solution w ≡ 0 with F ≡ 0 for case (ii) from Theorem 1:

vt + v · ∇v − ν�v + ∇p = 0 in R3 × (0, T ),

div v = 0 in R3 × (0, T ),

v|t=0 = v0 on R3. (2.1)

The initial datum is required to be sufficiently smooth—in particular v0 ∈ H1(R3). Additionally the
compatibility condition div v0 = 0 is assumed. We want to show the following version of Theorem 1.
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Theorem 2. Let v0 ∈ H1(R3). If

‖v0,z‖L2(R3) is sufficiently small, (2.2)

then there exists global in time regular (unique) solution to system (2.1).

Proof. We skip the proof of existence. Its idea is the same as in the one presented in Section 5,
where the general system will be considered—see also [16]. We concentrate only on a proof of the
control of smallness of ‖v,z‖L∞(0,∞;L2(R3)) . The theory guarantees us existence of weak solutions de-
fined globally in time. Hence, provided sufficient smoothness of them, we find a suitable a priori
estimate controlling smallness of mentioned quantity.

Write the energy identity for solutions to system (2.1):

d

dt
‖v‖2

L2(R3)
+ 2ν‖∇v‖2

L2(R3)
= 0. (2.3)

From (2.3) we conclude that

‖v‖L∞((0,∞)t ;L2(R3)) + ‖∇v‖L2(R3×(0,∞)) � C‖v0‖L2(R3). (2.4)

In our considerations we distinguish a one space direction, say, the z-direction. Let us differentiate
system (2.1) with respect to this coordinate, getting

v,zt + v · ∇v,z − ν�v,z + ∇p,z = −v,z · ∇v in R3 × (0,∞),

div v,z = 0 in R3 × (0,∞),

v,z|t=0 = v0,z on R3. (2.5)

The energy method yields the following differential inequality

d

dt
‖v,z‖2

L2(R3)
+ 2ν‖∇v,z‖2

L2(R3)
� 2

∫
R3

|v,z · ∇v v,z|dx̄, (2.6)

where dx̄ = dx dy dz. Hence integrating inequality (2.6) over (0,∞) we obtain

‖v,z‖L∞((0,∞)t ;L2(R3)) + ‖∇v,z‖L2((0,∞)t ;L2(R3))

� C

(( ∞∫
0

dt

∫
R3

dx̄ |v,z|2|∇v|
)1/2

+ ‖v0,z‖L2(R3)

)
. (2.7)

To simplify our notation let us introduce the following quantities:

I = ‖v‖L∞((0,∞)t ;L2(R3)) + ‖∇v‖L2(R3),

J = ‖v,z‖L∞((0,∞)t ;L2(R3)) + ‖∇v,z‖L2(R3×(0,∞)t )
. (2.8)

Taking into account information from (2.4) and (2.7), assuming finiteness of I and J —we concen-
trate our attention only on finding the estimates, so above quantities are assumed to be finite—we
conclude that

∇v ∈ L2
(
(0,∞)t; L2

(
R2

xy

); H1(Rz)
)
. (2.9)
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From the imbedding theorem (H1(R) ⊂ L∞(R)) we have the following inequality:

‖∇v‖L2((0,∞)t ;L2(R2
xy);L∞(Rz))

� C I1/2 J 1/2. (2.10)

Employing the interpolation inequality from the theory from [4], we get

‖v,z‖L4(R2
xy×(0,∞)t ;L2(Rz))

� C‖v,z‖1/2
L∞((0,∞)t ;L2(R2

xy);L2(Rz))
‖v,z‖1/2

L2((0,∞)t ;BMO(R2
xy);L2(Rz))

� C J . (2.11)

To get the above inequality it is enough to note that H1(R2) ⊂ BMO(R2), then the interpolation rela-
tion implies

L4
(
R2

xy × (0,∞)t; L2(Rz)
)

= (
L∞

(
(0,∞)t; L2

(
R2

xy

); L2(Rz)
)
, L2

(
(0,∞)t;BMO

(
R2

xy

); L2(Rz)
))

1/2, (2.12)

since 1
4 = 1−1/2

∞ + 1/2
2 and 1

4 = 1−1/2
2 + 1/2

BMO —the constant in (2.11) depends on interpolation param-
eters. Note that in (2.11) the classical Ladyzhenskaya inequality from [12] is hidden. This inequality
guarantees the solvability of the regularity problem in two dimensions.

Now we are prepared to examine the first term in the r.h.s. of (2.7) which is the only difficulty in
inequality (2.7). We have

[ ∞∫
0

dt

∫
R3

|v,z|2|∇v|dx̄

]1/2

� C

[ ∞∫
0

dt

∫
R2

∥∥∇v(t, x, y, ·)∥∥L∞(Rz)

∥∥v,z(t, x, y, ·)∥∥2
L2(Rz)

dx dy

]1/2

� C
[‖∇v‖L2(R2

xy×(0,∞)t ;L∞(Rz))
‖v,z‖2

L4(R2
xy×(0,∞)t ;L2(Rz))

]1/2

� C
[

I1/2 J 1/2 J 2]1/2 = C I1/4 J 5/4. (2.13)

Hence using (2.8) we state inequality (2.7) as follows:

J � A0 I1/4 J 5/4 + J0, (2.14)

where J0 = C‖v0,z‖L2(R3) . If J0 is so small that A0 I1/4(2 J0)
1/4 < 1

2 , then from (2.14) we conclude

J � 2 J0. (2.15)

Thus, the smallness of initial J0 implies the global in time smallness of norms controlled by J —
see (2.8). Here we stop the considerations for Theorem 2, since the rest of the proof is almost the
same as in the proof of the main theorem. Hence we claim that Theorem 2 has been proved. �
Remark. From the imbedding theorem in R3 we have

‖w‖L6(R3) � C‖w,x‖1/3
L2(R3)

‖w,y‖1/3
L2(R3)

‖w,z‖1/3
L2(R3)

. (2.16)

Smallness of J0 may imply that the L6-norm of initial datum v0 is small, too. Next, the interpolation
estimate may follow the L3-norm is small, too. However it is not the case. The initial datum taken in
Theorem 2 (or in Theorem 1) may be chosen in that way the L3-norm is arbitrary large (even L2+ε )
and the only restriction is posed on the L2-norm of the derivative with respect to z. It has to be
sufficiently small comparing to the magnitude of the “rest” of the norm of the initial datum.
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3. Control of the L2-norm

In this part we show the basic a priori estimate of the L2-norm of solutions to system (1.3).
Precisely, we prove the estimate to part (i) of Theorem 1.

Lemma 3. Let w ∈ Ξ , then sufficiently smooth solutions to (1.3) fulfill the following estimate:

‖u‖L∞(0,∞;L2(R3)) + ‖∇u‖L2(R3×(0,∞)) � C‖u0‖L2(R3). (3.1)

Proof. For any given w fulfilling (1.4) and any given ε > 0 we are able to find a smooth function
Q : (0,∞) × R3 → R such that

∥∥Q − |∇w|∥∥L2(R3
xy×(0,∞)t ;L∞(Rz))

� ε (3.2)

and

Q ∈ L1
(
0,∞; L∞

(
R3)). (3.3)

We treat system (1.1) as a perturbation of a special flow w . Multiplying (1.3)1 by u, integrating
over R3, we get

d

dt
‖u‖2

L2(R3)
+ 2ν‖∇u‖2

L2(R3)
= −2

∫
R3

u · ∇wu dx̄. (3.4)

Let us consider the r.h.s. of (3.4). Since the regularity or rather vanishing conditions on function w
are too weak, we apply a trick with function Q in the following way:

∣∣∣∣
∫
R3

u · ∇wu dx̄

∣∣∣∣ �
∫
R3

|Q ||u|2 dx̄ +
∫
R3

∥∥Q − ∣∣∇w(t, x, y, ·)∣∣∥∥L∞(Rz)
|u|2 dx̄.

Hence the identity (3.4) yields the following inequality:

d

dt

[
‖u‖2

L2(R3)
exp

{
−

t∫
0

‖Q ‖L∞(R3) ds

}]
+ 2ν‖∇u‖2

L2(R3)
exp

{
−

t∫
0

‖Q ‖L∞(R3) ds

}

� C

∫
R3

∥∥Q − |∇w|∥∥L∞(Rz)
|u|2 exp

{
−

t∫
0

‖Q ‖L∞(R3) ds

}
dx̄. (3.5)

Let us introduce an auxiliary function redefining our sought function

U = u exp

{
−1

2

t∫
0

‖Q ‖L∞(R3) ds

}
. (3.6)

Again, as in Section 2, we introduce

K = ‖U‖L∞(0,∞;L (R3)) + ‖∇U‖L (R3×(0,∞)). (3.7)

2 2
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Then inequality (3.5) can be stated as follows:

K 2 � C

∞∫
0

∫
R3

∥∥Q − |∇w|∥∥L∞(Rz)
|U |2 dx̄ + ‖u0‖2

L2(R3)
. (3.8)

Assuming the finiteness of K the same as for (2.11)–(2.12) we conclude

U ∈ L4
(
R2

xy × (0,∞)t; L2(Rz)
)
.

Take the first term from the r.h.s. of (3.8):

∞∫
0

dt

∫
R3

∥∥Q − |∇w|∥∥L∞(Rz)
|U |2 dx dy dz

�
∞∫

0

dt

∫
R2

∥∥Q − |∇w|∥∥L∞(Rz)
‖U‖2

L2(Rz)
dx dy

� C

( ∞∫
0

∫
R2

∥∥Q − |∇w|∥∥2
L∞(Rz)

dt dx dy

)1/2( ∞∫
0

∫
R2

‖U‖4
L2(Rz)

dt dx dy

)1/2

. (3.9)

So by (3.2) and (3.9) inequality (3.8) takes the form

K 2 � CεK 2 + K 2
0 (3.10)

with K0 = C‖u0‖L2(R3) . Since C in (3.10) is an absolute constant, we can choose ε—see (3.2)—such
that inequality (3.10) yields

K � 2K0. (3.11)

From the definition of K —see (3.7)—we deduce (3.1), since by (3.3) integral
∫ ∞

0 ‖Q ‖L∞ ds is finite and
given. Lemma 3 is proved. �

The obtained estimate stays independently from the magnitude of initial datum K0. Hence if K0 is
small, then K is small, too. Lemma 3 applied to case (i) from Theorem 1 guarantees that uniformly in
time the smallness of the L2-norm is controlled.

Another advantage of Lemma 3 is that it does not require smallness of the L2-norm of initial datum
u0, hence it works in the case (ii) of Theorem 1, too. Thus, the next section starts with information
given by (3.1).

4. Differentiation with respect to z

In this section we show the main estimate of the proof of the second part of Theorem 1. We prove

Lemma 4. Let assumptions of Theorem 1—case (ii) with conditions (1.9)—be fulfilled, then sufficiently smooth
solutions to system (1.3) satisfy the following bound

‖u,t‖L∞(0,∞;L2(R3)) + ‖∇u‖L2(R3×(0,∞)) � C
(‖u0,z‖L2(R3) + σ‖u‖L2(R3)

)
, (4.1)

where σ describes smallness of norms mentioned in condition (1.9).
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Proof. Differentiating system (1.3) with respect to the z-coordinate we get from the first (momentum)
equation the following:

u,zt + v · ∇u,z − ν�u,z + ∇p,z

= −u,z · ∇u + w,z · ∇u − u,z · ∇w − u · ∇w,z in R3 × (0,∞). (4.2)

Multiplying (4.2) by u,z , integrating over R3, we get

d

dt
‖u,z‖2

L2(R3)
+ 2ν‖∇u,z‖2

L2(R3)

� C

(∫
R3

|u,z · ∇wu,z|dx̄ +
∫
R3

|u,z · ∇uu,z|dx̄ +
∫
R3

|w,z · ∇uu,z|dx̄ +
∫
R3

|u · ∇w,zu,z|dx̄

)

= I1 + I2 + I3 + I4. (4.3)

If w is generated by a two-dimensional flow, then integrals I3 and I4 are zero and conditions (1.9)
are trivially fulfilled (σ in (4.1) is equal zero).

Similarly as in Lemma 3 we introduce

U,z = u,z exp

{
−1

2

t∫
0

‖Q ‖L∞(R3) ds

}
.

Thus from (4.3) and properties of function Q —(3.2) and (3.3)—we get

d

dt
‖U,z‖2

L2(R3)
+ 2ν‖∇U,z‖2

L2(R3)

� C

(∫
R3

∣∣Q − |∇w|∣∣|U,z|2 dx̄ +
∫
R3

|U,z · ∇uU,z|dx̄ +
∫
R3

|w,z · ∇UU,z|dx̄ +
∫
R3

|U · ∇w,zU,z|dx̄

)
(4.4)

which leads to the following inequality

L � C

[( ∞∫
0

dt

∫
R3

∣∣Q − |∇w|∣∣|U,z|2 dx̄

)1/2

+
(

exp

{
1

2

∞∫
0

‖Q ‖L∞(R3) ds

} ∞∫
0

dt

∫
R3

|U,z · ∇U U,z|dx̄

)1/2

+
( ∞∫

0

dt

∫
R3

|w,z · ∇U U,z|dx̄

)1/2

+
( ∞∫

0

dt

∫
R3

U · ∇w,z U,z|dx̄

)1/2]
+ L0

= A1 + A2 + A3 + A4 + L0, (4.5)

where

L = ‖U,z‖L∞((0,∞)t ;L2(R3)) + ‖∇U,z‖L2(R3×(0,∞)) (4.6)

and L0 = C‖u0,z‖L2(R3) . Again, applying (3.2) and the method for estimation (3.9) the first integral
from the r.h.s. of (4.5) is bounded as follows:

A1 � C
∥∥Q − |∇w|∥∥L2(R2 ×(0,∞)t ;L∞(Rz))

‖Uz‖2
L (R3 ×(0,∞) ;L (R ))

� εL. (4.7)

xy 4 xy t 2 z
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To estimate A2 we repeat exactly steps from Section 2—estimates (2.9)–(2.13)—getting

A2 �
[

exp

{
1

2

∞∫
0

‖Q ‖L∞(R3) ds

} ∞∫
0

∫
R3

|U,z · ∇U U,z|dx̄

]1/2

� C exp

{
1

4

∞∫
0

‖Q ‖L∞(R3) dx

}
K 1/4L5/4, (4.8)

where K is defined by (3.7) and by our assumptions and Lemma 3 is already given.
To estimate A3 and A4 we apply extra assumptions given by (1.9) having

A3 � C
[‖w,z‖L5(R3×(0,∞))‖∇U‖L2(R3×(0,∞))‖U,z‖L10/3(R3×(0,∞))

]1/2 � Cσ K 1/2L1/2,

A4 � C
[‖∇w,z‖L5/2(R3×(0,∞))‖U‖L10/3(R3×(0,∞))‖U,z‖L10/3(R3×(0,∞))

]1/2 � Cσ K 1/2L1/2, (4.9)

where we applied the parabolic imbedding into L10/3(R3 × (0,∞)).
Summing up estimates (4.5)–(4.9), remembering that Q is given and fulfills (3.3), thus the integral

in the r.h.s. of (4.8) is given, too, we obtain the following inequality:

L � εL + C exp

{
1

4

∞∫
0

‖Q ‖L∞(R3) dx

}
K 1/4L5/4 + Cσ K 1/2L1/2 + L0. (4.10)

Smallness of ε—see (3.2)—and σ —see (1.9)—reduces (4.10) to the following form:

L � A1 K 1/4L5/4 + σ K + 2L0. (4.11)

Provided σ and L0 are such that A1 K 1/4[4(L0 + σ K )]1/4 < 1
2 , controlling K by Lemma 3 and (3.11),

we conclude that

L � 4(L0 + σ K0). (4.12)

Hence by (4.12) we get bound (4.1) guaranteeing us smallness of the l.h.s. in this estimate. Lemma 4
is proved. �

Now we are prepared to show estimate (1.10) from Theorem 1.

5. The existence

In this section we show the proof of existence of regular, global in time solutions to system (1.3)
guaranteed by Theorem 1. Local in time results for these systems follow from the standard approach
and detailed proofs can be found e.g. in [15,16,24]. Hence to obtain global in time solutions a priori
estimates in a suitable high class of regularity are required, only. Here it will be the W 2,1

4 -space—see
(1.10) and (1.11). First we consider case (ii) which seems to be more advanced than (i).

A key element of our technique will be an application of information about global smallness of
quantity L controlled by Lemma 4. A direct method seems to be not so effective, but by the imbedding
theorem we get a more suitable quantity. By (2.16) we conclude

∥∥u(·, t)
∥∥

3 � C
∥∥u,z(·, t)

∥∥1/3
3

∥∥u,x(·, t)
∥∥1/3

3

∥∥u,y(·, t)
∥∥1/3

3 (5.1)
L6(R ) L2(R ) L2(R ) L2(R )
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which leads us to the following inequality:

‖u‖L3(0,∞;L6(R3)) � C‖u,z‖1/3
L∞(0,∞;L2(R3))

‖∇u‖2/3
L2(R3×(0,∞))

. (5.2)

Next, let us note that the interpolation between L p spaces implies

L4
(
0,∞; L4

(
R3)) = (

L3
(
0,∞; L6

(
R3)), L∞

(
0,∞; L2

(
R3)))

1/4. (5.3)

Hence remembering that the energy norm (3.1) is controlled by Lemma 3 by given data, from (5.2)
and (3.1) we obtain

‖u‖L4(R3×(0,∞)) � C‖u,z‖1/3(1−1/4)

L∞(0,∞;L2(R3))
, (5.4)

where C in (5.4) contains the energy norm given by Lemma 3. That is the reason we choose the
W 2,1

4 -space to show existence of regular solutions to (1.3). Obviously we can repeat the proof for any

W 2,1
p with general p—see [15].
Now we estimate solutions in higher norms. We restate problem (1.3) in the following form:

u,t − ν�u + ∇p = −u · ∇u − w · ∇u − u · ∇w in R3 × (0, T ),

div u = 0 in R3 × (0, T ),

u|t=0 = u0 on R3. (5.5)

Time T above describes the lifespan of the maximal solution given by the local result. Our goal is to
show that we will be able to prolong this time to T = ∞ at the end of our analysis.

By the classical results [6,16,24] for the Stokes system in the whole space (the l.h.s. of (5.5)) the
following L p-Schauder type estimate for solutions to (5.5) is known,

‖u,t‖Lp(R3×(0,T )) + ∥∥∇2u
∥∥

Lp(R3×(0,T ))
� C

(∥∥r.h.s. of (5.5)1

∥∥
Lp(R3×(0,T ))

+ ‖u0‖W 2−2/p
p (R3)

)
, (5.6)

where C does not depend on T , so we can put T = ∞ in estimate (5.6). In our case we consider
bound (5.6) for p = 4.

To apply estimate (5.6) we have to find a bound on the r.h.s. of (5.5) in the L4-norm.
The imbedding theorem [5, Chap. 11] yields the following inclusions

W 2,1
4

(
R3 × (0, T )

) ⊂ L12
(
R3 × (0, T )

)
, ∇W 2,1

4

(
R3 × (0, T )

) ⊂ L6
(
R3 × (0, T )

)
.

Moreover there exists a function c(·) such that c(σ ) → ∞ as σ → 0 and

‖u‖L12(R3×(0,T )) + ‖∇u‖L6(R3×(0,T )) � σ 〈u〉W 2,1
4 (R3×(0,T ))

+ c(σ )‖u‖L4(R3×(0,T )), (5.7)

where 〈·〉W 2,1
4

denotes the main seminorm of space W 2,1
4 (R3 × (0, T ))—see (1.11).

Applying estimate (5.7) to terms of the r.h.s. of (5.6) we get

‖u · ∇u‖L4(R3×(0,T )) � C‖u‖L12(R3×(0,T ))‖∇u‖L6(R3×(0,T ))

� σ 2〈u〉2
W 2,1

4 (R3×(0,T ))
+ c(σ )‖u‖2

L4(R3×(0,T ))
(5.8)

and
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‖w · ∇u‖L4(R3×(0,T )) � σ 〈u〉W 2,1
4 (R3×(0,T ))

+ c
(
σ ,‖w‖L∞(R3×(0,T ))

)‖u‖L4(R3×(0,T )),

‖u · ∇w‖L4(R3×(0,T )) � C‖∇w‖L∞(R3×(0,T ))‖u‖L4(R3×(0,T )). (5.9)

Inserting (5.8) and (5.9) into estimate (5.6), remembering about (5.4), we obtain

〈u〉W 2,1
4 (R3×(0,T ))

� σ 〈u〉W 2,1
4 (R3×(0,T ))

+ σ 2〈u〉2
W 2,1

4 (R3×(0,T ))

+ c
(
σ ,‖w‖W 1∞(R3×(0,∞))

)‖u‖L4(R3×(0,∞)) + C〈u0〉W 2−1/2
4 (R3)

. (5.10)

Having smallness of σ , remembering that the L4-norm of u by bound (5.4) is sufficiently small,
from (5.10) we obtain

〈u〉W 2,1
4 (R3×(0,T ))

� DATA. (5.11)

Note that to obtain (5.11) the smallness of 〈u0〉W 2−1/2
4 (R3)

is not required, the only condition is

(1 − σ)2 > 4σ 2[c
(
σ ,‖w‖W 1∞(R3×(0,∞))

)‖u‖L4(R3×(0,∞)) + C〈u0〉W 2−1/2
4 (R3)

]
. (5.12)

But the choice of σ is arbitrary, additionally it prescribes the smallness of the L4-norm of u by (5.4),
thus the r.h.s. of (5.12) can be arbitrarily small.

DATA in (5.11) are bounded by all given data, in general case it may not be small.
However, first of all the r.h.s. of (5.11) does not depend on T , hence we are able to extend our

estimate on T = ∞, getting the desired global in time solutions with sufficiently high regularity guar-
anteeing the smoothness. Thus, we proved case (ii) for Theorem 1.

Let us briefly look on case (i). This part of Theorem 1 is similar to case (ii), so we point a reduction
of this case to the earlier considered one.

From Lemma 3 and the parabolic imbedding we immediately obtain smallness of the L10/3-norm,
i.e.

‖u‖L10/3(R3×(0,∞)) � C‖u0‖L2(R3). (5.13)

Additionally the theory from [5, Chap. 18] guarantees an analogical estimate to (5.7), but with the
L10/3-norm, i.e. there exists a function c(σ ) → ∞ as σ → 0 such that

‖u‖L12(R3×(0,∞)) + ‖∇u‖L6(R3×(0,∞)) � σ 〈u〉W 2,1
4 (R3×(0,∞))

+ c(σ )‖u‖L10/3(R3×(0,∞)).

Thus, remembering (5.13), the whole estimation (5.6)–(5.11) is almost the same. Concluding in a sim-
ilar way we are able to show

〈u〉W 2,1
4 (R3×(0,T ))

� DATA. (5.14)

The same for (5.11) we can obtain bound (5.14) on time interval (0,∞).
The proof of Theorem 1 is done.
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