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Juvenile hormone (JH) controls insect development, metamorphosis and reproduction. In insect hemolymph
a significant proportion of JH is bound to juvenile hormone binding protein (JHBP), which serves as a carrier
supplying the hormone to the target tissues. To shed some light on JHBP passage within insect tissues, the
interaction of this carrier with other proteins from Galleria mellonella (Lepidoptera) was investigated. Our
studies revealed the presence of JHBP within the tracheal epithelium and fat body cells in both the
membrane and cytoplasmic sections. We found that the interaction between JHBP and membrane proteins
occurs with saturation kinetics and is specific and reversible. ATP synthase was indicated as a JHBP
membrane binding protein based upon SPR-BIA and MS analysis. It was found that in G. mellonella fat body,
this enzyme is present in mitochondrial fraction, plasma membranes and cytosol as well. In the model
system containing bovine F1 ATP synthase and JHBP, the interaction between these two components occurs
with Kd=0.86 nM. In hemolymph we detected JHBP binding to apolipophorin, arylphorin and hexamerin.
These results provide the first demonstration of the physical interaction of JHBP with membrane and
hemolymph proteins which can be involved in JHBP molecule traffic.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The term juvenile hormone (JH) refers to six sesquiterpene
homologs, all of which contain an ester bond and epoxy bond that
are required for hormone regulatory functions. JH regulates many
processes, including the growth, development, metamorphosis and
reproduction of insects [1,2]. The diversity of JH-mediated physiolo-
gical effects suggests that target cells may respond to the hormone
directly by gene expression and/or via a secondary messenger [3,4].
JH, secreted from corpora allata to hemolymph, binds to juvenile
hormone binding protein (JHBP), which protects the hormone from
the action of nonspecific esterases and JH epoxide hydrolase [1,5].
JHBP serves as a carrier protein to target cells as part of the hormonal
signal transfer mechanisms.

Three types of JHBP have been described in insects: low molecular
weight proteins of approximately 30 kDa, and two types of high
molecular weight proteins: lipophorins and hexameric proteins.
Lipophorins contain two or three apolipoproteins: apolipophorin I
+48 71 320 6337.
ochman).
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(apoLp-I), apolipophorin II (apoLp-II) and apolipophorin III (apoLp-
III) with molecular weights of ∼220–250, 80, 17–20 kDa, respectively
[1,6]. The insect apolipoproteins belong to the family of large lipid
transfer (LLT) proteins that includes vitellogenins, microsomal
triglyceride transfer protein and mammalian apolipoprotein B. The
second group of high molecular weight proteins binding JH belongs to
the superfamily of hexameric larval hemolymph proteins (LHP),
named according to their composition of six identical subunits of 74–
82 kDa and in G. mellonella, four LHPs with numbers indicating their
subunit molecular masses were identified: LHP 74, 76, 81, 82 [7]. In
Lepidoptera only low molecular mass proteins (∼30 kDa) have
specific affinity to JH [8,9]. It was previously assumed that the
lipophilic nature of JH allows it to diffuse through a cell membrane
bilayer. However, more than 99% of the JH molecules in hemolymph
are bound by JHBP [10].

JH binding to low molecular weight JHBP in G. mellonella (Greater
Wax Moth) induces a profound conformational transition in the
protein molecule reflected in the changes in the sedimentation
coefficient, electrophoretic mobility and perturbation of Tyr residues
and disulfide bridges [11,12]. This might be important in the
transmission of hormone signals and the recognition of target cells.
However, there is no information concerning the traffic of JHBP
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molecules from fat body cells, where they are expressed [13], to
hemolymph and then to target cells. This passage proceeds in the
presence of other macromolecules possibly interacting with each
other. There are a vast number of transient protein–protein interac-
tions, which in turn control a large number of cellular processes [14].
In order to understand the significance of various protein interactions
we need to identify them, determine the extent to which they occur,
and examine their consequences. Thus, a study of the JHBP interaction
network with other protein(s) is a prerequisite to understanding the
mechanism of delivering JH to target cell membranes.

In this report JHBP interaction with apolipophorin, arylphorin and
hexamerin from G. mellonella hemolymph was shown. In fat body cell
membranes, ATP synthase was identified as a JHBP-binding protein.
This allowed us to postulate that ATP synthase participates in JHBP
export, and JHBP in complex with hemolymph proteins take part in JH
transport to target cells.

2. Materials and methods

2.1. Chemicals

Juvenile hormone III (10R,S-JH III) was purchased from Sigma. 10-
[3H]-labeled JH III and Na [125I] were purchased from Polatom
(Poland).

2.2. Insects

Galleria mellonella (Lepidoptera, Pyralidae) larvae were reared in
constant darkness at 30 °C on a semi-artificial diet prepared as
described by Sehnal and Slama [15].

The hemolymph from4th day, VIIth instar larvaewas collected into
a plastic tube containing a few crystals of 1-phenyl-2-thiourea and
stored at −20 °C.

2.3. Determination of protein concentrations

Protein concentrations were determined using the Bradford
method [16]. For samples containing Triton X-100, the sample was
diluted with a buffer to a detergent concentration of 0.1% before assay,
and bovine serum albumin (BSA) in 0.1% Triton X-100 was used as a
standard protein.

2.4. The purification of juvenile hormone binding protein (JHBP) and
preparation of anti-JHBP antibodies

JHBP was purified from hemolymph by immunoaffinity chromato-
graphy [17]. The JH-binding activity was determined with a charcoal
assay [18] in the presence of 0.1% gelatin [19]. Polyclonal antibodies
against JHBP were obtained as previously described [13].

2.5. Immunostaining

Immunohistochemistry was performed on 4 μm thick sections,
mounted on poly-L-lysine coated slides, using the avidin–biotin–
peroxidase complex (ABC) technique with reagents supplied by
DAKO. G. mellonella larvae were embedded in paraffin. Following
deparaffination and rehydration, endogenous peroxidase activity was
blocked with 0.3% hydrogen peroxide, followed by a non-immune
swine serum for 30 min to block nonspecific binding. The sections
were then incubated with primary polyclonal antibodies against JHBP
at 4 °C overnight at a dilution of 1:1500. Control trials were incubated
with phosphate-buffered saline (PBS) instead of the primary anti-
JHBP antibodies. This was followed by incubation with biotinylated
horse anti-rabbit IgG for 15 min and thereafter with the avidin–
biotin–peroxidase complex (ABC reagent) for 15 min. Between each
step sections were washed twice by PBS. The reaction product was
visually observed using 3,3-diaminobenzidine tetrahydrochloride
(DAB) solution. After counterstaining with haematoxylin, slides
were dehydrated, cover slipped and examined using a light micro-
scope supplied with a digital camera system.

2.6. Separation of hemolymph high molecular weight proteins from low
molecular weight proteins

7ml of hemolymphwas applied onto a Sephadex G-200 column (K
16/100, Pharmacia) equilibrated with a 10 mM Tris buffer, 100 mM
NaCl, 0.25 mM 1-phenyl-2-thiourea, pH 7.3. The flow rate was 17ml/h
and 7 ml fractions were collected. Fractions from the first absorption
peak (A280) [17,19], containing high molecular weight proteins
(HMWP), were used for ligand blotting analysis.

2.7. SDS-PAGE electrophoresis and ligand blotting of hemolymph
fractions

Proteins were separated with sodium dodecyl sulfate polyacry-
lamide gel electrophoresis (SDS-PAGE) [20] under reducing or non-
reducing conditions (we didn't boil the sample or add reducing
agents to minimize irreversible protein denaturation). Gels con-
sisted of a 4% stacking gel and a 12% resolving gel. Electrophoresis
was carried out at 30 mA/slab gel until the dye front reached the
bottom of the gels. Separated protein gels were stained with
Coomassie Brilliant Blue R for visual observation. Proteins from
unstained gels were transferred to nitrocellulose transfer paper [21]
for 1 h at 150 V. The papers containing transferred proteins were
first incubated in a buffer (10 mM Tris, 150 mM NaCl, pH 7.5,
supplemented with 3% non-fat dry milk) for 1 h at 25 °C. After
blocking, the papers were incubated with JHBP (1 mg/ml) or with
JHBP (1 mg/ml) preincubated for 0.5 h at 4 °C with JH (20 μM) in
polyethylene glycol coated tubes. A negative control was done with
BSA (1 mg/ml) in a 10 mM MOPS, 100 mM NaCl pH 7.2 buffer. Next,
the papers were washed three times with the buffer, treated with a
1:25000 dilution of polyclonal anti-JHBP and washed again three
times with the buffer. Then, the nitrocellulose papers were
incubated with 1:5000 dilution of goat anti-rabbit polyclonal
antibodies conjugated with horseradish peroxidase (HRP) (Sigma).
The blot assay was developed using a peroxidase detection kit (ECL
plus Western Blotting Detection System, Amersham).

2.8. Coupling of the CNBr-activated Sepharose beads with JHBP

JHBP was coupled to Sepharose beads according to the
manufacturer's instructions (Sigma). Briefly, 1 mg (0.75 ml) of
JHBP in 0.1 M NaHCO3, pH 8.3, was mixed with 0.25 ml of CNBr-
activated Sepharose beads in suspension and left overnight at 4 °C
with gentle shaking. After washing with the buffer and blocking
with ethanoloamine, pH 8.0, the beads were stored in 0.04% NaN3 at
4 °C before use.

2.9. Binding hemolymph proteins to JHBP immobilized on Sepharose

Hemolymph proteins were separated on a Sephadex G-200
column [17], equilibrated with a 10 mM MOPS, 100 mM NaCl buffer,
pH 7.2 and the fractions were combined from the first absorption
peak (A280), containing high molecular weight proteins (HMWP).
10 ml of HMWP (3 mg/ml) in the buffer was incubated with 0.2 ml
of immobilized JHBP (0.6 mg). After incubation for 1 h at 4 °C the
beads were washed with 6 volumes of the buffer and the bound
protein complexes were eluted by competitive elution with JHBP
(0.3 mg, 0.4 ml) or with aldolase (0.46 mg, 0.4 ml) as a control.
Eluted proteins were electrophoresed and detected by Coomassie
Blue staining. Protein bands were excised and identified using
tandem mass spectrometry analyses (MS). MS experiments and
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database searches using the Mascot program were performed by the
Laboratory of Mass Spectrometry, Polish Academy of Sciences,
Warsaw, Poland.

2.10. Radio-labeling of JHBP

JHBP was iodinated with Na [125I] using an Iodogen reagent as an
oxidizing agent (Sigma). 60 μg of JHBP (75 μl) in a 0.1 M sodium
phosphate buffer, pH 7.2 was added to tubes coated with 10 μg of
Iodogen and incubated with 0.5 mCi Na [125I] (25 μl) for 10min at 4 °C.
Iodinated protein was separated from free iodine by gel filtration on a
Sephadex G25 (PD-10, Amersham). The radioactive protein samples
were combined. The specific activity of radio-iodinated protein was
usually 2–2.5×103 cpm/ng JHBP. The iodinated JHBP activity was
verified by the JH-binding activity test.

2.11. Isolation and solubilization of fat body membrane proteins

To obtain membrane fraction we adopted Ueno et al. procedure
previously applied to preparation of membranes from fat body of
Sarcophaga peregrina [22]. Briefly, fat body tissue was isolated from
4th day, VIIth instar larvae of G. mellonella, placed in a 50 mM HEPES,
0.1 mM CaCl2 buffer, pH 8.5 and stored at −80 °C until used. Fat body
was homogenized in the ice-cold buffer containing protease
inhibitors: leupeptin (10 μg/ml), pepstatin (10 μg/ml), aprotinin
(1 μg/ml) and bestatin (1 μg/ml) using a glass-Teflon tissue grinder.
The homogenate was centrifuged at 800 ×g for 10 min at 4 °C to
remove nuclei and the resulting supernatant was centrifuged at
10000 ×g for 20 min at 4 °C to collect membrane fraction [22]. The
pellet was washed once with the buffer. Membrane protein
suspension was used directly in binding 125I-JHBP or was diluted
with an equal volume of buffer containing 2% Triton X-100 for use in
SPR analysis. After mixing for 3 h at 4 °C, insoluble material was
removed by centrifugation at 15000 ×g for 20 min. To evaluate the
quality of membrane protein preparation the phosphatase activity
was examined.

As it will be shown later, we detected ATP synthase in the
membrane fraction obtained according to the procedure described
above. To show that G. mellonella fat body membranes indeed
contain the ATP synthase and that its presence is not due to
mitochondria, a second method of subcellular structure fractiona-
tion described by Hryb et al. [23] was also used. Briefly, freshly
excised fat body tissue was placed in an isotonic buffer composed of
0.3 M sucrose, 25 mM Tris, pH 7.4 and protease inhibitors. The
tissue was homogenized and the homogenate was centrifuged at
1000 ×g for 10 min at 4 °C to remove nuclei and the resulting
supernatant was centrifuged at 15000 ×g for 20 min at 4 °C to
collect some membrane sheets and mitochondria. The supernatant
was centrifuged at 100000 ×g for 1 h at 4 °C to collect membranes.
SDS-PAGE and western blotting with anti-ATPase was applied to
analyze the obtained fractions.

2.12. SDS-PAGE electrophoresis of subcellular fractions and their analysis
with anti-α chain of ATP synthase

Proteins were separated with SDS-PAGE under reducing conditions
[20]. Separated protein bands were transferred to nitrocellulose
papers [21] for 1 h at 150 V. The papers containing transferred
proteins were first incubated in a blocking buffer (10mMTris,150mM
NaCl, pH 7.5, supplemented with 5% non-fat dry milk) for 1 h at 25 °C.
The nitrocellulose membranes after blocking were treated with
monoclonal antibody to α chain of ATP synthase (Mitosciences)
diluted 1:1000 in the buffer supplemented with 1% non-fat dry milk
and washed three times with the buffer. Then, the nitrocellulose
papers were incubated with 1:5000 dilution of horse anti-mouse
antibodies, diluted in the buffer supplemented with 1% non-fat dry
milk, conjugated with horseradish peroxidase (Vector Laboratories)
and washed three times with the buffer. The blot assay was developed
using a peroxidase detection kit (ECL plus Western Blotting Detection
System, Amersham).

2.13. Phosphatase assay

Alkaline phosphatase activity was determined using p-nitrophenyl
phosphate as a substrate [24]. Briefly, p-nitrophenyl phosphate
(25mM)was dissolved in a 50mM Tris buffer, pH 10.0 andmembrane
protein suspensionwas added. After incubation at 37 °C for 30min the
amount of product formed was calculated from the absorbance at
410 nm, with reference to a standard curve prepared using pure p-
nitrophenol. One unit of enzyme activity corresponds to one μmole of
p-nitrophenol produced per minute. The specific activity in the
membrane protein fraction was usually 0.3 U/mg.

2.14. Binding 125I-JHBP to fat body membrane proteins

The reactionmixture (0.2ml) contained radio-iodinated JHBP (6 to
95 nM), membrane protein suspension (0.5 mg/ml) and BSA (10 mg/
ml) in a 10 mM MOPS, 100 mM NaCl buffer, pH 7.2. 125I-JHBP was
incubated with membrane proteins in the presence or absence of a
100-fold excess of cold JHBP for 1 h at 37 °C. Following incubation,
membrane proteins were separated by centrifugation at 10000 ×g for
10 min. After the supernatant was removed, membrane proteins were
washed twice rapidly with 0.2 ml of the buffer and then suspended in
0.2 ml of this buffer. Radioactivity was measured with a γ-scintillation
counter (Beckman, Tri-Carb 2700TR). The amount of bound JHBP was
calculated from the radioactivity associated with the membrane
proteins. Nonspecific binding was determined using a 100-fold excess
of unlabeled JHBP. The specific 125I-JHBP binding was obtained by
subtracting the nonspecific binding from the total radio-ligand
binding.

2.15. Limited trypsinization of fat body membrane proteins

Fat body membrane protein suspension (0.5 mg/ml) was
incubated with trypsin (25 μg/ml) for 0–30 min at 37 °C in 10 mM
MOPS, 100 mM NaCl, pH 7.2, followed by centrifugation (20 min,
10000 ×g). Subsequently, the membrane proteins were resuspended
in the buffer and assayed for binding 125I-JHBP under standard
conditions.

2.16. Surface plasmon resonance-biomolecular interaction analysis
(SPR-BIA)

SPR-BIA was performed with a Biacore 3000 instrument. An HBS
buffer (10 mM HEPES, 150 mM NaCl, pH 7.4) containing 0.005%
(w/v) polysorbate and 3 mM EDTA was used as a running buffer at
20 μl/min flow at 25 °C. JHBP-JH complex was prepared by
incubating JHBP (1 mg/ml) with JH (20 μM) for 0.5 h at 4 °C in
polyethylene glycol coated tubes. JHBP and JHBP-JH were covalently
immobilized on the carboxymethyl dextran in the flow cells of a
CM5 sensor (chip) surface using the standard amine-coupling
method [25]. EDC/NHS (1-ethyl-3-[3-dimethylaminopropyl] carbo-
diimide hydrochloride/N-hydroxysulfosuccinimide) was used to
activate the carboxyl groups of the carboxymethyl surface. Then,
150 μl of JHBP (100 μg/ml) in an acetate buffer, pH 4.0, was
injected over one flow cell. On the other flow cells, 150 μl of JHBP-
JH (100 μg/ml) and BSA (200 μg/ml) were injected. Next,
ethanolamine was added to block NHS esters which had not
reacted. The SPR response measured at the end of EDC/NHS
injection was subtracted from the final SPR response measured
after ethanolamine injection to estimate the amount of protein
immobilized on the cell surface.



Fig. 1. Immunohistological staining for JHBP in the fat body, muscles and tracheal
epithelium of the 4th day, VIIth instar larvae of G. mellonella. Anti-JHBP polyclonal
antibodies were used for the immunoassay which gave a brown positive signal. Purple
staining represents counterstaining with haematoxylin. (A) JHBP was found in the fat
body cells (filled arrow) and muscles remain negative for JHBP (empty arrow) —

magnification ×220. (B) JHBP is present in fat body cells (filled arrow) and also in the
tracheal epithelium (filled arrow) — magnification ×550. (C) Localization of JHBP on
the fat body cell membrane (filled arrow) — magnification ×660.
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Next, fat body membrane protein solution from G. mellonella was
diluted to 0.47 μg/ml in an HBS buffer (at 0.2% final concentration of
Triton X-100) and 180 μl aliquots were injected over JHBP and JHBP-
JH-attached SPR solid support (sensor) surfaces as well as over empty
flow cell.

2.17. Isolating JHBP-binding proteins using surface plasmon resonance
and enzymatic digestion of recovered proteins

180 μl (0.47 μg/ml) of membrane protein solution was injected
over a JHBP-attached sensor surface. After washing out the unbound
fraction, the residual JHBP-binding proteins were eluted with 6 μl of
0.5 M urea/10 mM triethylamine [26] and collected in an Eppendorf
tube according to the recovery procedure of the Biacore instrument.
The recovery step was done using the full chip volume. Immediately
after elution, triethylamine was rapidly evaporated under a vacuum.
The proteins were digested by adding a solution of trypsin in 50 mM
NH4HCO3 (20 ng/μl sequence grade, Promega). The mixture was
incubated for 3 h at 37 °C.

2.18. Nanoelectrospray tandem mass spectrometry

Recovered peptides were subjected to nanoLC-MS/MS analysis on
an ESI-Q-TOF mass spectrometer (QSTAR XL, Applied Biosystems)
operating in the positive mode with a 2.1 kV spray voltage.
Chromatographic separation was performed on a 75 μm ID×15 cm
PepMap C18 column (Dionex/LC Packings, USA) at a flow rate of
200 nl/minute using a linear gradient of increasing acetonitrile (ACN)
in water (5–50%) over 40 min with 0.1% formic acid as the ion pairing
agent. Data were acquired with Analyst QS (version 1.1, Applied
Biosystems).

2.19. Direct binding assays by surface plasmon resonance

JHBP and BSA (as a control) were immobilized under the
conditions described above, assuming that 1000 RU corresponds to
1 ng of immobilized protein. To measure binding interactions, 90 μl of
F1 ATP synthase, at different concentrations ranging from 0.75 nM to
25 nM in HBS, was passed over the immobilized protein surface at a
flow rate of 30 μl/min. Next, the formed complexes were allowed to
dissociate by injecting 120 μl of the HBS. After each binding assay flow
cells were regenerated with short pulses of 0.005% SDS, at a flow rate
of 30 μl/min and repeated washes with HBS. Results are represented
as sensorgrams, expressed as the response in resonance units as a
function of time in seconds. Rate constants were determined by using
a global fitting routine provided by BIAcore (BIAevaluation 4.0.1). The
measured association (ka) and dissociation (kd) rate constants
allowed us to determine the equilibrium dissociation constant Kd,
through the ratio kd/ka.

3. Results

3.1. The immunohistochemical localization of JHBP in the fat body cell
membranes of G. mellonella

To show the tissue localization of JHBP, an immunohistochemical
analysis was performed on paraffin embedded sections of G. mellonella
larvae, using anti-JHBP polyclonal antibodies. Significant staining was
observed in the fat body (both membrane and cytoplasmic reaction)
(Fig. 1A–C) and in the tracheal epithelium (Fig. 1B). Scattered JHBP
was also present in the cuticular epithelium (not shown). JHBP
immunoreactivity was not detected in the muscles (Fig. 1A). The
distribution of JHBP appeared to be divergent – not only histologically
(Fig. 1A, B) – but also at the cellular level. At higher magnification,
JHBP was detected on plasma membranes suggesting that it interacts
with cell membrane protein(s) (Fig. 1C).
3.2. Do JHBP molecules interact with proteins present in hemolymph?

The concentration of hemolymph proteins is extremely high,
approaching 150 mg/ml [19]. This raised two questions: in what form
do JHBPmolecules appear with such a high protein concentration, and



Fig. 3. Interaction between the HMWP and JHBP by affinity chromatography. 10 ml of
HMWP (3 mg/ml) was incubated with 0.6 mg of JHBP immobilized on Sepharose beads
(0.2 ml). After incubation the beads were washed. Proteins eluted by JHBP (0.3 mg,
0.4 ml) or by aldolase (0.46 mg, 0.4 ml) as specific and nonspecific competitors are
shown in lanes E1 and E2, respectively. Eluates (28 μl) were analyzed by SDS-PAGE and
stained with Coomassie Blue. Samples (28 μl) of JHBP (lane P1) and aldolase (lane P2)
used for elution were electrophoresed as additional controls. The arrows indicate the
positions of JHBP-binding proteins (220, 80, 75 kDa) and competitors, JHBP (32 kDa)
and aldolase (40 kDa).
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is JHBP preferentially bound to some proteins? To this end
hemolymph proteins were fractionated on a Sephadex G-200 column
and separated into two main A280 absorption peaks, the first
containing high molecular weight proteins (HMWP) and the second
low molecular weight proteins (LMWP) as shown by Ożyhar and
Kochman [19] and Wieczorek et al. [17]. Proteins from the first peak
were applied to SDS-PAGE. In order to determine whether JHBP
interacts with hemolymph proteins, ligand blotting was performed
[27]. Interaction between JHBP and hemolymph proteins was
observed with HMWP containing mostly lipoproteins. In this fraction
we found at least two protein bands of about 220 kDa and 120 kDa
(Fig. 2, lane P1) which interact with JHBP. An analogous experiment
performed in the presence of JH revealed an increase in the intensity
of the 220 kDa band in the HMWP fraction interacting with JHBP (Fig.
2, lane P2). In the control experiment, where bovine serum albumin
(BSA) was used instead of JHBP, no antibody binding to HMWP was
observed (Fig. 2, lane K1). For comparison, electrophoretic mobility of
JHBP is shown in lane K2. Its microheterogeneity is due to different
extent of glycosylation of JHBP [28].

3.3. The identification of JHBP-binding proteins with affinity
chromatography and mass spectrometry analysis

The affinity chromatography technique was used to confirm that
hemolymph proteins preferentially bind JHBP. HMWPwere applied on
a JHBP-bound Sepharose column and after excessive washing with a
buffer, the column was treated with free JHBP acting as a specific
competitor or with aldolase as a control (nonspecific) ligand. The
eluted protein fractions were separated on SDS-PAGE and analyzed
with mass spectrometry. For control elution we chose aldolase
because in SDS-PAGE this protein band is easily separated from high
Fig. 2. Ligand blot analysis of JHBP or JHBP-JH complex binding to hemolymph HMWP.
40 μg of HMWP (lanes: P1, P2 and K1) and 0.2 μg of JHBP (lane: K2) were separated by
SDS-PAGE under conditions designed tominimize irreversible protein denaturation and
were transferred to nitrocellulose membrane. The binding of HMWP was performed in
the absence (lane K1) or presence of JHBP (lane P1) or JHBP-JH complex (lane P2) as
ligands. The membrane after washing was subsequently treated with polyclonal
antibodies against JHBP (1:25000). Binding was visualized with HRP-goat anti-rabbit
(1:5000) as a secondary antibody and a chemiluminescence system. The arrows indicate
the positions of proteins involved in interactionwith JHBP and/or JHBP-JH complex (220
and 120 kDa). For comparison the mobility of free JHBP molecules is indicated (32 kDa).
molecular weight proteins. In contrast, commercial BSA was hetero-
geneous in SDS-PAGE, showing protein bands partially overlapping
with high molecular weight proteins (not shown). Additionally,
muscle aldolase exhibits some affinity to lipids and is a basic protein
with a similar pI as JHBP [29,30]. SDS-PAGE analysis revealed three
proteins eluted by JHBP (Fig. 3, lane E1). Their positions correspond to
molecular masses: 75 kDa, 80 kDa and 220 kDa. In the fraction eluted
by aldolase, 220 kDa protein band is also present but it is barely visible
in comparison to JHBP eluted protein. Very weak additional bands
(notmarked) present in the fraction eluted by aldolase (Fig. 3, lane E2)
are also present in the lane with free aldolase (Fig. 3, lane P2) and
represent some impurities, and therefore cannot be hemolymph
proteins. Protein bands corresponding to 220 kDa, 80 kDa and
75 kDa masses were subjected to ESI-FTICR-MS analysis and
identified as apolipophorin, hexamerin and arylphorin, respectively
(Table 1). Mass spectrometric analysis detected 623 of the 1515
amino acids of apolipophorin (41%), 159 of the 706 amino acids of
hexamerin (22%) and 403 of the 702 amino acids of arylphorin
(57%). Sequences of identified G. mellonella proteins, published
earlier on the Expasy Proteomics Server, came from a conceptual
translation of DNA, because these three proteins have not yet been
purified and sequenced from G. mellonella. Interestingly, potential
JHBP-binding proteins: apolipophorin, arylphorin and hexamerin are
Table 1
JHBP binding hemolymph proteins found by affinity chromatography and identified by
tandem mass spectrometry and Mascot database searches.

Molecular mass
from SDS-PAGE
[kDa]

Protein name
(Galleria
mellonella)

NCBI
accession
number

Calculated
molecular
mass [kDa]

No. of
peptides
identified

Sequence
coverage
[%]

220 Apolipophorin
[fragment]

Q68YP1 168.3 61 41

80 Hexamerin Q24997 81.4 17 22
75 Arylphorin Q24995 83.7 55 57



Fig. 4. JHBP binding to fat body membrane proteins from G. mellonella. (A) Equilibrium
binding experiments were performed using increasing amounts of radio-labeled JHBP
(6 to 95 nM). Fat body membrane protein suspension (100 μg) was incubated with 125I-
labeled JHBP alone or in the presence of a 100-fold excess of unlabeled JHBP. (●)— total
binding; (■) — binding in the presence of cold JHBP (nonspecific binding); (▾) —

specific binding (total minus nonspecific). (B) Scatchard analysis of the binding of
125I-JHBP to membrane proteins. The analysis indicates that JHBP binds to a membrane
ligand with Kd=0.105±0.04 μM. (C) The effect of trypsin pretreatment of the fat body
membrane proteins on JHBP binding. Membrane protein suspension (0.5 mg/ml) was
preincubated for 0–30 min, with 25 μg/ml trypsin. The binding assay was performed
with 100 nM 125I-JHBP. Each point represents the mean±S.D.
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high molecular weight proteins that have been shown to be
involved in JH binding in insects [1].

3.4. Analysis of JHBP binding to fat body membranes

As was demonstrated above, immunohistochemical studies
revealed the presence of JHBP in fat body cells and the tracheal
epithelium (both in cytoplasm and in plasma membranes) (Fig. 1). To
characterize the kinetics of interaction between JHBP and fat body
membrane proteins, binding experiments were conducted in the
presence of a fixed amount of fat body membrane protein suspension
and increasing amounts of radio-iodinated JHBP (6 to 95 nM). The
binding of radio-labeled JHBP tomembrane proteins was proportional
to the membrane protein concentration and maximum binding was
obtained after 60 min at 37 °C (not shown). These conditions were
used for all subsequent experiments. We observed a nonspecific
binding which was dependent on the BSA concentration (1–10 mg/
ml). Thus, further experiments were carried out in the presence of
10 mg/ml of BSA. The specific binding of JHBP to a fixed amount of
membrane proteins increased with a rise in the dose of JHBP and
reached a level of saturation. Fig. 4A shows the specific and nonspecific
JHBP binding to fat body membrane proteins and shows that
equilibriumwas achieved. The equilibriumbinding datawere analyzed
using the Scatchard equation (Fig. 4B).We noted that the plot of bound
versus bound/free JHBP is linear, suggesting the presence of a single
type of binding site. The estimated dissociation constant (Kd) of JHBP
was 0.105±0.04 μM. These results indicate that fat body membranes
contain specific binding sites for JHBP. To find out whether JHBP
binding to fat bodymembrane proteins occurs via proteins or via other
components of the membranes, the fat body membrane protein
suspensionwas treatedwith trypsin. It has beenpreviously shown that
JHBP is resistant to trypsinolysis [12]. As shown in Fig. 4C, JHBP binding
decreased with an increase in the pretreatment time of fat body
membrane proteinswith trypsin. Thus, we conclude that JHBP binding
to fat body membranes is sensitive to trypsin and that binding activity
is due to the presence of proteins in the membrane.

3.5. Detection of JHBP binding to fat body membrane proteins by SPR-BIA

Surface Plasmon Resonance-Biomolecular Interaction Analysis
(SPR-BIA) is a technique capable of real-time monitoring of the
interactions between two partners without prior labeling of either of
them [31]. The ability of fat body membrane proteins purified from G.
mellonella to bind to immobilized JHBP and JHBP-JH was investigated
using this technology.

JHBP and JHBP-JH were firstly immobilized as described in
Materials and methods section (2.16). Assuming that 1000 Resonance
Units (RU) correspond to 1 ng of protein attached to the sensor surface
per mm2, final density of JHBP immobilized onto the electrode surface
was 2.3 ng/mm2 (2300 RU) and final density of JHBP-JH was 2.4 ng/
mm2 (2400 RU). Solubilized membrane proteins in 0.2% Triton X-100
were injected over JHBP, JHBP-JH complex and over a reference cell
surface (Fig. 5A). The reference cell surface represents a free cell
which was activated and blocked without any protein. In pre-
experiments we found that 0.2% Triton X-100 solution does not
change the value of JHBP's response units (not shown). The
differential responses describing the specific interaction between
membrane proteins and JHBP were obtained by subtracting a
nonspecific response signal generated by the reference cell from the
signal observed with cells containing immobilized JHBP or JHBP-JH
complex (Fig. 5B). At the end of a 4 min injection step, a specific
interaction of 140 RU was reached over the surface coated with JHBP,
whereas no binding was observed on the surface coated with the
JHBP-JH (Fig. 5B). This indicates that when JHBP binds JH, it is
incapable of protein–protein interactions in the above applied
conditions.
3.6. Identification of JHBP-binding proteins by SPR-BIA combined with
mass spectrometry

Recently, researchers combined SPR-BIA and MS in a method that
allowed selective retrieval of an analyte from a sensor chip [26]. Using
this method, followed bymass spectrometry analysis of the elute from
the sensor chip, we were able to identify JHBP-binding proteins.
Protein identification was performed using ESI-QUAD-TOF-MS/MS
together with database searching using the Mascot programme [32].
Identified proteins were grouped in Table 2 (using 5 peptides
identified as a cut-off). Mass spectrometric analysis identified α and



Table 2
The potential JHBP-binding proteins identified in fat body membrane proteins eluted
from the chip surface and identified by tandemmass spectrometry andMascot database
searches categorized according to their sequence coverage.

Protein name
(organism identity)

NCBI
accession
number

Calculated
molecular mass
[kDa]

No. of
peptides
identified

Sequence
coverage
[%]

α chain ATP synthase
(Anopheles gambiae)

Q7PHI8 59.4 11 21

β chain ATP synthase Q05825 54.1 8 20
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β chains of ATP synthase as JHBP-binding proteins. Among the
proteins bound on the chip we also found translocase, which
probably associates with ATP synthase. This had been suggested
earlier by Aggeler et al. [33]. Mass spectrometric analysis detected
113 of the 551 amino acids of the Anopheles gambiae ATP synthase α
chain (21%), 102 of the 505 amino acids of the Drosophila
melanogaster ATP synthase β chain (20%) and 46 of the 300 amino
acids of Bombyx mori translocase (15%). In total, 11 peptides with
amino acid sequences that matched the exact sequences of the ATP
(Drosophila melanogaster)
Translocase (Bombyx mori) Q86PG2 32.9 5 15
synthase α chain, 8 peptides of the ATP synthase β chain and 5
peptides of translocase were identified (Table 2).

Detection of ATP synthase in the membrane protein fraction could
be due to the presence of some mitochondria remaining in the
membrane sheets fraction obtained at 10000 ×g centrifugation, see
Materials and methods (2.11). To clarify this point, we subjected the
10000 ×g supernatant to 100 000 ×g centrifugation. Protein samples
were separated by SDS-PAGE and subjected to western blotting
analysis using antibodies of broad specificity against both mammalian
and insect ATP synthase. As expected, we detected ATP synthase in the
pellet but positive staining was also observed with proteins present in
100000 ×g supernatant (Fig. 6A). To verify that ATP synthase appears
in the cell membrane faction too, we applied another procedure of
mitochondria separation from cell membranes, namely the tissue
homogenization was done in the isotonic 0.3 M sucrose solution and
fractionated with centrifugation at 1000 × g, 15000 × g and
100000 ×g, as described by Hryb et al. [23]. Again ATP synthase was
detected not only in mitochondrial fraction obtained at 15000 ×g
centrifugation but also in the pellet obtained at 100 000 ×g centrifuga-
tion and a relatively small amount is still present in the supernatant
obtained after 100000 ×g centrifugation (Fig. 6B). Therefore, we
conclude that ATP synthase components appear not only in mitochon-
dria but also in cell membrane and cytosolic fractions (see Discussion).

3.7. SPR analyses of F1 ATP synthase binding to JHBP

The interaction of ATP synthase was analyzed to assess whether
ATP synthase protein components directly bind to JHBP. Since this
protein from G. mellonella has not been purified and its sequence is
not yet known, we needed an alternative. Considering that sequences
of α and β chains of F1 portion of ATP synthase from bovine and fruit
fly (D. melanogaster) have been conserved in 81.5% and 82.3%,
respectively, we decided to use bovine F1 ATP synthase in further
experiments.
Fig. 5. Real-time binding of fat body membrane protein solution and F1 ATP synthase
to JHBP. (A) The analysis of binding fat body membrane protein solution to
immobilized JHBP, JHBP-JH and a free cell. JHBP (2300 RU) and JHBP-JH (2400 RU)
were immobilized on the dextran matrix of the SPR solid support (sensor) surface by
the amine-coupling method. Binding is expressed in resonance units (RU) as a
function of time in seconds. 150 μl of fat body membrane proteins from G. mellonella
(0.047 mg/ml) was injected at 20 μl/min over the sensor surfaces containing JHBP,
JHBP-JH and a free cell. Dissociation of the complexes was then performed in HBS. (B)
Sensorgrams, for passing fat body membrane protein solution over immobilized JHBP
and JHBP-JH, were obtained by subtracting the unspecific binding of membrane
proteins to the sensor chip control cell. Approximately 140 RU of binding was detected
on the JHBP immobilized sensor surface at 250 s after injection. No binding was
detected on the JHBP-JH sensor surface. (C) The analysis of F1 ATP synthase binding to
immobilized JHBP. JHBP (4900 RU) and BSA (8400 RU) were immobilized on the
dextran matrix of the sensor surface by the amine-coupling method. 90 μl of F1 ATP
synthase (25 nM) was injected at 30 μl/min over the sensor surfaces containing JHBP,
BSA and a free cell. Dissociation of the complexes was then performed in HBS. (D)
Sensorgrams, for passing F1 ATP synthase at the indicated concentrations over
immobilized JHBP, were obtained by subtracting the unspecific binding of F1 ATP
synthase to the sensor chip control cell (BSA). The kinetic constants of the interaction
are ka=9.3±0.096×105 M−1s−1, kd=7.97±0.705×10−4 s−1, Kd=0.86±0.08 nM.



Fig. 6. Immunodetection of ATP synthase in the subcellular fractions of G. mellonella fat
body. The fat body subcellular structure fractionations were performed according to
Ueno et al. [22] (A) or Hryb et al. [23] (B). The indicated amounts of protein samples (1,
5, 20 or 25 μg) containing homogenate, pellets (obtained by centrifugation at 10000 ×g,
15000 ×g and 100000 ×g ) and supernatant (obtained after 100000 ×g centrifuga-
tion) were separated by SDS-PAGE and transferred to nitrocellulose membranes. The
membranes after blocking were treated with monoclonal antibody to α chain of ATP
synthase (1:1000). Binding was visualized with HRP-horse anti-mouse (1:5000) as
described in Materials and methods. Protein molecular weight markers (Fermentas)
were used to deduce relative molecular mass of ATP synthase.
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The ability of bovine F1 ATP synthase to bind to immobilized
JHBP and BSA as a control was investigated using SPR-BIA. JHBP
and BSA were firstly immobilized as described in Materials and
methods section (2.16) and a reference cell surface was activated
and blocked without any protein. Approximately 40 RU of binding
was detected after the injection of 25 nM F1 ATP synthase over the
JHBP surface, no detectable binding was observed over the
reference surface or the BSA surface (Fig. 5C). A set of increasing
dose dependent differential responses was obtained by injecting F1
ATP synthase in the range 0.75 nM to 25 nM (Fig. 5D). Kinetic
constants (ka, kd, Kd) were evaluated using the global fitting routine of
the BIAevaluation 4.01 software provided by BIAcore using the
Langmuir 1/1 model. Calculated constants were ka=9.3±0.096×
105 M−1s−1, kd=7.97±0.705×10−4 s−1, with a calculated high
affinity binding constant Kd=0.86±0.08 nM.

4. Discussion

4.1. Interaction of JHBP with hemolymph proteins

This is the first report which shows that an insect JHBP interacts
both with hemolymph and membrane proteins. Using mass spectro-
metry analysis, we identified three proteins in hemolymph that may
directly or indirectly bind to JHBP: apolipophorin, arylphorin and
hexamerin (Table 1). This finding suggests that JHBP and other
hemolymph proteins form diverse multimeric complexes in hemo-
lymph under native conditions.

Apolipophorin constitutes the major component of lipophorin,
whichmediates the transport of various types of lipids in hemolymph.
It can also be involved in the transport of hydrophobic ligands like
pheromones, hydrocarbons, carotenoids and juvenile hormones [34].
The insect apolipoproteins belong to the family of large lipid transfer
(LLT) proteins that share a large N-terminal domain of about 900
amino acids containing a large lipid binding pocket [35]. Arylphorin
(LHP 76) and hexamerin (LHP 82) belong to the superfamily of
hexameric proteins that are structurally related to arthropod
hemocyanins, but the organization of the genes that encode these
proteins is different [36]. Surprisingly, the interacting proteins have
remnant structural similarities to the jhbp gene sequence. Intron A of
JHBP contains 51, 85, 25 and 39 bp fragments of 88%, 82%, 96% and 87%
identity with 3′UTR of the hexamerin gene from G. mellonella [37].
Hexameric proteins are synthesized within the fat body of insects,
secreted into the larval hemolymph and taken up by fat body cells
before pupation and thus they function like storage proteins. In some
species, hexamerins transport JH molecules [1] and recently, experi-
ments suggesting that hexamerin molecules covalently bind JH were
presented [38]. Thus, “could JHBP be binding JH that is covalently
bound to hexamerin?” is an interesting question. The answer to this
question may explain why JHBP exhibits some affinity to other JH
binding proteins.

Just recently we were able to determine the 3D structure of G.
mellonella JHBP [39]. The JHBP molecule has a unique fold, consisting
of a long helix wrapped in a highly curved antiparallel β-sheet,
resembling the folding motif found in some mammalian lipid binding
proteins, namely: bactericidal permeability-increasing protein (BPI)
and cholesteryl ester transfer protein (CETP) [40,41]. An important
difference between JHBP and these proteins is that the boomerang-
like lipid binding proteins are composed of two sequentially
connected JHBP-like domains, whereas JHBP contains only one such
domain. The role of CETP is to transfer the esterified form of
cholesterol from high density lipoproteins (HDL) to triglyceride-rich
lipoproteins and to transfer triglycerides in the opposite direction
[42]. The concave surface of CETP matches the radius of curvature of
HDL molecules, suggesting that this region makes contacts with the
curved lipoprotein surface of HDL. It is possible that JHBP molecules
may exploit the analogical interaction with hemolymph lipid binding
proteins. It is noteworthy that two hydrophobic cavities namedWand
E, of about 632 (Å)3 and 668 (Å)3, respectively are present within the
JHBP molecule located at the two poles of the molecule. The W
binding pocket with a volume of 632 (Å)3 appears to match the JH
molecule volume. The second cavity contains one negatively charged
(Glu166) and three positively charged (Lys170, Lys176, Arg190)
residues at its entrance, which is 6 Å by 13 Å wide [39]. It is possible
that this region of the JHBP molecule may compete for a phospholipid
molecule bound to hemolymph lipid binding proteins forming a
transient complex with these proteins. The profound conformational
transition of the JHBP molecule caused by JH binding has been
previously observed [11,12] and suggests that this protein contains a
flexible part which may assume different conformations of higher or
lower affinity to other proteins (ligands).

4.2. JHBP interaction with membrane proteins

JHBP binding to fat body membrane proteins from G. mellonella
was analyzed using three different experimental methods. Immuno-
histological experiments revealed the presence of JHBP both in the fat
body cell membrane and in the cytosol. It is not surprising that JHBP
was found in the cytosol, because mRNA was observed in the tissue
expression of JHBP [13]. Interestingly, the strong JHBP positive
reaction has been detected in tracheal epithelium. However the
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significance of this finding requires further study as it may result from
the presence of a JHBP receptor in tracheal epithelium.

The second type of experiments was performed with iodinated
JHBP, and showed that G. mellonella fat body membrane suspension
from 4th day, VIIth instar larvae binds JHBP. The association of JHBP to
the membrane was found to be concentration-dependent, specific,
saturable and susceptible to proteolytic digestion, indicating its
protein nature. The estimated dissociation constant (Kd) is 0.105 μM.

The third method applied the SPR technique for the analysis of
JHBP binding to solubilized fat body cell membrane proteins. We
found that membrane proteins clearly exhibit an affinity to JHBP but
not to the JHBP-JH complex. We used mass spectrometric analysis of
proteins captured on a sensor surface with immobilized JHBP, and ATP
synthase (α and β chains) was identified as a JHBP-binding protein.

For a long time the ATP synthase multisubunit complex was
considered to be present exclusively in mitochondria. Few years ago
some structural subunits of mitochondrial F0F1 ATP synthase were
detected on membranes of cultured cells from tumoral and/or
proliferating cell lines, where this protein serves as a receptor for
different ligands and participates in processes such as the regulation
of lipoprotein metabolism and cholesterol uptake, control of the
proliferation and differentiation of endothelial cells, angiogenesis and
hypertension [43]. Recently, ATP synthase has been also found on the
extracellular surface of isolated normal tissue cells such as rat
hepatocytes [44]. Liver is functionally related to insect fat body. The
results from two types of tissue homogenization and centrifugal
fractionation applied in this communication clearly suggest that ATP
synthase has apparently ubiquitous subcellular distribution in G.
mellonella (mitochondria, plasma membranes and cytosol). This
finding is in agreement with other laboratories notion that ATP
synthase resides not only in mitochondria but also in cell membranes
of several tissues [43–45]. The relative molecular mass of α chain of
ATP synthase from G. mellonella fat body membranes, closely
corresponds to 55 kDa mass of ATP synthase, previously detected on
the surface of human endothelial cells [46]. As one may see, in
fractions overloaded with ATP synthase some minor bands of lower
molecular mass (b54 kDa) are also visible (Fig. 6A, B). As it was
explained by antibody producer, α subunit of the ATP synthase is
prone to degradation, which results in multiple immunoreactive
products. Relatively higher percentage of ATP synthase in the
Fig. 7. The model for the mechanism by which ATP synthase is involved in the export of JHBP
in the JHBP-JH complex transport to a target cell membrane. F0, F1 — portions of ATP synth
100000 ×g supernatant fraction obtained from fat body usingmethod
based on Ueno et al. [22] procedure indicates an increased degree of
cell components fragmentation.

Surface plasmon resonance experiments revealed that not only
ATP synthase interacts with JHBP, but also that solubilized fat body
membrane proteins are not bound to immobilized JHBP on the sensor
surface when JH was added. Since ATP synthase α and β chains and
translocase (probably associated with ATP synthase) were detected,
this may indicate that JH releases JHBP from the ATP synthase
complex. SPR experiments showed that pure bovine ATP synthase
binds to JHBP molecules with a dissociation constant of (Kd) 0.86 nM.
However the Kd value for binding iodinated JHBP to fat body
membrane suspension is 0.105 μM. At present we cannot explain the
difference in these Kd values. It is possible that the affinity of free ATP
synthase molecules to JHBP molecules is different when ATP synthase
is embedded in the cell membrane and is engaged in interaction with
many other proteins. In particular that plasma membrane ATP
synthase appears to be a receptor not only for angiostatin, endothelial
monocyte-activating polypeptide II, but also for apolipoprotein AI
(apoA-I) [45–47].

Earlier studies found that a membrane ATP synthase complex
binds to apoA-I, the main protein constituent of HDL, to induce
endocytosis of HDL protein particles by a mechanism dependent on
the generation of ADP by the ATP synthase [45]. Moreover, ATP
synthase was also reported to interact with apolipophorin in D.
melanogaster [48]. All these findings nicely correspond with our
results which show that JHBP interacts with ATP synthase on fat body
membrane and with apolipophorin in hemolymph.

4.3. A model of the involvement of ATP synthase and hemolymph
proteins in JHBP molecule traffic

Our experiments show that: (1) ATP synthase interacts with JHBP
with high affinity, (2) In the presence of hormone ATP synthase does
not bind with JHBP. This suggests, that the JHBP-ATP synthase
complex dissociates in the presence of JH, (3) Hemolymph's proteins
(apolipophorin, arylphorin and hexamerin) bind JHBP, both free and
in a complexwith JH. However, this binding is stronger in the presence
of JH. It has been shown in previous studies that the JHBP molecule
undergoes a profound conformational transition upon binding to JH
molecules from fat body cells, and apolipophorin, arylphorin and hexamerin participate
ase.
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[11,12]. Thus, it is reasonable to assume that such conformational
change might have an impact on the affinity of JHBP to our studied
proteins.

Based upon the above findings we propose the following working
hypothesis of JHBP traffic (Fig. 7). The fat body membrane ATP
synthase, perhaps with the use of ATP, takes part in the export of JHBP
molecules from the fat body cells where JHBP is synthesized [13].
Although, the function of cell membrane ATP synthase in the export of
proteins has not been shown directly, it has been shown that the
overexpression of the ATP synthase β subunit in INS1 cells (rat
insulinoma cell line) increased insulin secretion [49]. Once outside the
cell the JHBP-ATP synthase complex is then released by JH with a
concomitant conformational transition in JHBP molecules [11,12].
Then the JH-JHBP complex enters into a supramolecular complex with
lipid binding proteins (apolipophorin, arylphorin and hexamerin) and
travels to the target cell membrane receptor where JH is released and
bound to higher-affinity JH cytosol binding proteins. The presence of
these proteins was previously reported [50].

Thus, we postulate that ATP synthase participates in JHBP export
from fat body cells and apolipophorin, arylphorin and hexamerin take
part in JHBP-JH complex transport to target cells. Further studies are
needed to examine the above hypothesis and determine the
physiological roles of the interactions between JHBP and its binding
proteins.
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