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Stability of moments of the mild solution of a semilinear stochastic evolution 
equation is studied and suffkient conditions are given for the exponential stability 
of the pth moment in terms of Liapunov function. Sufftcient conditions for sample 
continuity of the solution are also obtained and the exponential stability of sample 
paths is proved. Three examples are given to illustrate the theory. 

INTRODUCTION 

It is known that the semigroup theory gives a unified treatment of a wide 
class of parabolic, hyperbolic, and functional differential equations. So much 
effort has been devoted to the study of optimal control and filtering of 
evolution equations [2,6]. From the sytem theory point of view, stability of 
stochastic evolution equations is also important. In the linear case this 
problem has been studied only recently [7, 11, 14, 191. A necessary and 
sufficient condition for the exponential stability of the second moment is 
obtained in terms of a Liapunov equation in [ 11, 14, 191 and the asymptotic 
stability of sample paths is considered in [ 11, 71. In this paper we shall 
develop our study further in two directions. First we shall consider a class of 
semilinear-stochastic evolution equations which is quite important in 
applications. Second, we shall consider not only the second moment, but 
more generally, higher ones. 

In Section 1 we shall collect basic definitions and preliminary results on 
stochastic integrals and Ito’s formula in Hilbert space. We take the Wiener 
process defined by Curtain and Falb [4,5], but introduce a definition of 
stochastic integrals which is weaker than theirs. They impose uniform 
measurability on integrands. This is rather inconvenient when we consider 
the integrated version of a stochastic evolution equation such as Eq. (2.4), 
for we have only strong continuity for semigroups. Thus a more general 
definition is introduced in the case of nonrandom integrands [6]. Its 
extension to the case of random integrands, however, is neglected in the 
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STOCHASTIC EVOLUTION EQUATIONS 13 

literature. So we shall introduce a definition which extends the one in [6] and 
which is based on the stochastic integrals with respect to real Wiener 
processes. The advantage of using such a definition is that we can use basic 
results and arguments in finite dimensions. It turns out that Ito’s formula can 
be easily proved under a more general setting than the original one in [4]. In 
Section 2 we shall consider a semilinear-stochastic evolution equation whose 
nonlinear terms satisfy the Lipschitz conditions. We shall define two notions 
of a solution, strong and mild, and give the existence and uniqueness of a 
mild solution. We shall also prove that all moments of the solution are 
continuous in time if the initial condition is bounded. In Section 3 we shall 
take nonrandom initial conditions and consider the exponential stability of 
moments. We shall extend finite-dimensional results based on Liapunov 
functions to Hilbert spaces. We encounter a difficulty that we need strong 
solutions in order to use Ito’s formula. We can dissolve this problem, 
however, by introducing approximating systems with strong solutions and 
using a limiting argument. The definition of a mild solution does not require 
its sample continuity, so in Section 4 we shall give sufficient conditions for it 
in terms of functions similar to Liapunov functions. Once this is guaranteed. 
it is meaningful to consider stability of sample paths. This is done in 
Section 5. We shall extend the results in [ 11, 71 to our model. Last, three 
examples are given in Section 6 to illustrate our theory. 

1. PRELIMINARIES 

In this section we shall collect definitions and basic results from the 
probability theory in infinite dimensions. Let (Q,.F, p) be a complete 
probability space. Let X and Z be Banach spaces. 

DEFINITION 1.1. A map x: R + X is a random variable if it is strongly 
measurable [ 12, p. 721. 

Let Y(X, Z) denote the space of bounded linear operators mapping X into 
Z. We write P(X) for .Y(X, X). Recall that there are three concepts of 
measurability for operator-valued functions [ 121. Here we introduce two 
definitions. 

DEFINITION 1.2. A map R:R-+P(X.Z) is: 

(a) a (strong) random variable if R is strongly measurable, i.e., Rx is 
a random variable for all x E X (in the sense of Definition 1. 1 ), 

(b) a uniform random variable if R is uniformly measurable, i.e., R is 
a random variable in Y(X, Z) (in the sense of Delinition 1.1). 

Definition 1.2(b) is standard in the literature, but of course 
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Definition 1.2(a) is a weaker concept and in fact it turns out to be more 
convenient when we define stochastic integrals. 

There is a notion of weak random variables based on weak measurability, 
but we shall not use it since it coincides with that of strong random variables 
in separable Banach spaces. For now we shall only consider random 
variables in Hilbert spaces except operator-valued ones. Let H and Y be real 
separable Hilbert spaces. We denote by ( , ) inner products in Hilbert 
spaces and by ( ] norms of vectors and operators. Let y: R -+ Y be a square- 
integrable random variable, i.e., y E 5$(0, ;T, p; Y). The covariance operator 
ofy is 

COVLYI = E[(Y - EY) o (Y - EY)L 

where E denotes the expectation and g o h E P(Y) for any g, h E Y is 
defined by 

(g 0 h) k = g(k k), kE Y. 

Then Cov[y] is a selfadjoint-nonnegative trace class (or nuclear) operator 
[2,8] and trCov(y]=E~y-Ey~Z=E~y12-~Ey(2, where tr denotes the 
trace. We note that (y - Ey) o (J’ - Ey) is a uniform random variable. If 
P E P(Y), then 

tr P Cov [ y ] = tr Cov[Py, y ] = E(P( y - Ey), y - Ey), (1.1) 

where Cov [x, y] = E[ (x - Ex) o(y - Ey)] is the joint covariance of x and y. 
A random variable y E y2(R, X, pu; Y) is Gaussian if (y, ei) is a real 
Gaussian random variable for all i, where (e,), i = 1, 2,..., is a complete 
orthonormal basis for Y. 

PROPOSITION 1.1. Let y be a Gaussian random variable with Ey = 0 and 
covariance Q. Then E ] y IZn < (2n - 1 )!!(tr Q)’ for any integer n, where 
(2n - l)!! = (2n - 1)(2n - 3) ... 5 x 3 x 1 and the equality holds for n = 1. 

Proof: Appendix 1. 

Let f be a subinterval of [0, co). A stochastic process in Y is a family of 
random variables y(t), t E 7 in Y. A stochastic process x(t), t E 7, is a 
modification of y(t) if for each c E 7, x(t) = y(t) with probability one. If two 
processes are a modification of each other, we regard them as equivalent. 
The process y(t) is measurable if y is measurable relative to 59(.7’) x jr, 
where 9(Z) is the Bore1 field of subsets of 3’. Let &, t E 7, be a family of 
increasing sub a-fields of X. A stochastic process y(t), t E 3, is adapted to 
z if y(t) is 6 measurable for all t E 7. It is a martingale with respect to 
(9J if it is adapted to 8 with properties: 
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(a) E 1 y(t)\ < co for all t E i-r, 

(b) EIYW 151 =Y(s) f or all s < t, s, t E 7, where E(. I-7;] denotes 
the conditional expectation with respect to L<. 

PROPOSITION 1.2 [18]. rfy(t) is a martingale in Y relative to (. q. then 
1 y(t)( is a real submartingale, i.e., 

E[IY(OI Ills)] > I y(s)1 foranys < t, s, t E ,-P'. 

DEFINITION 1.3 [4-61. A stochastic process w(t), t > 0, in a real 
separable Hilbert space H is a Wiener process if: 

(a) w(t) E Y#J, F, p; H) and Ew(t) = 0 for all t > 0, 

(b) Cov[ w(r) - w(s)] = (t - s) W, WE 9(H) is a nonnegative 
nuclear operator, 

(c) u!(t) has continuous sample paths. 

(d) n(t) has independent increments. 

The operator W is the incremental covariance operator of the Wiener process 
W(f). 

Let a,[w(.)] be the o-field generated by w(s), 0 < s ,< t, then w(t) is a 
martingale relative to ut[w(.)]. We have the following representation of a 
Wiener process [6]: 

PROPOSITION 1.3. Let w(t) be a Wiener process in H with incremental 
covariance operator W, then 

w(t) = F’ Pi(t) e,, 
17 

(1.2) 

where (e;) is an orthonormal set of eigenvectors of W, Pi(t) are mutually 
independent real Wiener processes with incremental covariance Ai > 0. 
Wei=Aiei and tr W=C?,,I,. 

COROLLARY 1.1. Let w(t) be a Wiener process in H with incremental 
covariance W. Then 

w(t) is Gaussian for all t > 0, (1.3a) 

E 1 w(t) - w(s)(*” < (2n - l)!!(t - s)“(tr W)=, where the equalit?, 
holds for n = 1. (1.3b) 

Proof: Assertion (a) is shown in 161 and (b) follows from 
Proposition 1.1. 

JOY ,90 , 2 
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Next we introduce stochastic integrals with respect to w(t). Let 
3 = [0, T], 0 < T < co. Let (3J be a family of increasing sub u-fields of X 
such that 

w(t) is measurable relative to 5 for each t E 3, (1.4a) 

w(t) - w(s) is independent of 6 for all s < t, s, t E 3’. (1.4b) 

First we consider stochastic integrals with respect to /3,(t) given in (1.2). Let 
fi(t) be a measurable stochastic process in Y which is adapted to 5 with 
ll If;:(r)]’ df < co wp 1 (with probability one). Then we can define the 
stochastic integral Iif, d/?,(r) as in the scalar case and it has a version 
with continuous sam&pathsi We can easily prove as in [9, lo]: 

LEMMA 1.1. Suppose that jl E Ifi(r)l’ dt < 03. Then 

E j’fr(OdI3&) = 0, 
0 

E 
IJ 

“L(t)dpi(t) / * = 1, jr E IJ;:(t)l’ df, 
0 0 

= 0, if i#j, 

LEMMA 1.2. Suppose that J’i IA(t dt < co wp 1. Then 

(1Sa) 

(1Sb) 

(1.k) 

(1Sd) 

.for any positive numbers c and N and for any subset X of integers. 
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ProoJ Appendix 2. 

Let M@-Z, I’) be the space of stochastic process G(., -): Y x R + 4p(H, I’) 
which are strongly measurable, i.e., G(t, .) h is a measurable stochastic 
process for all h E H. Define also 

L~,(H,Y)= GEd(H,Y) 
I 

Ej’lG(t)l’dt<ao 
0 

(1.7) 

A~(H, Y)= G%f(H, Y) jFiG(t)(2dl < Q) wQ 1 
I 0 

We now define the stochastic integral I: G(t) dw(t) for G Ed(H, Y). Let 
w,(t) = C;= i e&Ii(t). Then in view of Lemma 1. I the stochastic integral 

is well defined for G E d(H, I’). Denote by y,, the stochastic integral above. 
Then (yJ is a Cauchy sequence in Y2(J2,.F, .u; I’). In fact using Lema 1.1 
and (1.1) we have for any integer m, n with m < n 

EIy,--y,12= f i,E(‘(G(f)e,,G(r)e,)dt 
i=n+ I 

G ci$+, ,r,“,rlW12d-0 as n-too. 

Hence there exists a limit and we define by it the stochastic integral 
j-i G(t) dw(r). If 0 ,< to Q t < T we define by 

1’ W-1 dwW = joF l~~o,l,(r) G(r) dw@), 
_ ‘0 

where l[to.r] is the characteristic function of the set [I,, I ). The derivation of 
the following properties is immediate from Lemma 1.1. 

PROPOSITION 1.4. Let G, F E A(H, Y). Then 

E I.‘G(t) dw(t) = 0, 
-0 

(1.8a) 
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IJ 
. T  

E G(r) dw(t) 
0 

2 = jT E(tr G(f) WG*(t)) dt, 

= (‘E(tr G*(f) G(r) IV) df, 

< tr W .T E 1 G(r)l’ df, 
J 
’ 

-0 

(1.8b) 

.t 

E 
KJ 

G(r) dw(r) 0 
) (i 

‘F(r) dw(r) = -‘EG(r) WF*(r) dr, (1.8~) 
0 0 11 J 0 

[o 

.I 

E G(r) dw(r) o -” F(r) dw(r) =o s 1 0 u )I 
foranyO(s,<t<u<u<T. (1.8d) 

PROPOSITION 1.5. Let G E d(H, Y) and let y(t) = If, G(r) dw(r). Then 
(y(r), 2J is a martingale and y(t) has a modiJcation with continuous sample 
paths. 

Proof: See the proof of Proposition 1.7. 

PROPOSITION 1.6. Let G E J(H, Y), then: 

G(r)dw(r) / >c]<$E /loTG(r)dw(r)12 

<y[TEIG(r)12dr, 
-0 

(1.9a) 

G(r)dw(r) 1’]<4E 1jIG(r)dw(r)1’ 

< 4 tr W ir E ) G(r)j’ dr, 
-0 

(1.9b) 

II [J 

. T  

I 

112 
G(r) Wr) < 3E tr G(r) WG*(r) dr . (1.9c) 

0 

ProojI Since II; G(r) dw(r)12 is a submartingale, (a) and (b) follows from 
Doob’s inequality. Assertion (c) is also a consequence of the general 
inequality for martingales [ 16, 171. 

Finally we define a stochastic integral for G E J*(I-I, I’). The sequence of 
random variables 

y, = jT G(t) dw,(t) = ? )-r G(t) e, dpi(t) 
0 g -0 
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is well defined. By Lemma 1.2 we obtain for any c and N 

N )I 

First taking N sufftciently large and then taking n large enough we can make 
the right-hand side arbitrarily small. Thus (y,) is a Cauchy sequence in the 
sense of convergence in probability. Hence there exists a limit and we define 
by it the stochastic integral JO+ G(t) dw(t). We can define the stochastic 
integral I:, G(r) dw(r) for 0 < to < r < T as before. Let C(0, T, Y) be the 
space of continuous functions in Y with sup norm. 

PROPOSITION 1.7. Let G ELN2(H, Y). Then: 

(a) Let y,,(t) = jf, G(r)dw,(r) b e a version with continuous sample 
paths. Then there exists a subsequence which converges in C(0, T, Y) with 
probability one. The limit process is a modification of y(t) = Ji G(r) dw(r), 

(b) Let G, G, EJ2(H, Y). Suppose that G, -+ G strongly almost 
everywhere on [0, T] x R and ( G, I< k for some stochastic process k with 
k(., W) E Yi(O, r) wp 1. Then 

z,(f) = .[I G,(r) dw,@-1 

converges to y(t) in probability in C(0, T, Y). 

ProoJ Appendix 3. 

PROPOSITION 1.8. Letf=[0,T]andletG:3XX.7’X~+Y(H,Y)be 
strongly measurable such that G(s, t) is 5 measurable for each s and 

, .T  .T  

Jo -Jo IG(t, s)l’ ds dt < 00 wp 1. 

Then 
. T  .T  .T  .T  

1, 1, G(t,s)dw(s)dt=I ( G(t,s)dtdw(s) wp 1, (1.10) 
-0 -0 

where we interpret the right-hand side as xi”=, ii c,’ G(t, s) e, dt dj?,(s). 
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ProoJ If we replace w(f) by w,(f) = C;=i e,/?,(f), then (1.10) follows as 
in [5] and the general case then follows by passing to the limit. 

Remark 1.1. Curtain and Falb [4, 51 defined the stochastic integral 
when the integrand G(t) is uniformly measurable. Their definition is a special 
case of ours and both integrals coincide under their assumption. 

Now we introduce Ito’s formula. Let (a be an increasing family of sub 
u-fields of X with property (1.4). A stochastic process y(f) is said to have a 
stochastic differential on [to, T], f, > 0 if 

y(f) = y, + J’I g(r) dr + Jf G(r) dw(r), (1.11) 
*iI ‘0 

where y0 is T0 measurable, g(t) is Y-valued and adapted to 5 with 
1: ( g(f)1 df < co wp 1 and G E-lt;(Z& Y). Let 2 be a Hilbert space and let 
P( . ,. ) E g(Y x Y, 2) and G E 9(ZZ, Y). We define 

tr P[G; W] = f &P(Ge,, Gei) E 2. 
i=l 

(1.12) 

We have Ito’s formula in Hilbert space. 

THEOREM 1.1. Let H, Y, and Z be real separable Hilbert spaces. 
Suppose that v(f, y): 3 x Y+ Z is continuous with properties: 

v(f, y) is d@zrentiable in t and v,(t, y) is continuouss on Z x Y, (1.13a) 

v(f, y) is twice F&chef dlQj%rentiable in y and v,(f, y) y, E Z, 
v,,(f, y)( y, , y2) E Z are continuous on 3 X Y for all 
Y,Y,,Y, E K (1.13b) 

where 3’ = [to, T]. Zf y(f) is given by (1.1 l), then z(f) = v(f, y(f)) has the 
stochastic d@erential 

dz(t) = {vt(t, ~(0) + v,(b y(t)) s(t) 

+ f tr v,,(c ~(t))[G(t); WI 1 dt 
+ v,@, ~(0) G(t) dw(O 

We first consider the case z,(f) = v(f, y,(t)), with 

y,(t) = y. + 1’ g(r) dr + 1’ G(r) dw,(r). 
10 10 

(1.14) 

(1.15) 
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LEMMA 1.3. Let u(t,y) satisfy (1.13) and let y,(t) be given by (1.15). 
Then 

+ f 5 Ai~,,(t,~,(t>)(G(t) ei, G(t) ei> 1 dr 
i-l 

+ u,(h v,(f)) G(f) dw,W- (1.16) 

Proo$ Appendix 4. 

Proof of Theorem 1.1. By Proposition 1.7(a) there exists a subsequence 
y,,(t) which converges to y(r) uniformly on 3 WQ 1. Since Iv&., y,,(a))/ 
is uniformly bounded on 3 WQ 1 we can apply Proposition 1.7(b) to 
conclude that I:, u&r, y,,(r)) G(r) dw,Jr) converges in probability to 
J*i, u,k y(r)) G(r) d w  r in C(0, T, I’). Now taking a subsequence, again ( 1 
denoted by nk, we can replace the convergence in probability by the 
convergence WQ 1. Thus ( 1.14) follows from ( 1.16) by taking limits along the 
subsequence nk. 

COROLLARY 1.2. Zf, in particular, Z = R’, then 

dz(O = [utv(t>) + (u,k Y(O), g(t)) 

+ f tr G(t) WC*(I) u,&, y(t))] dt 

+ (u,O, y(t)), ‘3) WQ). (1.17) 

In applications to stochastic evolution equations we need the following: 

COROLLARY 1.3. Let A be a closed linear operator with dense domain 
g(A) in Y. Let u(t, y) satisfy the assumptions in Theorem 1.1 except (a) 
which is replaced by 

(a’) u(f, y) is dl@erenriable in t for each y E g(A) and u,(t, y) is 
continuous on 3 x @(A), where 9(A) is equipped with the graph norm of A, 
i.e., I yl&,, = 1~1' + lAyI'. 

Let y(t) be giuen by (1.11) with yO E %?(A), jtjAg(t)l dt < co WQ 1 and 
AG Ek$(H, Y). Then the conclusion of Theorem 1.1 holds. 

We can prove this using Lemma 1.3. But in this case we assume that g, 
f, E @(A) in Appendix 4. Then we can repeat the proof. We use the new 
assumption (a’) when we consider terms associated with u, (t, y,(t)). 

We can use Ito’s formula to estimate moments of a stochastic integral. 



22 AKIRA ICHIKAWA 

PROPOSITION 1.9. Let G EA(fT, Y) with I,‘E ( G(t)lP dt < CO some 
integer p > 2, and let y(t) = ji G(r)dw(r). Then 

E 1 y(t)lp < [fp(p - 1)]p’2, 
[ 
1: [E(tr G(r) WG*(r))P’Z]Z’P dr]“* 

< [$p(p - I)lp12(tr W),” tp12-’ 
I 

‘E 1 G(r)lP dr. (1.18) 
0 

Proof: Note that derivatives of v(y) = ) yjp are given by 
v,,(y) =p (JJ(~-~~, v,,,(y) =p IyIp-2 I+p(p - 2) )~)~-~y oy, I the identity. 
Then by Theorem 1.1 we obtain 

I .Wl” =P j: I yWlp-2 (~0% W MrN 

+ +ji [I y(r)lp-2 tr G(r) WG*(r) 

+ (P - 2) I WlP-4 tr G(r) wG*WHr), 0 y(r)1 dr. 
Now we assume that G(t) ei are step functions with (G(t) ei( 6 c < co. Then 
by Eq. (1.3b) we see that E i y(t)l” < co for all t E 7. and all integer n. Thus 
we can take expectations in the above equation to obtain 

E [ y(t)lP = %jt E[I y(r)l”-* tr G(r) WG*(r) 
0 

+ (P - 2) I yWlp-4 tr G(r) WG*W y(r) 0 y(r)] dr 

,< ‘(‘; I) f E[( y(r)lPe2 tr G(r) WG*(r)] dr 
-0 

,< p(‘; ‘) \’ (E ( y(r)JP)‘-Z’p[E(tr G(r) WG*(r))P’2]2’P dr 
-0 

< ‘(‘1 ‘) (E 1 y(t)lP]1-2’p Jo’ [E(tr G(r) WG*(r))p’2]2’p dr 

since E ( y(t)lP is monotone increasing in t. Hence 

E 1 y(t)lP < [““L I) ]“” [/I [E(tr G(r) WG*(r))p/2]z~p dr]“’ 

,< [ ““L ‘) ]“” tp’2-’ j,‘E(tr G(r) WG*(r))p/2 dr 

< P(P- 1) 

[ 
2 tr W]‘” tPj2-’ j:E IG(r)lp dr. 

The general case then follows from this by a limiting argument. 
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We give another application of Theorem 1.1. 

PROPOSITION 1.10. Let S(t) be a strongly continuous semigroup on a 
real Hilbert space Y with generator A and T(t) a strongly’ continuous group 
on Y with generator B. We assume that g(A) c G?(B*), S(t): Q(A) + Q(A) 
and that S(t) and T(t) commute. Then y(t) = S(t) T@(t))y,, y. E Q(A) is a 
solution of 

dy(t) = (A + $B’)y(t) dt + By(t) dp(t), y(O) = ?‘,, . (1.19) 

where /3(t) is a real standard Wiener process. 

ProoJ We apply Theorem 1.1 to the function u(t, x) = S(t) T(x) y. and 
the process /3(t). Then ut(t, x) = AS(t) T(x) yO, Llx(t, x) = BS(t) T(x) yO, and 
u,,(t, x) = B’S(t) T(x) y, and (1.19) follows. 

Remark 1.2. The general theory of stochastic integrals based on 
margingales is given in [ 15-171. Here we have restricted ourselves to the 
case of stochastic integrals with respect to Wiener processes and we have 
tried to extend finite-dimensional results [lo] to Hilbert spaces. 

2. STOCHASTIC EVOLUTION EQUATIONS 

Let H and Y be real separable Hilbert spaces and let w(t) be a Wiener 
process in H with incremental covariance W. Let (&) be an increasing 
family of sub o-fields of .Z with property (1.4). Consider the stochastic 
evolution equation 

dW = IAW +fM))l + G(N)) dW, y(0) = yo. (2.1) 

on 3 = [0, T], where A is the infinitesimal generator of a strongly 
continuous semigroup S(t) on Y andf: Y-1 Y and G: Y- L(H, Y) satisfy the 
Lipschitz condition 

If(Y) -“@)I <Cl I Y - zl, c, >o. ?‘,zE Y, 

I G(Y) - G(z)1 < ~2 I Y - z I, c* > 0, y. z E Y, 
(2.2) 

and y0 is .F, measurable. 
We introduce two notions of a solution of (2.1) (see [6]). 

DEFINITION 2.1. A stochastic process y(t), t E ,I, is a strong solution of 
(2.1) if 

y(t) is adapted to -5, (2.3a) 
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y(t) is continuous in f wp 1, 

y(t) E Q(A) almost everywhere on 3 x B and 
wp 1, 

(2.3b) 

(2.3~) 

y(t) =Y, + f&(r) dr + ffb(r)) dr + jr W(r)) dw(r) (2.3d) 
0 0 0 

for all I E 7 wp 1. 

In general this concept is rather strong and we need a weaker one in later 
applications. 

DEFINITION 2.2. A stochastic process y(t), I E Y, is a mild solution of 
(2.1) if 

v(t) is adapted to K, (2.4a) 

u(t) is measurable and .T 1 y(f)J2 dt < CO wp 1, 
! 0 

(2.4b) 

u(t) = so, + 1’ s(t - r)f(~(r)) dr + j f  s(f - r) G(.Y(~)) dw) (2.4~) 
-0 0 

for all t E 7 wp 1. 

Remark 2.1. The integrand of the stochastic integral in (2.3) is 
uniformly measurable, but generally the one in (2.4) is only strongly 
measurable and the definition in Section 1 is appropriate. 

PROPOSITION 2.1. Zf y(t), t E 7, is a strong solution of (2. l), then it is 
also a mild solution. 

Proof: We apply Corollary 1.3 to the map v(t,~) = S(s - t)~ and the 
process yA(t) = R(A,A)y(t), where R&A) is the resolvent of A (see [12]). 
Since vl(t, y) = -S(s - t) Ay for any y E L@(A), u,(t, v) = S(s - t), and 
u,,(t, y) = 0, we have 

U(S, yA(s)> - ~(0, Y,(O)) = 1’ S(s - r) R(k AMY(~)) dr 
0 

+ 
I 
: S(s - r) R(A, A) G(y(r)) dw(r). 
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W,A)Y(S) =W,A) 
[ 

S(S)Y, + f’s@ - r)ft~tr)) dr 
-0 

+ m’ W - 4 ‘3 y(r)) dw(r)]. 

Hence we obtain 

Thus 

Y(S) = S(S)Y, + 10‘ S(s - r)f(ytr)) dr + !I Sts - 4 Gtytr)) dwtr). 

PROPOSITION 2.2. There exists at most one mild solution of (2.1). 

ProoJ Suppose that yi(t), i = 1, 2, is a solution of (2.1). Set y(t) = 
yl(t) - v2Wl then 

y(t) = j’ W - rKf(y,W -f(Y&-))I dr 
0 

+ MC SO - W(y,W - W2W)l Wr). 

Define 
if 1.’ 1 y(r)l’ dr Q N, 

-0 

= 0, if 1.’ 1 y(r)l’ dr > N. 
-0 

and let y”(t) = y:(t) -y:(t). Then 

I yN(t)12 G 2 1 1’ W - Wld’W) --fb$‘(rM dr 
2 

- W(y%-)) - G(.d’W)l dw(r) / * 

I’0 

+ 2 (-r S(t 
-0 

< 2Mc, fij; 

I ,-t 

I yNtr>12 dr 

+ 2 Jo W - Wty’%-1) - W:(r))1 Wr) , 

where M is a constant such that IS(t)1 <M on (0, T] and we have used (2.2). 
Then 

E 1 yN(t)j2 < 2Mc, fijf E ) yN(r)12 dr + 2Mc: tr Wj’ E I yN(r)J2 dr. 
0 0 
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Hence by Gronwall’s inequality E 1 y”(t)/’ = 0 for all t. Thus y”‘(t) = 0. Since 
y;(t) -vi(t) wp 1, y”(t) +u(t) wp 1, from which follows y(r) = 0. 

Next we give sufficient conditions for a mild solution to be also a strong 
solution. 

PROPOSITION 2.3. Suppose that 

(a> Y,EW) wp 1, s(f-r)f(y)EW), W-r)G(y)h~%4) 
for each y E Y, h E H, and t > r, 

@)I Wtt - WDI < g,tr - r) I Y 0 g, E %tO, T), 

(c) IAW - r) G(y)1 < gztf - 11 I YL g, E -%tOv 73. 

Then a mild solution y(t) is also a strong solution. 

ProoJ By the above conditions we have 

. T  .I 

and 

1 j IAW - Wtytr))l dr df < ~0 wp 1 
-0 0 

. T  .I 

J J IAS(t - r) G(y(r))l’ dr dt < CO. 
0 0 

Thus by Fubini’s theorem we have 

f’ l’sAS(s - r)fO, (r)) dr ds = J” { AS(s - r)f@(r)) ds dr 
“0.0 0-r 

= if .S(t - r)f( y(r)) dr - j“f( y(r)) dr. 
-0 -0 

By Proposition 1.8 we also have 

jl( AS(s - r) G( y(r)) dw(r) ds = j: j: AS(s - r) G( y(r)) ds dw(r) 

= f S(t - r) G(y(r))dw(r) 
-0 

- )I W(r)) WO 

Hence Ay(t) is integrable wp 1 and 

f A&) ds = S(t)y, -y, + J” S(r - r)f(y(r)) dr - [‘./U(r)) dr 
0 0 -0 
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= Y(t) -Y, - I“f(.v(r)) dr - jd G( y(r)) dw(r). 
-0 

Thus J’(C) satisfies (2.3). 

We now give an existence theorem. 

THEOREM 2.1. Let y. be .Fo measurable with E ( JJ,(~ < co for some 
integer p > 2. Then there exists a unique mild solution of (2.1) in 
C(0. r; Pp(f2, 3, p; Y)). 

Proof. Let 7 _ be the closed subspace of C(0, TV pp(Q,3, ,K Y)) whose 
elements are adapted to 5. We introduce a norm in 7. 

lIz(. = o~;:r e-“‘(E I~(t)l~)“~, zET‘, b>O 

which is clearly equivalent to the norm of C(0, T; Yp(f.I,Y, ,a; I’)). Now 
define a map A on 7. 

(AZ)(~) = S(t)y, + I-r S(t - r)f(z(r)) dr + 1” S(t - r) G(z(r)) dw(r). 
-0 -0 

By Proposition 1.9 and (2.2) we can easily show that A maps ?’ 1 into itself. 
We now show that A is a contraction on 7 ‘. Let .x, z E 3 ‘, then 

W)(r) - W>(f) = 1.’ W - WTW) -AZ(r)) I dr 
-0 

+ 11 S(t - r)[G(x(r)) - G(z(r))] dw(r). 

Thus 

[E I(Ax)(t) - (Az)(t)lP] “II < [E 1 u(f)\” ] “II + [E 1 u(t)lP 1 ‘jp, 

where U, u denote two terms in the last equation. Recall that 1 S(t)] < M for 
some M > 0 on [0, T]. Thus 

eeb’(E I ~(f)(~)“~ 
LIP 

\e < 
-bt 

i /J 
E *’ W - rWMr)) -fN+))l dr ’ 1 

lo <Mc,e-b’ E (j: Ix(r) -z(r)\ dr)’ 1 ‘I’ 
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li 
t 

< Mu, y-b- V/P e-pb(t-r) & 

I 

UP 
1 

0 
max empb*E Ix(r) - z(r)j”] ‘/p 
O<r<t 

<MC, T@-l’fp 
-. (pb)lip oFftyr e-YE Ix(r) - WPY~. 

Similarly, we have the estimate 

e-“‘(E Iu(#‘)“~ 

=e -Irt [E 11’ S(t - r)[G(x(r)) - G(z(r))] dw(r) 1’ 1 “’ 
0 

I” 
l/P 

Q Me2 ‘(‘- ‘) tr W 
2 I 

7-1/2-l/Pe-bt 

I 

I’* 
T”2-“p (Ix-z& 

Combining these two estimates we obtain 

W - 4 = oyyT e -yE I(Ax)(t) - (Az)(r)(‘]“P 

< MC, T@- 1”p f Mc,[(p(p - 1)/2) tr W]‘/’ T’/‘-‘lp 
. 

(pb) “’ 
Ilx-zll. 

Hence for b > 0 suficiently large, A is a contraction and thus has a unique 
fixed point in T. 

COROLLARY 2.1. If y, is nonrandom, then there exisrs a unique mild 
solution in C(0, F, Yp(LI, 3, p; Y)) for all p > 2. 

Remark 2.2. We have assumed that f  and G are defined for all y E Y, 
but there are some cases where they are defined only on a subspace of Y(See 
[13, 161 and Eq. (1.19)). 

Remark 2.3. Stochastic evolution equations in terms of martingales are 
studied in [3, 151 using semigroups and in [ 161 using monotone operators. 
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3. STABILITY OF MOMENTS 

Consider the stochastic evolution equation 

dy(O = WY(~) +f(AO)l df + W(O) dWv Y(O) = Y, 1 (3.1) 

where we take y, nonrandom for simplicity and assume the Lipschitz 
conditions in (2.2). Then there exists by Corollary 2.1 a mild solution such 
that pth moment E 1 y(t)JP is continuous for all p > 2. We now consider the 
stability of E ( y(f)JP. 

THEOREM 3.1. Let v(y): Y -+ R safisfy 

v(y) is twice Frkhef dlfirenfiable and v(y), v,(y), and v,,(y) 
are confinuous in RI, Y and p(Y), respecfively, (3.2a) 

Iv(Y)l+lYll~,(Y)l+IY121~yy(Y)I<clYlp 
for some p > 2 and c > 0, (3.2b) 

WY> + MY) < 0 for all y E g(A), (3.2~) 

where a is a real number and 

94~) = (V,(Y), AY +f(v)) + f tr G(Y) WC*(Y) V,,(Y). 

Then the mild solution y(f) of (2.1) satisfies the inequality 

Ev(.v(O) < e-“‘Cvd. 

To prove this theorem we introduce approximating systems 

dy(t) = [4(f) + W)f(.v(f))l df + W) ‘W(f)) dw(f), 

~(0) = R@)Y,, (3.3) 

where &(A), the resolvent set of A and R(A) = AR@, A). 

LEMMA 3.1. The sfochastic dt@%renfial equarion (3.3) has a unique 
strong solution y(t, A) which lies in C(0, T; 9p(f2,3, ,u; Y)) for all T and 
p > 2. Moreover, y(t, A) converges to the mild solution of (3.1) in 
C(0, T, I%@/, y; Y)) as A + 00 for all T and p > 2. 

Proof. The first part is an immediate consequence of Theorem 2.1 and 
Proposition 2.3. To prove the second part we consider 
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YW -Yk A) = WY0 - W)Yol 

+ j; s(t - r)]fly(r)) - R(;l)f(y(r, A))] dr 

+ 1; W - r)[G(yW) -WI WY@, J>)l d4-1 

= jr W - r) W)lf(~(r)) -f(yh J))l dr 
-0 

+ j; W - 4 W)[G(YW) - G(Y(c a)>1 dw(r) 

+ WY0 -W)Yol I 

+ jr W - rW- W)lfbW) dr 
-0 

+ j; W - W- W)l WY(~)) dw(r) 1. 

Since Ia + b + cJp 4 3p()u(p + JblP + Iclp) for any real numbers a, b, c 
( S(t)1 < M, for all t E [0, T] and IR(A)l < 2 for large 1, we have 

E I ~0) - ~0, MY’ < 3” [II + 1, + 1x1, 

where 

’ I, =E 
IJ 
-* W - 4 WWWW --fMrv A>)1 dr 
0 

< (2Mq tp- ’ 
1 J E 1 y(r) - y(r, A)lp dr 
0 

1, = E 1 frW - 4 W)[G(yW) - G(y(c A))1 dW ( ’ 
-0 

E I y(r) - y(r, aI” dr 

and 

4 = E W[Y, - RWY,I + f W - W- WMyW dr 
0 

+ ji Wf - r)[Z - W>l G(yO9) d@9 1’. 
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We now estimate each term in I,: 

I~(~)~~Yo-~(~)Yoll~~IYo-~(~)Yol-,O as L-too 

and 

E j+r)[Z- 
P 

JW)lf(~(r)) dr 

< MPTP-’ 1’ E ][I - R(A)]f(y(r))JP dr --t 0 as )L-+co. 
-0 

E I-’ S(t - r)[Z - R(A)] G(y(r)) dw(r) ’ 
-0 

Q IMP (.T E[tr (Z-R(A)) G(y(r)) W[(Z - R(I)) G(y(r))]*lP’* dr -+ 0 
-0 

as A-+00 

by the dominated convergence theorem. Thus we can write 

E I ~0) - ~(6 A)lp < c lb E I y(r) - y(r, Alp dr + -$A), 

where c = (644~~)~ Tp-’ + (6M~,)~[(p(p - 1)/2) tr W]p’2 Tp’*-’ and 
lim A-9 cc. E(A) = 0. By Gronwall’s inequality we have 

E I y(f) - y(t, A)\” < c(A) cecr -, 0 as A-+00. 

Proof of Theorem 3.1. We apply Ito’s formula (Corollary 1.2) to the 
function u(t, y) = e%( 49) and the process y(t, A): 

e”‘4y(f, W-~Y(O, 4) 

= JI ea’[4y(r, A)) 

+ (~~,(y(r, A)), 4@, J-1 + WlfM-, A))) 

+ f tr[W) G(y(r, A)) W[R(A) GM-, A))]* u,,(y(r, A))] dr 

+ If ea’(qM-, A)), R(A) W(r, A)) dw(r)) 
-0 

+ f WW GMr9 A)) VW) GM-, A))l* ~~,,M~~ A)) 
- GM-, A)) WG*(y(r, A>> qJy(r, A))1 1 dr 

+ jf en’(U,Mr, A>), W) G(yV, A>> Wr)). 
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Taking expectations we have 

By Lemma 3.1, Eqs. (3.2), and (2.2) we conclude via the dominated 
convergence theorem that e”‘Ev( y(t)) Q U( yo), 

COROLLARY 3.1. If au(y) ) ( yip for some a > 0 and a > 0, then 

E IY(OI~ < ae -%( y,) and the pth moment is exponentially stable. 

Note that if, in particular, v(y) = 1 yip, then 

MU = P I Y Ip-* (Y, Ay +fW) + f tr G(y) ~G*(Y) 

x [PlYlp-2~+P(P-2)lYlp-4Y~Yl. 

COROLLARY 3.2. Suppose fhar ( y, Ay +f( y)) < -p 1 ylz for some p > 0, 
G(0) = 0 and f&p - 1) tr W < /I. 
Then the pth moment is exponentially stable. 

Proof: We have the estimate 

WY) < -PP I YIP + $3 p(t, - 1) tr WI YIP = -p/P - Mp - 1) tr WI I YIP. 

4. SAMPLE CONTINUITY 

In this section we give sufftcient conditions for the mild solution of 
(2.1) to have continuous sample paths. In view of (2.4) the solution y(f) has 
a modification with continuous sample paths if the term 
1; S(t - r) G(y(r)) dw(r) has the same property. So it is sufficient to 
consider the sample continuity of the process 

y(t) = j-i S(r - r) G(r) dw(r), (4.1) 

where G E A(H, Y) with E si 1 G(t)lP df < cc, for some integer p > 2. 
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LEMMA 4.1. Suppose that there exists a real continuous function v(y) on 
Y such that 

a, NY) 2 I YIP, a, >O, (4.2a) 

v(y) is twice Frkchet difSentiabie and derivatives v,(y) and 
v,,(y) are continuous in Y and p(Y), respectively, (4.2b) 

4~) + 14’1 Iv,t~l+ l~l~Iu,,t~)I <aa, bIpl a, > 0. (4.2~) 

(qi~h AY) < b, V(Y) for ally E @(A), b, 2 0. (4.2d) 

Then 

E sup 
O<I<T 

u(At, A)) < 2b, 1’ WA4 A)> 
0 

+ (1 + a,) a, tr W sup [E ) y(t, ~)~p]‘p-zLip ir [E 1 G,(t)~P]Z’p dt, 
OSfCT A0 

where y(t, A) = Ik S(t - r) G,(r) dw(r) and GA(t) = AR@, A) G(t). 

ProoJ We note that y(t, A) is the strong solution of 

h(t) = A-v(t) dt + G,(t) dw(t), y(0) = 0. (4.3) 

Thus we can apply Ito’s formula to obtain 

V(Y(t)) < b, ,(l v(y(r)) dr + f 1: tr G(r) WC*(r) vJy(r)) dr 

+ .f (v,(y(r)>, G(r) dw(r)) J 0 

< b, I~rvty(,)) dr + - o 
-0 tr2W j.T I W91z I ~,,W-)I dr 

(v,CvW)y G(r) dwtr)) 3 (4.4) 

where we have suppressed 1. Note first that 

E IT I WI’ I v,,M))l dr .o 

Q IT a,E I y(r)lp-’ ) G(r)l* dr 
-0 



( y(r)(p](p--2)‘p[E 1 G(r)(p]2’” dr < ‘a,[E I 0 

<a, SUP 
o<t< 

< co. 

T 
[E (y(f)lP](P-2)‘p Jo’ [E IG(r)lp]2’P dr 
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Now for a moment we assume that Eli IG(t)j2P df < 00. Then y E C(0, T; 
_4p,(L$K,lu; Y)) and by Proposition 1.6 we easily see that 

E OzzT Ij; (%(Y@>), G(r) dw(r)) 1 < co. 

Thus in view of (4.4) we conclude that E supocrG T u( y(t)) < co. 
Furthermore, we have by Proposition 1.6(c) 

E ozzT 11; (I,, G(r) dw(r)) / 

< E [ tr W 1’ I ~,(Y(O)I~ I WI2 dt 
-0 1 

112 

<E a,tr W [ J 
.T 

I YWI 2(p-” IG(t)l’df o I 
I/Z 

<E [a,a,tr WI: HY@>) I NIP - 2 I WI 2 df 1 
112 

<E a,az tr W sup tr(y(f)) fT ( y(f)l”-” IG(t)l’ df 
[ 

l/2 

‘J<tCT -0 1 
< fE sup tl(y(t)) + $E 

O<t<T 

ala2 tr W [‘( ~(f)l~-~ (G(t)/’ df 
-0 1 

< fE sup v(y(t)) + y tr W 
o<t<7 

x JOT [E 1 y(r)lp]‘P-2)‘p[E IG(t)l”]“” df 

G SE ozzT u(y(t)) + y tr W 

x ,zsT [E I y(t)(P](P-2)‘p Jo’ [E ( G(t)(P]2’p df. 
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Combining this together with (4.4) we obtain 

E sup W(t)) < 26, jr Eu(y(f)) dt 
0<1$T -0 

+ (1 + a,) a, tr W sup 
O<I<T 

[E ( y(t)(P]‘P-2)‘P 1’ [E \G(t)lP]2’p df. 
-0 

Since the right-hand side involves only Pth moments we can easily show by a 
limiting argument that this inequality is valid for any G with 

/-I E ,G(t)J” dt < 00. 
-0 

THEOREM 4.1. Suppose that there is a continuous real function u(y) on 
Y with properties in Lemma 4.1. Then the stochastic process y(t) given b) 
(4.1) has a modification with continuous sample paths. 

Proof. Let y,(t) = la S(t - r) G,(r) dw(r), where G,,(t) = nR(n, A) G(t) 
for sufftciently large n. Then by Lemma 4.1 we have 

E sup U(Y&) -y,(t)) Q 2&j ErU,At) -y,(t)) dr 
o<t<r 0 

+ (l+a,)a,tr Wovr [Ely,(t)-~,(t)l~l’~-*‘,‘~ 

X ir [E)G,(t)-G,(t)lp]2’Pdt-+0 asn,m-, oo. 
-0 

Thus by (4.2a) we conclude that E[suP~~~(~ I~r,(t) -y,(t)l]” + 0 as 
n, m -+ co. Hence there exists a subsequence which converges to some 4;(f) in 
C(0, T; Y) wp 1. But y(t) is obviously a modification of I given by (4.1). 

COROLLARY 4.1. Let y(t) be the mild solution of (2.1) given in 
Theorem 2.1. If there exists a real continuous function v(y) on Y with 
properties in (4.2), then y(t) has a modiJication with continuous sample 
paths. 

5. SAMPLE PATH STABILITY 

If the mild solution of (3.1) has continuous sample paths, it is reasonable 
to consider asymptotic stability of its sample paths. In this section we shall 
extend the result in [7, 111. In fact, under the assumptions of Corollary 3.1, 
we can show that sample paths of the mild solution of (3.1) are exponen- 
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tially stable wp 1. We remark that under the conditions in Corollary 3.1 the 
mild solution of (3.1) has continuous sample paths since we can apply 
Corollary 4.1. 

LEMMA 5.1. Suppose that there exists a function v(y) with properties in 
Corollary 3.1. Let y(t) be the mild solution of (3.1): 

dy(t) = LW) +f(vW)l dt + G(y(t)) Wt), Y(O) = 4’09 

where f and G satisfy (2.2) and y, E Y is nonrandom. Then 

(4 v(N)> ,< 4~~) + h (qLW>q G(Hr)) dwW3 

(b) Esupo<,<, v(y(t)) < bv(y,), where b is independent of T. 

ProoJ We note that 90(y) ( -au(y) < 0 since a > 0. Now we apply 
Ito’s formula to the function v(y) and the process y(t, A) given by (3.3). Then 

+ 1.’ (v,(Y(r, % R@)f (y(r, A)) -f (y(r. A))> dr 
-0 

+ i !I [tr W-J G(r) WG*(r) R *(A) v,,(y(r, 2)) 

- tr G(r) WG*(r) v,,(y(r, A))] dr 

+ 1.’ (v,Mr, A)), R(A) G(r) Wr)). 
-0 

As in Theorem 4.1 we can show that there exists a subsequence y(., A) + y(e) 
in C(0, T, Y) wp 1. Thus in view of (3.2b) we can pass to the lim,,, in the 
inequality above to obtain (a). To prove (b) consider 

(v,(yW)~ W(O) dw(t)) 
II 

I/? 
< E tr W ( I v,Mt))l* I W(t))l* dt ‘0 I 

< ;E sup v( y(t)) + c lr Ev( y(t)) dt for some c > 0. 
O<f<T 0 
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Thus from (a) and Theorem 3.1 it follows that 

-7 

E sup v(r(t)) < v(y0) + 2c ( ae-%(JTO) 
0<1<r -0 

G WY,) for some b > 0. 

THEOREM 5.1. Under the conditions in Lemma 5.1, there exist a random 
variable 0 < T(o) < 00 and a constant c > 0 such that for all t > T(o) 

$W) < 4~~) e-““’ wp 1. 

Proof. We can use arguments in 17, 111. By a modification of 
Lemma 5.1(a), we have for t > n, 

Hence 

v(y(t)) G Cdn)) + 1.’ (v,Mr)), W(r)) dw(r)j. .tl 

P I sup 
n<t<ntl 

v(y(t)) > ~~1 <P +(n)) > + 
I I 

+P 
L I 
nc;q;+, 11 (v,Mr))l W(r)) dw(r)) / > %I. 

By Proposition 1.6(c) we have 

< f kE ] [ sup ‘1 
n ltCf<fl+ I 

v(y(t))j’! [ 1.’ v(y(r)) dr )1.& , 
.fl 

for some k > 0 by (3.2b) 

<+k[E sup u(y(t))]“” [I 
.n+ I 

I 

1 ,‘? 

Ev( y(r)) dr 
n n<r<nt I .Pl 

< (2/c,,) k fi [v(y,,)]“’ \/alae-“““[v(y,)]“’ 

< (k,,/.z,J e -nn’2v( y,,) for some k, > 0. 

Furthermore, we have 
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Hence 

~1 sup 4~40) > 4 < V/e,) e-““‘24y0) for some c’ > 0. 
n<tgnt 1 

If we set E, = &e-nn’4u(y,J, then 

,u[ sup u(&)) > tee-““‘4v(y,)] ,< eeoni4. 
n<t<n+1 

Thus by the Bore]-Cantelli lemma we conclude that there exists a random 
variable T(o) < co such that 

u( y(f)) ,< &(y,) e-a(t-‘)‘4 < cu(yo) emar14 for r>T(w) wpl, c>O. 

Remark 5.1. For further developments we can consider stability 
problems in Sections 3 and 5 when f and G are more general as in 
Remark 2.2. This extension will be reported elsewhere. 

6. EXAMPLES 

EXAMPLE 1. Consider the stochastic heat equation 

dY(X, f) = z&x, t)dt + cm, f) d/w, 

y(0, f) =y(l, t) = 0, Y(X, 0) = Yo(Xh 

where u is a real number and P(t) is a real standard Wiener process. We take 
Y=pz(O, l), H= R’, G(y)=ay and A =d2/d.u2 with Q(A)= (JJE Yly,y’ 
are absolutely continuous with y’, y”E Y, ~$0)=~(1)=0}. Then 
@Y,Y) < +c2 lY12 and ?j~r(“<-p[ n’ - ;a’@ - l)] 1 yip. Thus pth 
moment of y(t) is exponentially stable for all nonrandom y0 E Y if 
p < 1 + 2rc2/cr2. If, e.g., u = 1, all moments up to p = 19 are exponentially 
stable. In fact, by Proposition 1.10 we have the explicit solution 

y(f) = e 
-dI/? + ooct)g(f) yo, 

where 

s(t) y, = ? 2e-“‘“2t sin nxx (I y,(r) sin nnr dr. 
,r, -0 
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EXAMPLE 2. Consider the semilinear-stochastic heat equation 

y,(O, l) = y,(L t) = 0, y(x. 0) = y’)(x)* 

where we take Y and B(t) as in Example 1, H = R ‘. 

and A = d2/dx2 with S?(A) = { y E Y \ y, y’ absolutely continuous, y’, y” E Y, 
y’(O)=y’(l)=O). Then (y,Ay+f(y))~-14’12,yEO(A), and 

Thus if p ( 1 + 2/o’, then the pth moment is exponentially stable. In this 
case we also have exponential stability of sample paths with probability one. 

EXAMPLE 3. We give an example of Proposition 1.10: 

dy(x, t) = +$ y (x, t) dr + f y(x, t) dP(t), 

Y(0, f) = Y(1, t), Y,(O, I) =YJL t). y(x. 0) = y,(x). 

If we take Y=p2(0, I), H=R’, A=O, and By=d/dx with 
O(B) = { y E Y 1 y absolutely continuous, y’ E Y, y(0) = y( l)}, then 
y(t) = 7’(p(t)) yO, y0 E lD(Bl), is a solution, where T(t) y0 = pO(x + t) and 
yO(x) is the periodic extension of y,,(x) to the interval [0, 00). 

APPENDIX 1: PROOF OF PROPOSITION 1.1 

Let (ei) be a complete orthonormal basis for Y, then y = Cz, yti e, , where 
yi are real Gaussian random variables. Note first that E ( )‘I2 = 
x7:, Ey: = tr Q. Next we use the following results: 

(a) En~=,xi<n~=, (Exl)“” for positive random variables xi and 
all 1 < m Q n, 

(b) If x is a real Gaussian random variable with zero mean and 
variance 02, then (see [ 1 ]), 

Ex’” < (2n - l)!! a’“. 



40 

Now 

AKIRA ICHIKAWA 

< 2 . . . e fr (E fy’n 

i,=I i&t1 j=l "j 

g-F 

i:‘, 

a.* 2 fi [(2 
in=1 j=l 

n - I)!!]“” Ey,:. 

= (2n - I)!! (2 Eyf)’ = (2n - l)!! (tr Q)“. 
i=I 

APPENDIX 2: PROOF OF LEMMA 1.2 

Define 

APPENDIX 3: PROOF OF PROPOSITION 1.6 

(a) By Lemma 1.2 sup,<,<, ICY=“=,+, jb G(r) ei d&(r)1 + 0 in proba- 
bility as n --* co. Thus y,,(f) is a Cauchy sequence in C(0, T, Y) in the sense 
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of convergence in probability and therefore there exists a subsequence y,,(t) 
which converges in C(0, T, Y) with probability one. Let y(t) be the limit. 
then clearly, it is a modification of the stochastic integral j-5 G(r) dw(r). 

(b) Let m be a positive integer and let n > m. Then 

(_r G,(r) dw,(r) - jr G(r) dw(r) = 1’ G,(r) dw,(r) - )_( G(r) dw,(r) 
.o 0 -0 -0 

+ !‘I G(r) h?,(r) - 1.’ G(r) dw(r) 
-0 -0 

By definition we know that J’5 G(r) dw,(r) - jog dw(r) converges to 0 in 
probability as m --) co. By Lemma 1.2 we have 

The last expression can be made arbitrarily small by taking N and then m 
large enough. Hence x1=, + , jb G,(r) ei dpi( ) r converges to 0 in probability 
as m + co. Finally, note that 

P Lo::, /!nlG.(r)dw,(r)-jIG(r)~w,(r)/ > d] 

GP iG, L ( ~or/G.(r)ei-G(r)eilzdr)F)] +$,$ Ai I-I 
which can be made arbitrarily small for any 6 > 0 and m by taking E 
sufficiently small and then choosing n large enough. Thus the assertion 
follows from these results. 
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APPENDIX 4: PROOF OF LEMMA 1.3 

Without loss of generality, we may assume in (1.15) 

g(t) = g, G(t) e, =A, 

where g,fi are 6 measurable random variables, since the general case 
follows by a straightforward limiting argument. We suppress n in y, and z, 
in this proof. Let to < t, < t, < ..a < tm = t and set 

Afk=tk+,-tk, Yk = Y(fk), uk = v(t,, yk), 

Ayk = yk+' - yk, and Au, = vkt , - vk 

for k = 0, I,..., m - 1. Then 

m-l 

Z(t) - Z(to) = V(t, Y(t)) - V(t,, Y,) = x Au,- 
k=O 

Now we have by Taylor’s formula 

= V t (tk,yk+‘)dtk + V,(tk,yk) Ayk + ;V,,(tk, yk)(Ayk, Avk) + Yk + 6k, 

where 

Yk= [Ut(tk +~kAtk,Yk+‘)-v,(tk,yk+‘)]Atk, 

6, = ~[v,,(tk,yk +ClkAyk)(dyk, Ayk) - V,&pYk)(AYk, Ayk)l 

and 0 < Jk, pk < 1. Thus 

m-1 
z(t) - z(t,) = x {Ut(tk,~‘k+‘)Atk + v&,yk) 

k=O 

+ &&,Yk)(AYk, Auk)/ + 6 

where 8 = CF:-,’ (yk + 6,). As in [4,9] we can show that (8) + 0 wp 1 as 
maxk At, -+ 0. Now substituting Ayk = g At, + xi”= ,A Api we obtain 

z(t) - z(t,) = c sj + e, 
j=l 

where 

m-1 

‘1 = c bt(fkdk+ ‘) + V,(tk, yk) g] At, 
k=O 
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m-l n 

S? = 

ss = 

s, = 

s, = 

m-l 

“ +,&kr uk)(gl g)(Atk)z ATO 
m-l 

By continuity assumptions in (1.13) and the boundedness of .~(t) wp 1 on .Y 
we obtain 

S, -+ ji, [uf(r, y(r)) + u,(r, y(r)) g] dr, S, 4 0, 

wp 1 as maxk At, + 0. By definition we also have 

and S, --) 0 

in probability as maxk At, -+ 0. We can write SJ as 

m-1 ” 

m-1 n 
+x y i”yy(fk 1 Jvk )(.L ,fj> ASi A(/(tk) 

k=O i#j=l 

and as in [9] the two terms converge to CrL, Ai .I‘:,, $uyJr.y(r))(J,fi) dr, 
and to 0 in probability as maxk At, -+ 0. 
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