Bioactivity of selected essential oils and some components on *Listeria monocytogenes* biofilms

C.M. Leonard\(^a\,*\), S. Virijevic\(^b\), T. Regnier\(^b\), S. Combrinck\(^b\)

\(^a\) Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
\(^b\) Department of Chemistry, Tshwane University of Technology, PO Box 56208, Arcadia, Pretoria 0001, South Africa

Received 5 May 2010; received in revised form 2 July 2010; accepted 3 July 2010

Abstract

Listeria monocytogenes is a Gram-positive bacterium, able to survive and grow in water, soil, agricultural products, various foods and the food-processing environment. The ubiquitous nature of the organism, coupled with its ability to colonise food-processing surfaces by forming biofilms, causes it to be of a major concern to the industry. Increased foodborne pathogen resistance and negative consumer perceptions regarding the use of synthetic bacteriocides, has resulted in natural antimicrobials being sourced from the plant kingdom. The listerial antibiofilm activities of *Syzygium aromaticum* (clove), *Mentha spicata* (spearmint), *Lippia rehmannii* and *Cymbopogon citratus* (lemongrass) essential oils and their major components were evaluated using the crystal violet assay and confocal scanning laser microscopy. Listerial biofilms treated with *S. aromaticum* or *M. spicata* essential oils, or the pure compounds nerol and citral, exhibited a similar biofilm biomass to the positive control. However, the essential oils of lemongrass, *L. rehmannii*, eugenol and R-carvone caused biofilm enhancement, rather than inhibition. *L. rehmannii* and lemongrass essential oils did not display any antibiofilm properties. Results obtained were confirmed by microscopic observations indicating either a reduction (inhibition) or an increase (enhancement) in biofilm biomass when exposed to the essential oils or pure compounds. The present study revealed that *M. spicata* and *S. aromaticum* essential oils as well as pure citral and nerol are good candidates for further development of ecofriendly disinfectants.

© 2010 SAAB. Published by Elsevier B.V. All rights reserved.

Keywords: Clove; Essential oils; Lemongrass; Lippia; Listerial biofilm; Mentha spicata

1. Introduction

Listeria monocytogenes, a Gram-positive bacterium commonly found in soil, water, plants, sewage and foods, such as soft cheeses (Farber and Peterkin, 1991; Gandhi and Chikindas, 2007), is the causal agent of listeriosis, a rare but lethal food-borne infection. The ubiquitous nature of the microorganism is of a major concern to the food industry. Its ability to grow at refrigeration temperatures, and tolerate salt and low pH (Ryser and Marth, 2007), allows it to multiply in food-processing facilities. In the past decade, several outbreaks of infections caused by *L. monocytogenes* have been reported from all over the world (Salama\(n\)a et al., 2000), with many cases occurring in Europe (European Food Safety Authority (EFSA), 2008) and in the United States (USDA–FSIS, 2009). The ability of *L. monocytogenes* to form a biofilm has been established (Jeayasekaran and Karunasagar, 2000; Sandasi et al., 2008). This structured community of pathogens, encapsulated within a self-developed polymeric matrix, is well protected against bacterial agents and renders the organism difficult to control within the food chain. Up to now, strict food safety regulations, as well as good handling and processing methods, were adequate to restrict the lethal incidence of the disease. However, the emergence of resistant bacterial strains and consumer concerns regarding the use of chemical sanitisers, have placed pressure on the food industry to find natural antimicrobial substitutes for synthetic agents. Alternative bacteriocides must be safe for consumers, but also harmless to the environment (Davidson, 1997). Such antibacterial agents are often sourced from the plant kingdom (Burt, 2004; Bakkali et al., 2008). Numerous studies have been conducted on the antimicrobial potential of plant extracts and essential oils (Smith-Palmer et al., 1998) and it is well established that many essential oils have the ability to control *Listeria in vitro* (Aureli et al., 1992; Mourey and

\(^*\) Corresponding author. Tel.: +27 12 3826392.
E-mail address: leonardcm@tut.ac.za (C.M. Leonard).

0254-6299/$ - see front matter © 2010 SAAB. Published by Elsevier B.V. All rights reserved.
2.3. Preparation of a standardized culture

L. monocytogenes (ATCC 19111) was reactivated from a glycerol stock culture kept at -80°C. The isolate was sub-cultured on Tryptone Soy Agar (TSA) and incubated for 24 h at 37°C. A pure colony was then inoculated into Tryptone Soy Broth (TSB) and incubated for 24 h at 37°C at 150 rpm. Following incubation, L. monocytogenes was standardized to an optical density of 0.02 (1.0 × 10^6 CFU/mL) using a spectrophotometer (Helios alpha, Thermoelectron Corporation) at 590 nm.

2.4. Crystal violet assay

One hundred microlitres of the standardised culture was transferred into each of the wells of a 96-well microtiter plate and incubated at 37°C for 6 h to allow the formation of a preformed listerial biofilm. Thereafter, 100 μl of the individual essential oils or pure compounds (diluted in methanol to a final concentration of 1 mg/mL) were added to the wells and the plates were then incubated for a further 18 h. Crystal violet staining was carried out using the method described by Djordjevic et al. (2002) and modified by Sandasi et al. (2008). Ciprofloxacin (0.00125 mg/mL) was used as a positive control while the negative controls were water and biofilm or methanol and biofilm (Sandasi et al., 2008).

2.5. Confocal scanning laser microscopy

For the confocal scanning laser microscopy, the culture was standardised as previously described. The standardised culture (1 × 10^6 CFU/mL) was placed in sterile beakers containing sterile microscope slides and incubated at 37°C for 6 h to allow for the formation of listerial biofilms. Following this, the preformed biofilms were exposed to 100 μL of the essential oils and pure compounds (1 mg/mL) and further incubated for 18 h. The slides were removed from the cultures and stained with BacLight® (Biorad, Johannesburg, South Africa). Prior to staining, the dye was diluted 12.5 times with sterile distilled water. A volume of 25 μl of the diluted dye was placed onto the slide and allowed to adsorb to the cells for 10 min. A cover slip was then placed and sealed onto the slide, whereafter the biofilm was viewed on a microscope (Carl Zeiss 510 META), using SYTO 9 and propidium iodide stains and excitation radiation at 488 nm and 560 nm, respectively. Twenty fields per slide were evaluated of which two representative fields were photographed.

3. Results and discussion

Wide-spectrum antibacterial activities of essential oils and their components against Gram-positive and Gram-negative bacteria are well documented (Chorianopoulos et al., 2008; De Oliveira et al., 2010; Sandasi et al., 2008; van Vuuren, 2008). Listerial biofilms, treated with S. aromaticum or M. spicata essential oils, exhibited the same biomass (absorbance 0.09) as that of the positive control (ciprofloxacin). It was therefore assumed that the antilisterial activity of these essential oils could be attributed to the activity of their major chemical constituents, eugenol and carvone, respectively (Tables 1 and 2). However, surprisingly, these compounds alone, caused biofilm enhancement rather than inhibition (Table 1). These results are in agreement with Sandasi et al. (2008) who reported that treatment of listerial biofilms with some pure essential oil components enhanced biofilm growth. These researchers attributed the antibiofilm activity to the synergistic effect of various oil components and not exclusively to the action of a major component. In agreement with our results, Lis-Balchin and Deans (1997) reported a good antilisterial activity for S. aromaticum oil, but since these researchers used the planktonic form, rather than the
sessile (biofilm) form, their results cannot be directly correlated with ours.

Despite the observed enhancement of *L. rehmannii* and *C. citratus* essential oils on the listerial biofilms, their major compound, citral (a mixture of the cis/trans-isomers geranial and neral) exhibited a similar antibiofilm activity to ciprofloxacin (Table 1). These results contradict the findings of Lis-Balchin and Deans (1997) who evaluated the antilisterial activity of *C. citratus* oil against 20 food-borne strains and found it to be an effective inhibitor of the organism. However, results obtained using planktonic cells may not compare well to those using sessile cells.

Results obtained for *C. citratus* essential oils, contradict those of De Oliviera et al. (2010), who reported that *C. citratus* (lemongrass) and *Cymbopogon nardus* (citronella) essential oils displayed very high antimicrobial activities against listerial biofilms. However, the concentrations of essential oils applied to the biofilm were substantially higher than those used in our study. Citral, in contrast to the citral-rich oils *L. rehmannii* and *C. citratus* displayed a significant inhibition of the listerial biofilm (Table 1). Nerol, a minor component of *L. rehmannii* essential oil, gave similar results to citral.

Many conflicting results exist regarding the in vitro inhibition of biofilm and planktonic cells. According to Mourey and Canillac (2002) and Sandasi et al. (2008), the activities of the single components of essential oils often differ from those observed when the compounds are combined.

The micrographs obtained were used to confirm the effects of the *C. citratus* and *S. aromaticum* essential oils, as well as those of nerol and eugenol, on the biofilm biomass. Fig. 1 illustrates the enhanced biofilm formation by *C. citratus* oil (A) and eugenol (B), compared to the inhibition of the listerial biofilm by *S. aromaticum* oil (C) and nerol (D). To our knowledge, this is the first report on the use of confocal scanning laser microscopy to evaluate changes in listerial biofilms biomass after exposure to essential oils or pure compounds.

4. Conclusion

The antibiofilm activities of *S. aromaticum* and *M. spicata* essential oils as well as those of nerol and citral are promising. However, the results for *C. citratus* contradict the findings of de Oliviera et al. (2010). The differences in the reported data could be due to many factors including differences in the strains used,

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Crystal violet assay at absorbance (590 nm) for essential oils and pure compounds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential oils/pure components</td>
<td>Common name</td>
</tr>
<tr>
<td>Cymbopogon citratus</td>
<td>Lemongrass</td>
</tr>
<tr>
<td>Lippia rehmannii</td>
<td>–</td>
</tr>
<tr>
<td>Mentha spicata</td>
<td>Spearmint</td>
</tr>
<tr>
<td>Syzygium aromaticum</td>
<td>Clove</td>
</tr>
</tbody>
</table>

1 References reported on the major components of each essential oil.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Relative percentage peak areas of the six most abundant compounds above 1% detected in spearmint, lemongrass and Lippia rhehmannii essential oils by GC-MS and GC-FID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential oil</td>
<td>Six most abundant compounds (GC-FID) >1%</td>
</tr>
<tr>
<td></td>
<td>Compound 1</td>
</tr>
<tr>
<td>Mentha spicata (spearmint)</td>
<td>R(-)-carvone (80.8%)</td>
</tr>
<tr>
<td>Cymbopogon citratus (lemongrass)</td>
<td>geranial (42.5%)</td>
</tr>
<tr>
<td>Lippia rehmannii</td>
<td>geranial (31.7%)</td>
</tr>
<tr>
<td>Syzygium aromaticum (clove)</td>
<td>eugenol (88.3%)</td>
</tr>
</tbody>
</table>

concentration and chemical composition of essential oils, time of exposure to the essential oils, the growth stage of the biofilm and the nature of the surface to which the organism adheres. The enhancement (increase in biofilm biomass) obtained with *L. rehmannii* essential oil, also containing primarily citral, correlated well with that of *C. citratus*. R-(-) carvone and eugenol also caused an increase in the biofilm biomass. Confocal scanning laser microscopy was found to be a useful tool for confirming the effects of the essential oils and pure compounds on the sessile cells when analysing biofilm growth. This study found that there is a necessity for standardised *in vitro* methods for determining the influence of essential oils and pure compounds on biofilm development.

Acknowledgements

We thank the National Research Foundation (NRF) of South Africa for financial support. We also gratefully acknowledge Ms Sandasi for assistance with the microscopy work.

References

Edited by AM Viljoen