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Statistical experiments possess the property of adaptivity, if the ignorance of a 
nuisance parameter does not cause any loss in etkiency. In order to include a large 
variety of cases, the efftciency is measured in terms of minimax bounds. It is shown 
that a necessary and sufficient condition for adaptivity of translation invariant 
experiments is that the parameter of interest and the nuisance parameter are as. 
independent w.r.t. the posterior distributions. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Many statistical models are of the following type: They contain a finite 
dimensional parameter of interest t E IF? and a (finite or infinite dimen- 
sional) nuisance parameter U. It is known that under some circumstances 
the ignorance of the nuisance parameter u causes no loss in efficiency for 
the estimation of t, i.e., the asymptotic properties of the best estimates are 
the same both for fixed known u and for unknown u. The term “adaptivity” 
is used to describe such a situation and the pertaining estimates for t are 
called “adaptive.” Thus an experiment has the property of adaptivity if at 
least one adaptive estimate exists. 
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The notion of adaptivity depends on the used measure of efficiency. If the 
asymptotic distribution of the estimates is normal, then the most important 
and widely used measure of efficiency is the asymptotic covariance matrix, 
since by Anderson’s lemma minimizing the covariance matrix means at the 
same time minimizing the risk for a large class of loss functions. For non- 
normal asymptotic distributions, however, asymptotic variances need not 
exist and if they do they are only related to the risk of the quadratic loss. 
Therefore the concept of adaptivity will be based on the comparison of 
minimax risks for a variety of loss functions: 

Let (Pl.U: t E T= Rk, u E U} be a family of probability measures on a 
probability space (!2,%). The parameter t E Rk is that of interest and U is 
an arbitrary set of nuisance parameters. Let W(.) be a nonnegative loss 
function on Rk and r(o, dy) a (randomized) estimate of t, i.e., a transition 
from 52 into the set of all probability measures in [Wk. The set of all these 
estimates is denoted by Y. The risk of t is 

(1.1) DEFINITION. The experiment (a, ‘?I, (P,,,: t E T, u E U}) fulfills 
condition (A) (adaptivity) with respect to the loss W if for every finite 
subset U, of iJ 

(A) inf sup sup r&r*, t, u)- inf sup r&t, t, u) =O. 
r*Ed LIEU, C 1tT reT rcT 1 

Since the left-hand side of (A) is obviously always nonnegative, this notion 
of adaptivity may be loosely characterized as: There is an estimate r* 
treating u as unknown, which achieves for every u the same minimax 
bound as those procedures t which make use of the knowledge of U. 

It is easy to conclude from (A) the validity of the following condition 

(B) For every finite subset U, G U, 

inf sup sup r W( 5, t, U) = sup inf sup r&7, t, u). 
r6.T UEU, reT UEU,?E.T t.si- 

Condition (B) says that if adaptivity holds then the minimax bound for the 
problem of unknown u is not larger than the worst minimax bound for all 
subproblems with known fixed U. Trivially the sign 2 in (B) is valid for 
any model. 

It is an important problem to characterize experiments satisfying the 
condition (A). There are, however, many examples for which (A) is fulfilled 
only in an asymptotic manner: Let (&) be a sequence of experiments: 

4 = V-J,, % (Jyu: t E T, u E U > ) and YD the sets of randomized 
estimates with risk r,.,(., ., .). 
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(1.2) DEFINITION. The sequence of experiments {&} fulfills condition 
(A,) if for every finite subset U, of U 

(A,) 

lim sup inf sup [sup T~,+,(z,*, t, u) - inf sup rn,+.(T,, t, u)] = 0. 
n r;E9-” UEU, 1ET 7nE9-n tET 

Under some mild conditions it is shown in the Appendix that if {gn} fulfills 
the condition (A,) and & converges to a limiting experiment d (in the 
sense of Le Cam [4]) then d fulfills condition (A). Thus a characterization 
of experiments possessing the property of adaptivity is at the same time a 
characterization of limiting experiments of sequences having the asymptotic 
adaptivity property. 

Notice however, that there is no converse of the theorem in the 
Appendix. As a counterexample take 

if 2Jn_It,ud3Jn 

if t, u not in [l/n, 4/n] 

and for the remaining points such that the continuity assumption is 
fulfilled. Then & converges to a limit d which has property (A) but E,, does 
not have property (A,,). 

The most important limiting experiment in statistics is that of a normal 
shift model. Suppose that the set of nuisance parameters is R’. The normal 
shift experiment is the collection of normal distributions in IT@+’ with mean 
(L) and fixed covariance matrix 

It is a direct consequence of Stein’s result [9] that this experiment satisfies 
condition (A) if II, = 0. 

One might conjecture that this is due to the fact that if I,, = 0 then the 
experiment has a decomposition in a product form 

p,, = p, 0 pm 
where P, = N( t, II,) and P, = N(u, I,,). 

683/24/2-5 
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Another look at the problem may lead to the conjecture that the 
important property for (A) is that 

&/z-&a is orthogonal to (6-K) in L’(Q) 

for all t, U, s, u. Our main theorem shows, however, that both mentioned 
properties are not essential. The basic requirement for adaptivity for trans- 
lation invariant experiments is the IPD-Property (see Section 2). 

Stein’s condition (1,,=0) was generalized to the case of arbitrary 
nuisance parameter sets U by Bickel [3], Fabian and Hannan [4], Begun 
et al. [2]. 

The latter authors give also an explicit expression for the loss in 
efficiency for experiments which do not have the adaptivity property 
(“projection formula”). All cited papers treat the local asymptotic normal 
(LAN) situation. Shick [8] studied adaptivity in the local asymptotic 
mixed normal (LAMN) case. 

2. THE THEOREM 

(2.1) Assumptions on the Experiment d 

(i) & is dominated by some a-finite measure v. Let 
At, 4 w) := (dP,,ldV)(~). 

(ii) For each u E U, t ++ P,, is continuous for the variational 
distance. 

(iii) For every UE U the experiment, gU = (Q, 9I, { Pr+: t E R”}) is 
measurable, integrable of order 1, and translation invariant. 

By integrability of order 1 it is meant that 

I 
max(1, Iltl/)f(t, U, w) dt < cc v-a.e. for every u E U. 

Translation invariance is the property that for every fixed u the Hellinger 
transforms 

ff(t1, . . . . t,, a1 9 .,., a,, a)= I C./It,, u, w)l”‘...Cf(t,, u, w)lCLmdv(o), 

m E N; t,, . . . . t,ET; Cc?,=l; cri > 0; depend only on the differences 
t,--t ,,..., t,--t,. The Hellinger transforms characterize the experiment 
and their pointwise convergence is equivalent to the weak convergence of 
the corresponding experiments (see Le Cam [S]). Translation invariance is 
a typical property of limit experiments. 
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(2.2) Assumption on the Set !lB of Loss Functions 

Let ‘%I? be the set of all nonnegative loss functions defined on Rk 
satisfying 

(i) W is lower semicontinuous and W(0) = 0, 

(ii) W is quasiconvex, i.e., ( W< u} is convex for all a E R +, 

(iii) W is inf-compact, i.e., ( W< u} is compact for all a < sup W. 

(iv) there are constants c,, c2 (possibly depending on W), such that 

lWt)l <Cl +c2llt/l. 

Assumptions (iiF guarantee that for every Lebesgue-density g on Rk 
with j (/ tlJ g(t) dt < 00 the set 

argmin W(t-s)g(t)dt 
s s 

W(t-s)g(t)dt=infj W(t-r)g(t)dt 
r 

is nonvoid and compact. It is thus possible to define a Pitman estimate 
TJo) for every u by 

TJco) = inf arg min 
s 

W( t - s) f( t 1 u, w) dt. (1) s 

Here 

(2) 

are posterior densities which exist according to (2.l)(iii) and the intimum 
for a compact set S c II@‘ is recursively defined by: Let x1 = inf{ y, such that 
3Y 2, ...7 y, with (yl, y,, . . . . Y~E S} then 

inf(s)= (xl, inf{(h, . . . . Y,): (xl, y,, . . . . yYL)~S}). 

By the application of the inf operation, the uniqueness of the the Pitman 
estimate is ensured. Moreover, the Pitman estimate is always measurable, 
since the arg min is determined by the values at points with rational 
coordinates. 

If the experiment d is translation invariant, then the Pitman estimate FU 
is also translation invariant in the sense that its distribution f?( F,, 1.) 
satisfies 
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for all t, h E Rk, u E U. Clearly a Markov-kernel ?Jo, dy) is associated with 
TU by setting 

if ~Jw)EA 
otherwise. (3) 

Pitman estimates for translation invariant experiments are admissible and 
enjoy the following minimax property which was proved by Strasser [lo]. 

(2.3) THEOREM. Let the assumptions (2.1) and (2.2) be fu@Xed. The 
Pitman estimate ?, defined by (1) has the following properties for fixed u: 

(i) r&fur t, 24) = c(u) (constant) 

(ii) rW(fU, t, 24) = inf, sup, T&Z, t, U) 

(iii) c(~)=J~inf,{,t W(t-s)f(tIu,w)dtf(i,u,co)dv(o) for all 
t-E UP. 

Proof The proof is contained in [lo, Proposition (1.6)]. The method 
for showing (ii) and (iii) uses the restricted posterior densities 

f (t, % a) 
f,(tIrr,W)=5,,,f(S,U,W)ds.ID,(tb 

where D,:= {t I 11 tll < LY}. It is shown that for any estimate 

sup rw(t, t, u) 

W-Y) ~(0, dy)f,(tlu, w)dt 

> lim sup 
s s 

inf Wt-y)fz(tlu,o)dt 
r-2 s;, v @ 

$j SD, f( 
r, u, CO) dr dv(w) 

2 5 J- inf W(t- y)f(tlu, o)dt.f(i, u, w)dv(w) 
a.,’ IWk 

for all in W. 

The following slightly more general proposition may be proved along 
exactly the same lines. Its proof is therefore omitted. 
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(2.4) PROPOSITION. Let a1 and I.+ be two arbitrary elements of U. Then 

inf sup 
ss T f QRk 

Wt-~)7(w dy) tCf(t, uI,~)+f(t, ~2, w)ldv(w) 

>, I s inf w(t-Y)tCf(tlu,,o)f(i,ul,w) 
R r’ Rk 

+f(tlu2, o)f(i, ~2,011 dt dv(o) 

for all ie [Wk. 

We are now ready to state our main theorem. It makes use of a special 
structure of an experiment, called the IPD-property. 

(2.5) DEFINITION. Let 8 be an experiment fulfilling assumption (2.1) 
and F( t ( U, CO) be the posterior distributions defined by 

F(tlu,w)= j’ f(sIu,o)ds. 
--m 

8 has independent posterior distributions (IPD) if there is a family of 
posterior distributions F( t ( w  ) such that 

F(tJu, oJ)=F(t(o) v-a.e. 

for all u E U. 

Furthermore we consider a denumerable subset 2l&, of !ZB, which is large 
enough to guarantee that an experiment, which has the adaptivity property 
with respect to this subset, also exhibits adaptivity for the larger class !IB: 

Let @ be a symmetric, strictly convex, twice boundedly differentiable 
loss function from %B. A possible choice is, e.g., m(t) = d+ii;ii?- 1. The 
set 2B0 is defined as 

R,= WWl w(t)= @‘W+Wy-b) lir,y>bj, 

O<A~QP,b~Q, yeQk), (5) 

where Q is the set of all rationals. 
We are now ready to state our main theorem. 

(2.6) THEOREM. Suppose that the experiment 6’ satisfies (2.2). Then the 
following statements are all equivalent. 

(i) 8 has the adaptivity property for all WE%I 

(ii) d has the adaptivity property for all WE !I&, 

(iii) d has the IPD-property. 
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Proof: Since trivially (i)+ (ii),, we have to show that (ii) =s. (iii) and 
(iii) s- (i). 

(ii) * (iii) Since v is o-finite, it is the denumerable sum of finite 
measures and we may w.1.o.g. assume for the subsequent considerations 
that v is finite itself. Let A, = (e~JJf(l, U, o) dr > 0). Choose u1 such that 
v(A,,) > f sup, v(A,) and then (u,), i> 1, by 

v (A,,,+,\ ii 4) >; SUP v (A,$, 4). 
&=I u 

By this construction v(A,\U, A,,) = 0 for all u E U. Let B;= A,\U,,i A, 
and define the U-valued random variable V(o) = Ci UilB,(W). 

It will be shown that the posterior distributions satisfy 

F(tlu,w)rF(‘(tl V(w),w) v-a.e. (6) 

for all u E U, which is the IPD property of Definition (2.5). Let u1 be an 
element of U and v2 an arbitrary element of {u,>. Define for WE~J& 

Si(w, W) = arg min 
s f [we Wt-~)f(tl~,i,~)d~ 

and 

Mi(w, W)=infjRk W(t-s)f(tjui,o)dr. 
s 

Since all loss functions We2B0 are strictly convex, the minimal points 
Si(w, W) are uniquely defined. Let B = (o 1 S,(o, W) # S,(o, W)} and 

C=A,,nA,,= w  
i If 

f(t,ui,o)dt>O;i=1,2 

Let further D, := {tl jltll 6 a} with volume A(o,), 

and 

C,={wIh,(u,,w)>O;i=1,2}. 

Since C= UazO C, we may show that v(Bn C) = 0 by showing that 
v(B A C,) = 0 for all a. Suppose the contrary. Then 

a,(o):=iinf i J W(t--s)f(tl II,, co) dc- Mi(o, W) h,(oi, w) > 0 
5 j=l 1 
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on B n C, and therefore j a,(w) dv(o) > 0. By the adaptivity property (A), 
Theorem (2.3), and Proposition (2.4) we get 

0 = inf max 
1 J.i 

sup w(Y- f, z*(O, dY)f(z, ui, 0) dv(cu) 
T* I= 1.2 f R Rk 

- inf sup 
IS T f QL@ 

wO,- f, z(w, dY)f(f, ui3 O) dv(0) 1 
Z inf sup 

ss z* , RRk WY - f) z*cw, &I $Yk VI, 0) +.f(c v2,o)l ao) 

-; i [I,?r.c,k w(t-s)f(t)ui,0)dtf(i, Oj,O) dv(0) 
r=l 1 

1 
a- 

2 s I 
inf 

R )’ Wk 
wt-Y) 

for all is R. Taking the integral (l/n(I),)) SD, (.) di on both sides of the 
inequality we get 

0 3 4 
s 

a,(o) dv(w) 

for all u. This contradiction establishes v(B n C) = 0 and hence that 
S,(o, W) = S,(w, W) a.e. on C. 

Thus a.e. equality is true for all WE%&,. Since !!& is denumerable it 
holds a.e. simultaneously for all W. Hence we may infer from Lemma (4.2) 
that 

a.e. on C= A,, n A,,. Thus 

F(t ( 24, 0) = F(f 1 ui, co) a.e. on A,nA,#, 

which implies that 

Qtlu, w)=F(tl VW), 0) a.e. on A,,. 

This proves (6) and hence the first part of the theorem is shown. 

ssume that the experiment has independent posterior 

F(tlu,w)=F(tlw). 
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Define the estimate 

p(:(o)=infargmin W(t-~)F(dfIw) 
5 s 

which is for all UE U a.s. equal to the Pitman estimate 

!FJo)=infargmin 
s I 

IWk W(t-s)f(tlu,~)dt. 

Hence, by virtue of Theorem (2.3), 

0 < inf sup 
r’ u 

W(t- y) r*(o, dy)f(t, 2.4, 0) dv(w) 

< sup 
[ f 

sup W(t - @))f(r, U, w) du(0) - TW( T, t, U) = 0, 
u t I 

which implies that &’ is adaptive. 

(2.7) Remark. The equality of the posterior distributions does, in 
general, not imply the pointwise equality of the posterior densities. If, 
however, the following condition is satisfied 

v{o 1 t F+ f(t, U, o) is discontinuous at i} = 0 

for all in I@ and all u E U, then the IPD property may be formulated in 
terms of the posterior densities: The experiment has the IPD property iff 
the posterior densities have a product representation 

At, 24 Ia) = s(c 0). 4% 0) 

This condition can often be easily checked. 

v-a.e. 

3. EXAMPLES 

(3.1) LAN Experiments 

The asymptotic experiment belonging to a LAN-family is the gaussian 
location model described earlier: If (t, U) is the parameter vector in IF+‘, 
the normal shift model may be defined on Q = Rk + ’ as probability space by 
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The posterior density at w  = ( y, , y,); y, E !Rk, y, E R’ is 

f(fl4 (Y,, YJ) 

= 1Z,111/2(2rr-k12 exp[-+(t- y, +Z;1Z,2(y2 -u))’ 

x zl,(t - Yl + G’Z,2(Y2 - u))l. 

The IPD property is satisfied iff II2 = 0. This is in accordance with Stein’s 
result. More generally, if U is a Hilbert space and P,, is a gaussian trans- 
lation family on N= Rk x U with covariance operator S then IPD is 
satisfied if the subspaces IF@ and U are orthogonal with respect to the inner 
product induced by S (see Begun et al. [2]). Moreover, by Theorem (2.3) 
the minimax bounds for this experiment are: 

(i) for known, fixed U, 

infsup rW(r, t, U) = 5 W(.) dN(0, Z;r); 
r I 

(ii) for unknown U, 

infsupr,(r, t, u)=[ W(.)dN(O, (I,,-Z,,Z,‘Z,,)-‘). 
T 1.u 

Thus our definition of adaptivity (1.1) coincides with the usual one 
(Bickel [3], Begun et al. [2], etc.), which is based on the limiting risk for 
LAN-families. 

(3.2) LAMN Experiments 

Many limiting experiments for dependent data are of a mixed normal 
form (local asymptotic mixed normal families). For a couple of examples 
see Basawa and Scott [ 11. These experiments can be represented on a 
measurable space Rk x R’x Q,. Let p be a probability measure on Sz,. The 
density of P,, with respect to & @ 1,011 (with & being the Lebesgue- 
measures on Rk) are defined as 

d(& @i@ P) 

1 t  

= (2n)~(k+‘)‘2det(z(w)).exp -j u 

(  O (  

Z, , (o)  Z12(0) 

z (o) 

21 
z22(w) 

where 

wHZ(co)= Z,,(w) Z12(0) 
I,,(w) Z,,(o)  

,  
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is a measurable mapping from Q,, into the set of nonnegative definite 
matrices on Rk x KY’. LAN-families are included in this model by setting 
I(w) = constant. By our main theorem, a mixed normal experiment exhibits 
the property of adaptivity, iff I,Jtu) = 0 /*-a.e. (see Schick [S] for a related 
result 1. 

(3.3 ) Poisson E.xperiments 

Poisson-type experiments occur as limiting experiments for location 
parameter models with densities having jumps (see Ibragimov and 
Has’minskii [63). They can be described as follows: Let Sk+, be the unit 
sphere in Rkf’ and R = R u (a~ ). Let ~1 be a probability measure on 
s k +, x R and D a probability space rich enough to carry a Poisson process 
with intensity 1 and a sequence of i.i.d. random variables {sJo), yi(o)> 
with distribution p. 

The probability measure on Q is denoted by P* and the jump times of 
the Poisson process by {I,(o)}. The experiment d = (Q, ‘$I, { P,.u: t E I@, 
u E R’} ) is given by 

see Pflug [7]). This is a translation invariant experiment. It enjoys the IPD 
property iff the measure p is concentrated on ((Sk x (0)‘) u 
( (Ojk x S,)) x R, i.e., on orthogonal parts of Sk + ,. An an application it is 
easily seen that a location/scale parameter model of uniform densities of 
the form 

‘e, ‘.~)=~l[r-u.i+ul(X) x. t, u E R 

does not have the asymptotic adaptivity property. In contrast the model 

1 
dx, t, u) = (u _ t) - 1 [I, u,(x) 

has this property for t, u being the nuisance. 

APPENDIX 

In this appendix, a relation between the conditions (A) and (A,,) is 
shown and an auxiliary lemma is proved, Let W be a loss function from YB. 
By ‘23 we denote the set 

23 = { VE ‘113 1 V bounded and continuous, V< W}. 
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Since W is lower semicontinuous, W = supVE 8 V. By A we denote the 
family of compact sets in IV. 

(A. 1) THEOREM. Let & = (Q,, S!ln, {P: n : I E IWk, u E lJ> ) he a sequence 
of experiments. If 

(i) 8n conoerges to &= (Q, 2L { Pr,u: t E UP, ME U)) in the Sense of 
LeCam, 

(ii) for all VE 23, all finite sets U, c U and all E > 0 there is a K, E 53 
such that for all compact K I K, 

lim sup inf sup [sup r,,, ,( rx, t, u) - inf sup r,, J 5,. y( r,, , t, u)] 6 E, 
n 1.’ UEU, IEK rn ~EK 

(iir ) for all V E 23, all K E 53, and all u E U, 

lim sup inf sup r,,(r,,, t, u) 6 inf sup r&t, t, u) 
n I, reK T I 

then the condition (A) is fulfilled for the limiting experiment 8. 

Proof: Let R(u) = inf, sup, r&z, f, U) and 

g,( V, K, u) = inf sup r,. ,(r,, t, u). 
r, rcK 

Define g( V, K, U) in a similar manner. We know that 

R(u) = sup sup g( V, K, u). 
YE% KEH 

Suppose that (A) does not hold. Then there exists a K, E R and a VE 8 
such that 

inf sup [supr,(z*, t, u)-R(u)]>J>O. 
r* ucu, 1EK 

(7) 

Choose now E = 614. There is a K 2 K, and a V > V, such that 

g( v, K, u) 2 R(u) - E. 

for all UEU~. The famous minimax theorem for weakly convergent 
experiments (Le Cam [ 51 or Strasser [ 11, Corollary 62.6-J) implies that 

lim inf g,( V, K, u) 2 g( V, K, u) 2 R(u) - E. (8) ” 

On the other hand, by (iii) 

lim sup g,( V, K, u) < R(u). 
n 

(9) 

By (ii) there is a sequence of estimates IT,*) such that 

lim SUP sup [SUP r,JT,*, t, u) - g,( K K, u)l < 2.5, n UE cl, IEK 
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which implies that for sufficiently large n and all u E U,, 

The sequence {zz} has a cluster point T* (see Le Cam [5] or 
Strasser [ 11 I), which by (8), (9), and ( 10) satisfies 

r,(r*, t, 24) -R(u) d 4s 

for all u E U,, t E K. Thus 

inf sup [sup r,(r*, t, u) - R(u)] < 4s= 6, 
r’ UEU, 1eK 

which is a contradiction to (7). 

(A.2) LEMMA. Let F be a continuous distribution jiinction on Rk, such 
that j W(t) dF( t) < co for all WE ZB1,. The function 

Wwargmin W(t-s)dF(t), 
j 

WE 2x3\, 
s 

determines F uniquely. 

Proof: Let F,.(x) =jrt,,‘GJ, dF(t). The “projections” J’“, ye Qk deter- 
mine F uniquely. This well-known fact is usually called the Cramer-Wold 
device. Let 

wi. ,v, / ,(t)= @‘W+W’y-6) liry>b) 

and 

42, Y, b ) = arg min 1 W,, -“, J t - s) dF( t). 
s 

~(2, y, b) is uniquely determined, since WA, ?, h is strictly convex, continuous 
in 1, and satisfies ~(0, y, 6) E sO. Since s H s W,,, Jt - s) dF(t) is differen- 
tiable, one sees that s(& y, 6) must satisfy 

s V@(t-s(A, y,b))dF(t)= -,I+-F,(s(l,y,b)‘.y+b)]y 

with V denoting the gradient. Let C = f V2 W(t -s,,) dF(t) with V2 being the 
Hessian matrix. By the boundedness and continuity of V2E’ and F it 
follows that the limit $0, y, b) := lim,l, A-‘(~(2, y, b) -s,,) exists and 

C.S(O, y, b) = (1 -F&&y + b)) . y. 
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By considering the limit b + --co and letting y run through Rk, we see that 
C is determined by s(A, y, b) for all A, b E Q; y E [Wk. By the same argument 
F,,(& y + b) is determined for all b E Q and so is F(.). 
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