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Spatially-bound objects across diverse length and energy scales are characterized by a binding energy.
We propose that their spatial structure is mathematically encoded as information in their momentum
modes and described by a measure known as configurational entropy (CE) [1]. Investigating solitonic
Q -balls and stars with a polytropic equation of state P = Kργ , we show that objects with large binding
energy have low CE, whereas those at the brink of instability (zero binding energy) have near maximal
CE. In particular, we use the CE to find the critical charge allowing for classically stable Q -balls and the
Chandrasekhar limit for white dwarfs (γ = 4/3) with an accuracy of a few percent.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

From subatomic to astrophysical scales, spatially-bound objects
result from the interplay between attractive and repulsive inter-
actions whenever there is an energy gain. This behavior is well-
illustrated when the object can be described as composed of one
or more types of particles of mass mi . The atomic nucleus is an
obvious example, where Ebind = M − [Zmp + (A − Z)mn], with
M the nucleus mass, A the mass number, and mp(n) the proton
(neutron) mass. The instability of the nucleus under fission oc-
curs when Ebind approaches 0. In most classical and semi-classical
applications, the main focus of this work, spatially-bound objects
are solutions to the nonlinear equations modeling the system [2,3]
with energy density vanishing at spatial infinity.

In most cases the methodology is similar: spatially-localized so-
lutions are sought for certain boundary conditions; once found,
their stability under certain classes of perturbations is explored,
usually by varying one or more physical parameters. From solitons
in field theory [3,4] to stellar objects [5,6], the onset of instability
is usually identified by a growing perturbation.

In the present work we explore the physics of spatially-
localized objects using a newly proposed quantity that, as will
be shown here, discriminates between stable and unstable config-
urations without the use of perturbative techniques. Our method is
based on the configurational entropy (CE) proposed by Gleiser and
Stamatopoulos [1]. As we will see, the CE identifies both the onset
of instability of a spatially-bound configuration (the maximum in
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CE), as well as the approach towards the optimal, or most bound,
state (the minimum in CE) with an accuracy of a few percent.

We first introduce the definition of the configurational entropy.
We then explore the stability of Q -balls, soliton-like objects con-
structed from a complex scalar field that owe their stability to
a conserved U (1) global charge Q [11]. Next, we use the CE to
investigate the stability of gravitationally-bound stars known as
Newtonian polytropes [5,6], showing that the CE correctly predicts
the onset of instability known as the Chandrasekhar limit for white
dwarfs. We conclude with remarks on how to extend our approach
to general-relativistic bound states and gravitational collapse.

2. Configurational entropy

Since we are interested in structures with spatially-localized
energy, consider the set of square-integrable bounded functions
f (x) ∈ L2(Rd) and their Fourier transforms F (k). Now define the
modal fraction f (k),

f (k) = |F (k)|2∫ |F (k)|2 ddk
, (1)

where the integration is over all k where F (k) is defined and d
is the number of spatial dimensions. f (k) measures the relative
weight of a given mode k. For periodic functions where a Fourier
series is defined, f (k) → fn = |An|2/∑ |An|2, where An is the
coefficient of the nth Fourier mode. (For details see [1].) In the
continuum, we further introduce the normalized modal fraction,
f̃ (k) = f (k)/ f (kmax), where kmax denotes the mode with maxi-
mum contribution to f (k). The configurational entropy SC [ f̃ ] is
defined as

SC [ f̃ ] = −
∫

f̃ (k) ln
[

f̃ (k)
]

ddk. (2)
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The integrand f̃ (k) ln[ f̃ (k)] is the configurational entropy den-
sity. For configurations with a finite spatial extent (such as stars
with radius R , see below) one must exclude irrelevant modes
to avoid overcounting. In the spirit of Shannon’s information en-
tropy [7], SC [ f̃ ] gives an informational measure of the relative
weights of different k-modes composing the configuration: in the
1-dimensional discrete case it is maximized when all N modes
carry the same weight, the mode equipartition limit, f (ki) = 1/N
for any ki , where SC [ f ] = ln N . If only a single mode is present,
SC [ f ] = 0. SC [ f̃ ] is, in a sense, an entropy of shape, a measure
of the information content of a given spatial profile in terms of
its momentum modes. The lower SC [ f̃ ], the less information is
needed to characterize the shape. Our definition of configurational
entropy should not be confused with that used in more traditional
thermodynamic contexts, such as in protein folding [8] and the liq-
uid to glass transition [9].

3. Q -balls

Q -balls are nontopological solitons first proposed by Coleman
[11]. Since then, they have been found in many model systems
[12–17]. In their simplest rendition (the one we will adopt here),
they exist in models with a complex scalar field with a global U (1)

symmetry thus guaranteeing a conserved net charge Q . We use
the model of Ref. [18] and refer the reader there for more details.
The metric signature is (+,−, . . . ,−). The Lagrangian density is

L = ∂μφ†∂μφ − m2φ†φ + b
(
φ†φ

)2 − 4c

3

(
φ†φ

)3
, (3)

where the constants m2, b, and c are real and positive. Writing the
field as φ(x, t) = 1√

2
Φ(x)eiωt , and introducing the dimensionless

field X2 ≡ √
c/m2Φ2, angular frequency ω′ = ω/m, and spacetime

variables x′
μ = xμm, the mass-energy of a configuration is

M[X] = m3−d

√
c

∫
ddx′

[
1

2

(∇′ 2 X
)2 + 1

2

(
1 − ω′ 2)X2

− b′

4
X4 + 1

6
X6

]
≡ m3−d

√
c

E, (4)

where b′ ≡ b/(mc1/2). In this model, Q -balls exist for 2 � b′ �
4
√

3/3 � 2.309. The lower bound guarantees that Φ+ , the other
minimum of V (Φ2), exists, while the upper bound ensures that
vacuum at Φ = 0 is the global minimum. Q -balls are thus nonper-
turbative excitations of the physical vacuum at Φ = 0. Henceforth
we will drop the primes. (This means that m

√
c = 1, as we see

from definition of b′ .) As ω → 1 we approach unstable configura-
tions known as Q -clouds, characterized by small-amplitudes and
large spatial extension [19]. Q -balls are solutions of the equation

∇2
d X = −ω2 X + dV

dX
≡ U ′(X), (5)

and hence live in the “upside-down” potential −U (X). Solutions
must satisfy the boundary conditions X(0) = X0, X ′(0) = 0 and
X(r → ∞) = 0, and are possible when U (X+) < 0, which trans-

lates into the inequality ωc �
√

1 − 3b′ 2

16 . Each solution leads to a

conserved charge Q = ω
∫

ddxΦ2. (Q is in units of m2−d/
√

c.) For
each solution we can compute the binding energy Ebind = M − Q m,
where M is given in Eq. (4). Using Eq. (4) and the dimensionless
units condition m

√
c = 1, we can rewrite the net binding energy in

d = 3 as

Ebind = E − 1. (6)

Q m Q
Fig. 1. (Color online.) The solution landscape of Q -balls for the potential of Eq. (3).
The dotted (blue) lines represent contours of E/Q . The shaded region is forbid-
den by the inequality ωc �

√
1 − 3b2/16, while the bold continuous line represents

E/Q = 1. The thick dotted (red) line is the maximum of the configurational entropy
(cf. Fig. 2). Its near overlap with the E/Q = 1 line confirms that the CE provides an
efficient measure of Q -ball stability.

Each choice of b and ω corresponds to a Q -ball with binding en-
ergy given by Eq. (6), a spherically-symmetric solution of Eq. (5)
with boundary conditions specified above. Classically stable con-
figurations must have E/Q < 1. The solutions are found using
a shooting method [10] on 64-bit floating point accuracy initial
conditions, with a 4th-order Runge–Kutta code using a step size
of 0.01. To compute the configurational entropy for Q -balls and
other classically unstable configurations (E/Q > 1) we use Eq. (2),
with d = 3.

In Fig. 1 we plot the solution landscape of Q -balls as a func-
tion of b and ω. The dashed lines denote contours of constant
ratio E/Q . Q -balls exist within the central region. The bold black
line denotes the classical stability limit E/Q = 1. We also indicate
the Q -cloud region, within the classically unstable area above the
E/Q = 1 line.

In Fig. 2 we plot the ratio E/Q of Q -balls for several allowed
values of b as a function of their configurational entropy. The CE is
computed from the energy density ρ(r) for each Q -ball solution.
Each point corresponds to a solution of Eq. (5). The curves start
at the lower left and run upwards with increasing ω. Q -balls are
classically stable when E/Q < 1. There is a clear correlation be-
tween the binding energy and the configurational entropy: Fig. 1
shows the maximal CE tracing the line of instability; Fig. 2 shows
that the maximum CE overshoots the line of instability by no more
than 3%.

4. Newtonian stars and the Chandrasekhar limit

Next we investigate Newtonian polytropes and show how the
CE can determine both the region of optimal stability and the
region of instability, in particular the Chandrasekhar limit for rel-
ativistic white dwarf stars. In Newtonian gravity, stars are de-
scribed as self-gravitating objects in hydrostatic equilibrium. For
a spherically-symmetric, non-rotating configuration with pressure
P (r) and energy density ρ(r) we have [5,6],

d
[

r2 dP (r)
]

= −4πGr2ρ(r). (7)

dr ρ(r) dr
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Fig. 2. Q -ball instability ratio versus configurational entropy parametrized by the
value of ω for several values of b. Percent errors indicate the deviation of the max-
imum CE from the instability line (dashed).

Eq. (7) is supplemented by a general polytropic equation of state

P = Kργ , (8)

where the constant K depends on the entropy per nucleon and
chemical composition. No heat flow throughout the object re-
quires γ to be the adiabatic index, defined as the ratio of the
heat capacities of the fluid at constant pressure and volume.
Small mass, stable white dwarfs are well-modeled by γ = 5/3

and K = h̄2

15meπ2 ( 3π2

mNμ)5/3, where me(N) is the electron (nucleon)
mass, and μ ∼ 2 is the number of nucleons per electron. The
largest mass white dwarfs are modeled by γ = 4/3 and K =

h̄
12π2 ( 3π2

mNμ)4/3[5,6]. The binding energy for polytropes with N nu-

cleons, Ebind = M − NmN , can be written as E = − (3γ −4)
(5γ −6)

GM2

R ,

where M = ∫ R 4πr2ρ(r)dr is the star’s mass and R its radius, de-
0
fined from ρ(R) = 0. Solutions to Eqs. (7) and (8) must satisfy
ρ(0) = ρc and ρ ′(0) = 0, and are found introducing new variables
ρ(r) = ρcθ(ξ)1/(γ −1) and ξ = r/α, with α−2 = Kγ

4πG(γ −1)
ρ

(γ −2)
c .

Eq. (7) then becomes the Lane–Emden equation with boundary
conditions θ(0) = 1 and θ ′(0) = 0,

1

ξ2

d

dξ
ξ2 dθ

dξ
+ θ1/(γ −1) = 0. (9)

Solutions are found via a 4th-order Runge–Kutta method with step
size 10−3. The CE is computed from the energy density using
Eq. (2). Since stars have a finite radius (where ρ(R) = 0 or, equiv-
alently, θ(ξR) = 0), the integration is in the interval k ∈ [kmin =
π/R,∞). This ensures that only modes with wavelengths smaller
than the polytrope contribute to the configurational entropy den-
sity.

In Fig. 3 (top) the dashed lines show the energy density pro-
files for polytropes with γ = 5/3 (cold white dwarf) and γ = 4/3
(Chandrasekhar limit). The solid lines correspond to the solutions
for the minimum and maximum of the configurational entropy as
depicted in Fig. 4. The bottom graph in Fig. 3 shows the differ-
ence (�) between the two curves. The white dwarf with γ = 5/3
corresponding to a non-relativistic stable bound state is well-
approximated by the minimum of the CE, while the marginally
stable ultra-relativistic γ = 4/3 case is near the CE maximum.

Recalling the results for Q -balls, we see that the configurational
entropy provides a clear signature both for the optimal-bound
states (those with low CE) and for the marginally stable states
(those with maximal CE). Indeed, we propose that the CE offers
an independent criterion to determine the stability of spatially-
bound configurations based solely in the informational content of
their spatial profiles: the CE maximum represents the boundary
between stability and instability.

5. Summary and outlook

We have investigated an entropic measure of ordering in field
configuration space for nonlinear models with spatially-localized
energy solutions. By studying the binding energy of Q -balls and of
Fig. 3. Energy density vs. radius for polytropes with γ = 5/3 (Cold White Dwarf) and γ = 4/3 (Chandrasekhar limit). (Top) Dashed lines are solutions to the Lane–Emden
equation, while continuous lines are solutions corresponding to the CE minimum and maximum, respectively. (Bottom) The difference between the two sets of curves.
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Fig. 4. Volume averaged configurational entropy for Newtonian polytropes. Note how the CE minimum is within a few percent of the stable polytrope with γ = 5/3, modeling
non-relativistic white dwarfs, while the CE maximum is within a few percent of the Chandrasekhar limit γ = 4/3.
Newtonian polytropes as examples, we have found that this mea-
sure, the configurational entropy defined in Ref. [1], can be used to
establish the region of stability for such compact objects with ex-
cellent accuracy. In particular, the CE maximum corresponds to the
boundary between stability and instability, while optimally-bound
structures have near-minimal CE. Although we have been unable
so far to offer a formal proof relating the maximum of the config-
urational entropy to the boundary between stability and instability
of spatially-bound objects, the evidence presented here, together
we the results of Ref. [1], indicates that such proof is worth pur-
suing and that this relationship is quite general, possibly opening
a new door in the study of complex systems in nature. It is pos-
sible that the agreement found here can be improved and made
exact (within numerical accuracy) with a deeper understanding of
the physical nature of the CE and its relation to the dynamical con-
straints of bound systems. Work along these lines is in progress.

We also intend to extend this study to general relativistic sys-
tems, exploring how the CE may give an indication of gravitational
collapse such as in Oppenheimer–Snyder [5,6] or in establishing
the stability of boson stars [20]. As in Ref. [21], we will then need
a full time-dependent treatment. It is an open question whether
there is a relation between the CE and Bekenstein’s universal up-
per bound to entropy-to-energy ratio for bounded systems [22].
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