 Effects of the Geometry of the Air Flowfield on the Performance of an Open-Cathode PEMFC – Transient Load Operation

Suangrat Kiattamronga,b, Angkee Sripakagorna,b,*

aDepartment of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
bFuel Cell Research Group, Chulalongkorn University, Bangkok, Thailand

Abstract

The single-cell open-cathode PEMFC was fabricated with 100-cm2 activation area to study the influence of the geometry of the air flowfield on the performance. Six cathode flowfield plates with different channel configurations were tested and compared under limited amount of air supplied. The transient load is applied with sinusoidal variations representative of the automotive load profile. The results were compared in the form of the hysteresis loop on the polarization curve. The effect of mass transfer loss was found at the high current density region. The flowfield with high aspect ratio gave a better performance. On the other hand, the flow area played no significant effect on the performance.

1. Introduction

Due to the increasing concern on the energy security and climate situation, electric vehicle is being developed continually to replace the conventional automobiles for the past few decades. Recently, fuel cell vehicle is proposed as another promising option. A proton exchange membrane fuel cell (PEMFC) is outstanding among the other fuel cells technologies which limits in the operating...
temperature and heavy weight. The performance and the durability of the PEMFC keep improving if not for its high capital cost that put paramount constraint against its future in the automotive application [1].

To eradicate this pitfall, the open-cathode PEMFC was introduced [2]. The design goals are to increase the system efficiency and reduce the auxiliary system cost. Similar to the typical PEMFC, previous studies pointed out that air channel configuration plays a crucial role to the performance for the open-cathode PEMFC [3-6]. The PEMFC with the wider air channel behaves better due to its high rate of the dissolved air onto the MEAs [3-4] and the deeper channel can dissipate more heat from the electrical generation [4], which are in accordance with the results from the typical PEMFC [5-6]. It should be noted, however, that in these works, the variation of the channel shape had been done without the concern that the variation also changed the total flow area. Furthermore, many channel configurations were studied without the concern on the mechanical stress and the lack of the reactant uniformity leading to lower the fuel cell efficiency and short the fuel cell life [9-12]. Most of the studies are also concentrated on the natural-convection type of open-cathode design whose performance is limited because of the insufficient supplied air [7-8]. In comparison, the study on the forced-air type is rather limited.

This study attempted to illustrate the influence of the geometry of the air flowfield on the performance of the forced-air type open-cathode PEMFC in the limited but sufficient air supply condition for the sake of the compact unit. The specimens were tested under the transient load to reflect automotive operating conditions. The results were discussed comparing with the results from the steady load.

Nomenclature

Symbols

- f: friction loss coefficient
- i: current density (A cm$^{-2}$)
- I: current (A)
- K: minor loss coefficient
- L: length of the flow channel (m)
- HHV: higher heating value (J kg$^{-1}$)
- \dot{m}: mass flow rate (kg s$^{-1}$)
- N_{cell}: numbers of the fuel cells in stack
- Δp: pressure drop (N m$^{-2}$)
- P: power (W)
- R: resistance (Ω)
- Re: Reynolds number
- T: temperature (K)
- v: air velocity (m s$^{-1}$)
- V: voltage (V)
- ΔV: voltage loss (V)
- W: width of the flow channel (m)
- D: depth of the flow channel (m)
- λ: air stoichiometry
- ρ: density (kg m$^{-3}$)
- M: molecular weight (kg mol$^{-1}$)
- χ: mole ratio
- $E_{(T,p)}$: thermodynamic reversible potential
- ΔH: change in enthalpy (J mol$^{-1}$)
- n: number of transferred electron per mole
- ΔS: change in entropy

Subscripts

- air: air
- H_2: hydrogen
- $cool$: cooling
- in: inlet
- out: outlet
- $cell$: cell
- $stack$: fuel cell stack
- $prod$: product of reaction
- $react$: reactant of reaction
- cnv: convection
- rad: radiation
- fc: fuel cell
- act: activation loss
- ohm: Ohmic loss
- mt: mass transfer loss
2. Experimental Methodology

2.1 Test Unit

The single-cell open-cathode PEMFC was fabricated as the test unit. The active area of the membrane electrolyte membrane (MEA) was 100 cm2. This 5-layer MEA was for utilize with hydrogen and air. The membrane was Nafion® 112 and coated with 410-μm thickness of carbon cloth gas diffusion layer (GDL). The platinum content and loading were 60 wt% and 0.5 mg/cm2, respectively. The silicone seals were used as the gasket to prevent the reactant leakage. Its components and assembly was in Fig. 1.

![Fig. 1. (a) The components and assembly of the test unit; (b) the test unit](image)

The perforated plate was specially prepared and placed between the cathode bipolar plate and MEA to protect MEA from the damage caused by the different pressure between the air and the hydrogen channels. The 60 degree-staggered circular holes were fabricated on the 0.4 mm thin copper plate. For low contact resistance, the perforated plate was coated with gold. The clamping pressure was set at 1 MPa.

The focus of this study is on the flowfield configurations of the bipolar plates. The bipolar plates were made of the graphite plates. Six cathode bipolar plates were prepared with the different straight air flowfield configurations; two aspect ratios and three flow areas (described in Table 1). For the present study, the aspect ratio is defined as the ratio of the width divided by the depth. The parallel-serpentine flowfield was patterned on the anode bipolar plate. The hydrogen flow was designed to be dead-end mode.

The current collectors were the gold-plating machined copper plates. The thickness of the copper plates was 3 mm. There were the connector ports to link to the electronic load and the data acquisition (DAQ). The endplates were fabricated from the aluminum 7075 plates. The 6 mm inlet and outlet ports were fitted on the anode side for the hydrogen flow to the anode bipolar plate.
2.2 Forced-air supply

To properly assess the influence of the air flowfield geometry in the forced-air type unit, the air supply is selected to precisely feed sufficient air to the test cell for the electrochemical process and the transfer of heat produced from the process. The amount of air required by the fan unit is calculated from [13]

\[m_{air,in} = \frac{\lambda M_{air} N_{cell} L_{stack}}{4 x 0_{2} F} \]
\[m_{H_2,in} = \frac{M_{H_2} N_{cell} L_{stack}}{2 F} \]
\[m_{air,cool} = \frac{m_{H_2,in} H \nu H_2 - \dot{Q}_{conv} - \dot{Q}_{rad}}{c_{p,air}(T_{cool, out} - T_{cool, in})} \]

To support the desired maximum output of 30 A or 300 mA/cm² at 0.5 V, the fan unit was also needed to generate the sufficient level of pressure against the pressure drop inside the channel [13]

\[\Delta p = \sum K \rho \frac{v^2}{2} + \sum f \frac{L}{D_h} \rho \frac{v^2}{2} \]

where

\[f = \frac{55 + 4.15e^{\frac{-2.4}{\text{Re}^{0.85}}}}{\text{Re}} \]

The pressure drop in the air channel was determined, plotted and compared with the characteristic curves of the fans as shown in Fig. 2. Finally, three fans were chosen, such as, SUNON MC25100V1, MC17080V1 and MC17080V2 supplied by MMMM. The MC25100V1 model for the 2 mm²-channel can precisely supply the evaluated air flow rate, while the MC17080V1 and MC17080V2 models for 5 and 8 mm²-channels can supply at slightly higher flow rate than the requirement.
2.3 Test Rig

The test rig (in Fig. 3) was separated into three parts; the single-cell fuel cell unit, the air tunnel, and the controlling unit. From the fuel cell unit, the current collectors were wired to the DAQ and electronic load. The hydrogen inlet and outlet lines were connected to their ports on the endplate. The air tunnel part was movable to easily adjust to fit the fuel cell unit. The fan was installed on the square end of the air tunnel. The power supply for the fan was from the 5 VDC supply on the controlling unit. The controlling unit also contains the purging valve and its circuit for manual operation. The 12 VDC supply from the external source feeds the controlling unit. The hydrogen input valve was also on this unit. The hydrogen pressure from the reservoir was adjusted to 2 psi.

2.4 Experimental Procedure

As the previous work was focused on the steady load operation [14], the present experiment was conducted to the single-cell test unit under the transient load. The sinusoidal load variations with the amplitude of 15 A, the range within 0 – 30 A, with the frequency at 0.1 Hz were applied as the load profile. The ambient condition was specified at the temperature of 25°C and the relative humidity within
60-70%. The results that represent each test unit were obtained after the operation of the open-cathode PEMFC arrived at the quasi-steady state.

3. Results and Discussion

To put the present results in perspective, the previous results [14] are recalled in Fig.5. The steady-state test on the same unit revealed the drop in the performance at the high current density. In a fuel cell, the loss in the cell voltage was determined by

\[V_{fc} = E_{(T,P)} - \Delta V_{act} - \Delta V_{ohm} - \Delta V_{mt} \] \hfill (6)

when

\[E_{(T,P)} = \left(\frac{\Delta H}{nF} - \frac{T \Delta S}{nF} \right) - \frac{RT}{nF} \ln \left(\frac{\Pi a_{prod}}{\Pi a_{react}} \right) \] \hfill (7)

\[\Delta V_{act} = \frac{RT}{anF} \ln \left(\frac{i}{i_0} \right) \] \hfill (8)

\[\Delta V_{ohm} = i \cdot R_{ohm} \] \hfill (9)

\[\Delta V_{mt} = \frac{RT}{anF} \ln \left(\frac{i_L}{i_{L-i}} \right) \] \hfill (10)

Fig. 4. The results from the steady load operation [14]

The mass transfer loss is important in this high current density region [15]. Consequently, the behavior illustrated by Fig. 5 showed the importance of the air dissolvability on the MEAs in the steady operation of the open-cathode PEMFC.

Under the transient load operation, the hysteresis loops appeared instead of the polarization curves as shown in Fig. 4. For all air flow field configurations, test units can operate at the desired point. There was, however, the significant different performance from the test unit with the different aspect ratios. The test unit with the higher aspect ratio consistently performed better as its hysteresis loop was always above the other. The difference is more pronounced at the high current density region. Under the dynamic
operation, the wide air channel was suggested to be more preferable than the narrow channel in the typical PEMFC due to the same reason [16]. A further notice at low current density region showed that the 5 mm2-and-aspect ratio 0.80 channel performed at a slightly lower voltage compared to the other cases. This is despite the fact that all test units performed quite similarly at this low current density region in the steady load operation. It was observed visually later on that, for this particular case, the voltage drop is due to the water flooding.

Figure 5 illustrated on the influence of the flow area on the performance under transient operation. Like the previous results in steady-state conditions, the flow area played no effect on the fuel cell performance in the case that the sufficient and comparable air flow rate was forced through the cathode channels. There was no difference between the hysteresis loops from the test unit with different flow area as seen in Fig. 6. This also confirmed the conclusion on the previous study that the performance of the open-cathode PEMFC was strongly consistent with the air stoichiometry.

4. Conclusion

The open-cathode PEMFC was fabricated to study on the effects of different configurations of the cathode channel. Six different sets of the aspect ratio (width/depth) and the flow area are tested. All test units were supplied by the predetermined amount of air flow rate calculated to meet the electrochemical and thermal requirements. The results from the transient operation confirmed the results from the steady operation. The flow area does not have the strong influence on the fuel cell performance when the precise air flow rate is supplied. The open-cathode PEMFC tends to work better with the higher aspect ratio due
to the better dissolvability of the air on the MEAs. The aspect ratio of the air channel should not be too high, however, to avoid the issue of the mechanical stress.

Acknowledgements

This study was supported by Chula Unisearch, Special Task Force for Activating Research (STAR) and Fuel Cell Research Group of Chulalongkorn University.

References

