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The secondmessenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was re-
cently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary,
structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases
(tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous
domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by
HCO3

−, Ca2+ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor
for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC
in different human tissueswith amajor focus on the lung. This article is part of a Special Issue entitled: The role of
soluble adenylyl cyclase in health and disease, guest edited by J. Buck and L.R. Levin.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The second messenger cyclic adenosine monophosphate (cAMP)
was discovered in 1958 [1,2]. Since then, it is recognized as one of the
most important and evolutionarily conserved second messengers for
many signaling pathways [3]. cAMP can activate three main effector
proteins: cyclic-nucleotide-gated (CNG) ion channels [4], guanine-
nucleotide exchange proteins activated by cAMP (Epac) [5] and cAMP-
dependent protein kinase (PKA) [6,7].

cAMP is generated from ATP by adenylyl cyclases (ACs). There are
six different classes of ACs distributed throughout bacteria, archaea
and eukarya. These classes are unrelated in sequence and structure,
but all produce cAMP [8]. All eukaryotic adenylyl cyclases belong to
class III [3]. Vertebrate animals were felt to have only one family of
hormone and G-protein regulated enzymes with a transmembranous
component (tmAC). In mammals, this family contains nine tmACs tran-
scribed from 9 different genes, which differ in their tissue and develop-
mental expression aswell as in their regulatory properties [3,9]. In 1999,
Levin and Buck cloned a genetically unrelated AC in rat testis, guided by
a cyclase activity originally described in the 1970s that was different
from tmAC [10,11]. The activity was originally described by Braun in
1975 as a Mn2+ responsive AC in rat testis [12]. At discovery, the
enzyme was named “soluble Adenylyl Cyclase” (sAC) as it was found
ole of soluble adenylyl cyclase
L.R. Levin. Funding NIH HL-

+41 305 243 6992.
).
in the cytosolic compartment of rat testis preparations [12]. Later, it
was shown that most of sAC was not soluble in the cytoplasm, but
found in discrete locations such as the nucleus, mitochondria, centrioles
or cilia [13–15]. Fig. 1 summarizes the activation mechanisms if differ-
ent adenylyl cylcases.
2. Structure of sAC

Mammalian nucleotidyl cyclases contain two fairly well preserved
catalytic domains. These two domains (C1 and C2), by associating with
each other, form the catalytic core. The C1C2 heterodimers shape into
two sites at the interface: the active site and a degenerated, inactive
pocket [16,17]. sAC and tmACs are monomeric proteins and catalyze
cAMP production through dimerization of their two catalytic domains
[18]. They share homology of the two catalytic domains, but sAC lacks
2 hydrophobic domains, each representing 6membrane-spanning heli-
ces that localize tmAC to membranes [19].

Recently, the crystal structure of the catalytic domains of sAC was
described [17,20]. The human catalytic units reveal a secondary struc-
ture similar to the one from cyanobacteria but differences are seen in
some external loops. The cyanobacterial sAC has two fully identical
nucleotide binding sites. In contrast, only one of these sites is accessible
for ATP in the human form [20]. Interestingly, there is a sequence of 3
consecutive proline residues between C1 and C2 (220–222) locally relat-
ed to a hydrophobic patch [17]. These structures have been described as
potential protein binding sites [21]. They offer the possibility of an inter-
action area for proteins or other sAC domains [17] which could allow
dimerization of sAC splicing forms that only contain one catalytic unit.
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In contrast to other mammalians as the dog or some anthropoids,
humans have a single sAC gene [22]. By alternative splicing, several
sAC isoforms are generated [15,23,24] and an additional alternative
start site has recently been described, indicating a considerable isoform
diversity [25]. Full-length sAC (sACfl) includes an N-terminus with the
two catalytic domains (~1100 amino acids spanning 33 exons). Exclu-
sion of exon 12 generates a truncated isoform, sACt (amino acids
1–490), which contains just the two sAC catalytic domains [17]. Al-
though the half maximal stimulation for HCO3

− and the Km for Mg2+

and Mn2+ and Ca2+ are the same for sACt and sACfl, the truncated
form is 10 times more active than sACfl [10,26]. This is explained by an
autoinhibitory domain in the C-terminal tail of sACfl [27] that is not
present in the truncated form. Splice variants of the sACfl found in testis
and skeletal muscle also contain a heme-binding domain that could
bindNO or CO. A detailed description of alternative splicing in bronchial
epithelial cells will be given below.

3. Cell compartmentalization and microdomains

cAMP is a secondmessenger that can signal at different locations in a
single cell [7]. For this purpose, a tight spatial and temporal control of
the cAMP concentration is critical. The cell has two strategies to do
this. First, cAMP production and utilization are spatially confined.
Whereas tmACs are restricted to membranes, sAC can be localized
throughout the cell and is found in mitochondria, nuclei, centrioles,
the mitotic spindle [13] as well as cilia [15,28]. At these locations, ACs
are anchored together with PKA [29,30] by scaffold proteins such as A-
kinase anchoring proteins (AKAP), allowing local utilization. Second,
the diffusion of cAMP is confined by the degradation of cAMP by PDEs
Fig. 1.Regulation of cAMPproduction.Upper Panel: cAMP is produced by tmAC,which can
be stimulated by G-protein coupled receptors (GPCR). tmACs are also stimulated by
forskolin, a diterpene that is not activating sAC. tmACs require bivalent ions such as
Mg2+ and Ca2+ for the cyclization of cAMP from ATP. Calcium signals activate some of
the 9 known tmAC over calmodulin whereas calmodulin is not required for signaling in
some other tmACs. Lower Panel: sAC is stimulated by HCO3

− which is in an equilibrium
with H2O and CO2 catalyzed by carbonic anhydrase (CA). sAC also requires calcium
(independent of calmodulin) for cAMP production and is stimulated by magnesium.
Magnesium can be substituted by manganese. Middle Panel: cAMP signals over different
mechanism in the body: Protein kinase A (PKA), the guanine-nucleotide exchange
proteins activated by cAMP (Epac) and the cyclic-nucleotide-gated (CNG) ion channels.
In the nuclear compartment cAMP can affect gene expression over cAMP response
element-binding protein (CREB).
[31] and the apical actin web, which requires functioning cystic fibrosis
transmembrane conductance regulator (CFTR) in some epithelial cell
types [32]. This fence mechanism together with the local production
and utilization of cAMP creates “microdomains” of cAMP signaling.

Microdomains of cAMP signalingmay not be captured by whole cell
cAMP measurements. Better suited are measurements in intact cells
using reporter protein constructs (e.g., PKA or Epac) that allow record-
ings in subcellular compartments [33], for instance, using fluorescence
resonance energy transfer (FRET).

4. Regulation of sAC

The product of both sAC and tmAC is cAMP, but the regulation of the
two enzymes is completely different. G-protein-coupled receptors and
heterotrimeric G proteins [34] regulate tmAC, allowing a broad spec-
trum of signaling input. These regulation mechanisms do not apply to
sAC. Forskolin, a plant diterpene that binds to the degenerated pocket
of the catalytic unit of tmACs [17], triggering a strong enzymatic re-
sponse, does not affect sAC signaling. An inserted loop in the three
dimensional configuration of sAC's catalytic domains tightens the
available space in the degenerated pocket, preventing forskolin
binding [17].

sAC is directly activated by HCO3
−, leading to increased substrate

turnover and reduced substrate inhibition and by Ca2+, enhancing sub-
strate binding [35]. In this way, small changes in the intracellular con-
centration of bicarbonate and calcium ions may significantly affect
local cAMP levels [36]. Finally, sAC is sensitive to variations in intracellu-
lar ATP concentrations [37]. These regulation mechanisms have been
preserved throughout evolution from cyanobacteria to humans [17],
supporting the importance of sAC in cell signaling.

4.1. Calcium

Calcium plays a role in regulating sAC and certain tmACs. At physio-
logical concentrations, Ca2+ stimulates the tmACs AC1, AC3 and AC8
isoforms via calmodulin and inhibits AC5 and AC6 by displacing the co-
factor Mg2+ [36,38]. In contrast, mammalian sAC is stimulated by Ca2+

in a calmodulin independent way [3,26,35] by lowering the Km for
Mg2+ ATP [20]. Like other class III adenylyl cyclases, sAC requires two
divalent cations for activity. It is active if Mg2+ is the only available di-
valent ion, but addition of Ca2+ increases the affinity for its substrate
ATP to values consistent with the concentration of ATP found inside
the cells [35]. This suggests that in vivo, mammalian sAC utilizes both
Mg2+ and Ca2+, and that its activitywill be sensitive to ATPfluctuations
inside the cells. Modeling of sAC activity suggests that Ca2+ bound to
the γ-phosphate of ATP enters the catalytic site where it interacts
with specific residues in the sAC catalytic center, resulting in an “open
sAC state”. Mg2+, the second divalent metal then binds to the α-
phosphate of ATP, leading to a “closed state”. The change from “open”
to “closed” states induces the release of the β- and γ-phosphates and
esterification of the remaining α-phosphate with C3 of the ribose in
adenosine (“cyclizing”) [19].

4.2. Bicarbonate

HCO3
− stimulates substrate turnover via an allosteric change of sAC

leading to closure of the active site, recruitment of the catalytic Mg2+,
and rearrangement of the phosphates in the bound ATP as it has been
shown in the sAC homolog of cyanobacterial adenylyl cyclase (CyaC).
This facilitates cAMP formation and release [19].

Through its HCO3
− regulation, sAC has been shown to function as a

physiological CO2/HCO3
− (and thus indirectly pH) sensor in many tis-

sues [39]. The sAC-dependent mechanisms for sensing HCO3
− in extra-

cellular fluids are similar in shark gills, kidney and epididymis using
either HCO3

− movement through channels or diffusion of CO2 through
the membrane [40,41]. This becomes particularly effective when sAC
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is associated with carbonic anhydrases that regulate the HCO3
− concen-

trations [3]. Carbonic anhydrases (CAs) are zinc metalloenzymes that
catalyze the reversible hydration of CO2 to H2CO3. There are 10 enzy-
matically active members in the CA gene family. CAs I, II, III and VII are
cytoplasmic whereas CAs IV, IX, XII and XIV are membrane bound
[42]. CAs II and IV have been found in the canine airway epithelium, at
different locations between the larynx and the alveolar compartment.
While CA II is fairly evenly distributed in all compartments, CA IV ex-
pression is high in the laryngeal area and also prominent in the intratho-
racic airways,mostly in the area of the carina and the lobar bronchi [43].

The EC50 for HCO3
− of sAC in vitro is close to the normal serum con-

centration of HCO3
−, about 20 mM in mammals, implying that small

changes in HCO3
− will lead to large changes in sAC activity around this

concentration [11,35]. Intracellular HCO3
− in mammals is between 10

and 15 mM [44]. When considering the organization of cAMP signaling
in microdomains with sAC, phosphodiesterases as well as CAs, HCO3

−

can be rapidly changed either by increased CO2 production or CO2 influx
from the interstitium. This mechanism is believed to play an important
role in ciliary beat frequency (CBF) regulation as discussed below.

4.3. sAC inhibitors

Several inhibitors are commonly used to inhibit sAC. KH7 and 2′,5′-
dideoxyadenosine (ddAdo) help identifying the source of cAMP in cells
as KH7 effectively inhibits sAC-dependent cAMP accumulation without
affecting tmACs, whereas ddAdo blocks the p-site of tmAC without
affecting sAC [39]. Another potent p-site inhibitor of tmAC is ddATP,
but it can only be used in cell lysates as it does not permeate the cell
membrane [39]. The mechanism of these different binding behaviors
is still not completely understood [39]. While KH7 is the most specific
sAC inhibitor [39], it still has non-specific effects [45,46]. Based on its in-
trinsic fluorescence, its use in fluorescentmicroscopy has to be carefully
planned andwell controlled [39]. As additional inhibitors for sAC, 2- and
4-hydroxycatechol estrogens (2-CE and 4-CE) have been described [39,
47]. Interestingly and for unknown reasons, these inhibitors act on
tmAC and sAC in vitro, but only on sAC in cell-based systems [39].

4.4. sAC regulation patterns

sAC can regulate biological processes using at least two different
patterns: as a modulator of an underlying baseline amplitude or as
an on–off mechanism. The modulator function of sAC has been
found in the regulation of oxidative phosphorylation in mitochon-
dria [48] where sAC alters ATP production dependent on CO2 pro-
duction. A similar effect can be seen in ciliary beat frequency (CBF)
regulation in the airways [15] as described below. A typical example
for an on–off mechanism is the capacitation of sperm for egg fertili-
zation [49]. Sperm also uses sAC to modulate their flagellar motility
in a modulatory fashion.

5. Role of sAC in health and disease

CO2, HCO3
−, and pH/H+ are inseparably linked in biological systems.

Due to CAs, CO2 is nearly instantaneous in equilibrium with H2CO3,
which in turn rapidly dissociates into H+ and HCO3

−. Changes to any
one of these molecules are reflected by variations in the other two,
and all three (CO2, HCO3

− and pH) play central roles in biology [22].
While all cells possessmechanisms to sense and respond to changes

in CO2, HCO3
−, and H+, multicellular organisms have specialized cells

which measure intracellular HCO3
− and pHi as surrogates for the levels

of CO2, pH and HCO3
− in their immediate environment [22]. These

cells can respond to stimuli by secretion/absorption of H+, HCO3
− or

other ions, regulating the ventilatory rate to control CO2 exhalation
and change metabolism and regulation of gene expression [22].

sAC has been first detected in testes and spermatozoa. Its role was
initially thought to be confined to fertility and capacitation [50,51],
supported by the finding that sAC knockout mice were viable but infer-
tile [25]. In recent years, however, the recognition of somatic sAC func-
tions has been exploding. We will therefore provide an overview of
known sAC signaling with a major focus on the lung.

5.1. sAC in the lung

In cultures of human airway epithelial cells, we initially found 3
splice variants of sAC [15]. One variant had two catalytic domains in
theN-terminal region, whereas the two other versions initiated transla-
tion from a new ATG codon that is in frame with the C-terminal open
reading frame of the longest version. This leads to a smaller protein,
missing the first 97 amino acids, cutting out a part of the first catalytic
unit but leaving the second functional [15].

A recent detailed analysis of sAC splice variants in human airway
epithelial cells [28] identified full-length sAC andmany C2 only sAC var-
iants. The C2 only sAC transcripts could be divided into two groups.
Group 1 transcripts initiated at the original start codon with C1 disrup-
tions or deletions (i.e., skipping exon 5 or exons 3 and 5), while Group
2 transcripts initiated translation from an alternative start codon.
Many of these partially retained nucleotides from the 3′ end of previ-
ously annotated intron 4 inserting an in frame termination codon and
a new translation start codon. Given expression data and reportedwest-
ern blots, sequences of these group 2 variants are expressed and the
new exon 5 was therefore labeled 5v2. Except for full-length sAC, all
alternatively spliced variants have a complete C2 but an incomplete C1.
This is similar to the mouse somatic sAC isoform found in Sacytm1Lex/
Sacytm1Lex ‘knockout’mice, which also only contains the C2 only variant
except that transcription of this mRNA initiates from a new promoter
upstream of exon 5 and starts translation from an ATG codon in exon
6 [25].

5.1.1. Mucociliary clearance
The airways span from the nose to the respiratory bronchioles

representing the portal to the alveolar space. Besides conducting air to
the alveoli, the airways are responsible for cleaning the air from all
kinds of contaminants, such as dust and microorganisms. The major
mechanism for this process is mucociliary clearance (MCC), which is
dysfunctional in multiple chronic airway diseases such as chronic bron-
chitis and cystic fibrosis. To accomplish efficient clearance, three crucial
components must work together: proper ciliary beating, mucus hydra-
tion and composition as well as airway surface liquid availability. The
airways are covered with a carpet of cilia that provides the motor to
propel material impacting on the apical mucus out of the lungs.
Mucus-producing cells are embedded between ciliated cells in the su-
perficial epithelium and in submucosal glands. Mucus serves as a trap
for the inhaled particles. It is floating atop cilia that are surrounded by
periciliary fluid, a low viscosity layer containing glycoproteins and
other substances [52]. In this layer, cilia beat with their effective beat
from distal to proximal to propel mucus out of the airways. Cl−, Na+

and K+ channels in the apical (and K+ channels in the basolateral)
membrane of airway epithelial cells regulate the height of the periciliary
layer. cAMP signaling is critical for the regulation of some of these
channels as well as for the regulation of CBF.

5.1.2. Cilia and ciliary beat frequency
Cilia beat in a coordinated fashion, creating metachronal waves

[53]. Hydrodynamic forces passively regulate ciliary coordination
and metachronal waves. Thus, the regulation of cilia themselves be-
comes crucial. Baseline ciliary beat frequency (CBF) and changes in
CBF are modulated by cAMP, intracellular pH, Ca2+ and HCO3

−.
The effect of cAMP on the axoneme is stimulatory in mammals. It is

mediated by ciliary PKA, which phosphorylates an outer arm dynein
light chain [54]. The phosphorylation of this light chain is sufficient to
speed up microtubular sliding and CBF in paramecium. The role of sAC
in this process remains only incompletely solved. The cell has multiple



Fig. 2. Airway surface liquid (ASL) regulation in normal and CF epithelium. Left panel: ASL is mainly regulated via chloride excretion and sodium absorption. The major chloride excretion
occurs via CFTR, which is stimulated by cAMP that can arise from tmAC aswell as from sAC. CFTR is also conducting HCO3

− that can stimulate sAC and builds a self-enhancingmechanism.
The second chloride channel is dependent on calcium and functions together with potassium excretion via BK channels, which is also dependent on calcium. Sodium is absorbed via the
epithelial sodium channel (ENaC) that is inhibited by CFTR. sACwas also found in cilia, where it increases ciliary beat frequency (CBF) over the production of cAMP, an effect dependent on
intracellular HCO3

− concentrations. cAMP is locally confined by the presence of phosphodiesterases (PDE) and the actin cytoskeleton. Right panel: In patients with CF, the major chloride
transport channel (CFTR) is not working, which also leads to amissing inhibition of ENaC. Together, these changes lead to a decreased height of the ASL, which is felt to be themajor cause
of the pulmonary disease of CF patients. Additionally, HCO3

− cannot get into the cells and cannot stimulate ciliary beating, which further decreases mucociliary clearance.
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possibilities to increase the cAMP over G-protein coupled receptors,
such as β2 adrenergic [55] and adenosine 2b receptors [56], but it is un-
clear whether cAMP produced in the cytosol can diffuse into cilia in rel-
evant concentrations. The exact mechanisms of how G-protein coupled
receptors increase beating frequency remains incompletely understood
as tmACs were not found in ciliary membranes [57]. We speculate that
sAC must play a role as it is the only known intraciliary source of cAMP
[28].

Cells can also increase Ca2+ and stimulate calcium-sensitive tmACs
[57] or sAC to increase cAMP. Elevation of [Ca2+]i is associated with an
increase of CBF in mammals. The changes in CBF initiated by Ca2+ re-
quire only small elevations of Ca2+ and occur within one beat cycle
[58,59]. The mechanism of Ca2+-mediated changes of CBF is not fully
understood, but seems at least in part to be a consequence of a direct
Ca2+ action on a ciliary target [58]. On the other hand, it has also been
shown that increased Ca2+ can have an effect on CBF via cAMP, likely
through sAC [60].

CBF is reacting to intracellular pH changes [61], whereas extracellu-
lar pH barely affects the frequency [62,63]. This effect is independent of
protein kinases and phosphatases [61] and supports a direct effect of pH
on the axoneme.

Finally, CBF is modulated by HCO3
− in a pH-independent way via

production of cAMP by sAC [15,64]. It has been shown that theHCO3
− re-

lated increase in CBF can be blocked by the sAC inhibitors KH7 and 2-CE
and PKA inhibition, but not by inhibition of tmAC [15].

Given the splice variants in airway epithelial cells described above,
we wanted to know which one of these was targeted to cilia. One of
the splice variants, spanning the two new exons 5v2 and 12v2, encodes
a ~45 kDa protein which is about the size of the ciliary variant detected
in cilia by western blotting [15,28]. When this variant was expressed in
human andmurine airway epithelial cells, it was indeed found in cilia. In
vitro, a discovered cytoplasmic variant containing both catalytic do-
mains (similar to truncated sAC, ~55 kDa) was producing cAMP but
the ciliary variant was not. While C2 sAC KO mice lost their sAC-
dependent CBF control, recombinant expression of the ciliary sAC vari-
ant rescued CBF regulation in a sAC-dependent manner, suggesting
that this variant was active in vivo. On the other hand, expression of
the cytoplasmic variant did not rescue CBF, indicating that cAMP pro-
duced by this splice, which was active in vitro, could not freely diffuse
into cilia. In summary, analysis of sAC variants revealed for the first
time a mammalian axonemal targeting sequence. The ciliary variant in-
deed rescued sAC-dependent CBF regulation in C2 KO mice despite
having only a complete C2 domain, suggesting that this variant recruits
a C1 domain donor for activity [28].

5.1.3. Regulation of airway surface liquid and the periciliary fluid
The airway epithelium uses apical ion transport to regulate the vol-

ume and composition of the airway surface liquid (ASL) to optimize
MCC [65]. In the airways, luminal chloride secretion via cystic fibrosis
transmembrane conductance regulator (CFTR) and other Cl− channels
as well as a balance of Na+ absorption is essential for maintaining
adequate ASL volume. Current evidence suggests that changes in ASL
volume and composition are essential in the pathogenesis of cystic fi-
brosis lung disease [66]. CFTR is regulated by cAMP, partially related to
sAC [67]. Besides chloride, CFTR may conduct (or absorb) HCO3

− along
a concentration gradient in some epithelial cell types. There are also
Ca2+ dependent chloride channels in the apical membrane (CaCC).
They are stimulated via Ca2+ release after purinergic stimulation of
P2Y2 receptors. The driving force of this chloride outflow is provided
by a Ca2+ activated and voltage-dependent potassium (BK) channels
[68].

5.1.4. Cystic fibrosis and sAC
Cystic fibrosis is clinically dominated by inflammation and infection

[69]. Inflammatory stimuli control CFTR expression at both transcript
and protein levels [70–72]. CFTR is subject to complex and integrated
phosphorylation and dephosphorylation, regulated by multiple en-
zymes including PKA, PKC, Src tyrosine kinase, AMP-dependent kinase,
and phosphatases. However, the major function of the CFTR protein
appears to be that of a PKA-activated anion channel [73].

After Cl−, HCO3
− is the second most important anion transported

through CFTR. This was first supported by the observation that pancre-
atic secretions of cystic fibrosis patients do not contain HCO3

− [74]. Sub-
sequently, direct HCO3

− transport by CFTR was documented by several
studies in digestive epithelial cells [75]. Similar results were found in
the pulmonary tract [76]. In addition, secretions from submucosal cells
are particularly acidic in cystic fibrosis [77]. CFTR has a dual relation to
HCO3

− in the airways: On the one hand, HCO3
− is transported through

CFTR and on the other hand its function can be regulated by HCO3
− via

sAC (Fig. 2).
It is well established that CFTR is activated by cAMP [78] and sAC

contributes. Indirect evidence for this contention was provided by the
observation of bicarbonate-induced phosphorylation of CFTR in corneal
epithelial cells [79]. The study suggested that sAC coupling to CFTR

image of Fig.�2
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forms an autoregulatory mechanism for HCO3
− transport by CFTR.

Further studies extended the sAC regulation of CFTR to the airway epi-
thelium where CFTR and its HCO3

− transport function play a crucial
role in the innate defenses of the lung. A stimulation of CFTR-
mediatedwhole cell currents byHCO3

− in Calu-3 cells could be inhibited
by the sAC inhibitor 2-CE [67]. In the same cell type, another study
observed a strong dependence of CFTR expression on the amount of
HCO3

− in the culture medium [70]. This dependence was associated
with increased cAMP production as well as increased CREB phosphory-
lation. Both CREB phosphorylation and induction of CFTRbyHCO3

−were
inhibited by 2-CE, suggesting that sAC plays a role. These observations
suggest that sAC may regulate CFTR function both at the transcriptional
and at the posttranslational level.

As previously mentioned, we found a sAC-dependent stimulation of
CBF [15]. In cells of healthy lung donors, but not in cells from patients
Fig. 3. Bicarbonate in the airways of healthy controls and patients with CF. A: Distribution of CFT
the apicalmembrane of secretory cells aswell as in the ciliated cells. There is also considerable a
in submucosal cells and excreted to the airway lumen. From there it can get into ciliated cells by
about 5% CO2 in a surrounding of humid, 100% saturated air conditions. This spontaneous HCO
submucosal cells. C: In the airways of CF patients, the HCO3

− cannot be excreted from the produ
enhanced by the presences of carbonic anhydrase.
with CF, apical stimulation with HCO3
− increases CBF [64]. In addition,

CFTRinh172 is inhibiting the HCO3
− effects on CBF, pointing to the impor-

tance of CFTR. Apical or basolateral permeabilization of CF cells,
allowing transmembranous HCO3

− transport, showed an increase of
CBF similar to normal cells. HCO3

−-mediated CBF regulation was due to
sAC activity as shown by increases in cAMP using FRET measurements
and inhibition of cAMP production and CBF regulation by the sAC inhib-
itor KH7 [64].

HCO3
− comes from different sources in the airways (Fig. 3). Submu-

cosal glands secrete HCO3
− as shown in pig airways [80,81]. Airway in-

fections with Pseudomonas aeruginosa and Klebsiella pneumonia were
shown to increase IL-17A [82,83], which increased HCO3

− secretion
[84], suggesting an increased airway HCO3

− concentration during ex-
acerbations of CF, possibly balancing the increased acidification that
may still shift ASL pH into an acidic state. Reaction of CO2 with H2O
R (yellow circle) in different cells of the airway epithelium shows that CFTR is localized to
ccumulation of CFTR in the submucosal glands. B: in the healthy airwaysHCO3

− is produced
the CFTR. HCO3

− is also produced in the airways spontaneously as the exhaled air contains
3
− production is enhanced by the presence of carbonic anhydrase that is excreted from the
cing cells and HCO3

− cannot get into ciliated cells, not even if the concentration is strongly

image of Fig.�3
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occurs in the airways. This reaction is fairly fast, even in the absence
of CA. Exacerbations of severe pulmonary diseases may also be asso-
ciated with alveolar hypoventilation leading to increased CO2. To-
gether, these mechanisms indicate that there is increased
availability of HCO3

− in the airway lumen during exacerbations of air-
way diseases.

CFTR allows bidirectional Cl− and HCO3
−
flux depending on electro-

chemical gradients. Different conductance directions for chloride in
sweat glands and in the airways exemplify this principle. The discussed
possibility of increased luminal bicarbonate content during airway dis-
ease exacerbations may be a driving force for its conductance into air-
way epithelial cells. Submucosal glands can produce 20 meq/l HCO3

−

(10, 43), which is probably increased by intraluminar production as
mentioned above. Intracellular HCO3

− concentrations are described be-
tween 10 and 15 mM in mammals [44]. Based on these concentrations,
an influx of HCO3

− from the airways into cells, particularly during dis-
ease exacerbations when intracellular HCO3

− concentration is lower
and the extracellular concentration is higher can lead to stimulation of
sAC to increase CBF, when it is most needed. In case of malfunctioning
CFTR, there is a decreased secretion of HCO3

− in the submucosal glands
and a decreased influx to ciliated cells, indicating the lack of an impor-
tant rescue mechanism of mucociliary clearance in patients with cystic
fibrosis at baseline and particularly during exacerbations. It has to be
emphasized that this model needs further experimental confirmation
as the here mentioned concentrations of HCO3

− are estimated, but
not measured, which is also true for the apical membrane potential
of the ciliated epithelial cells. Additionally, the observed effects
may be related to altered regulation of other membrane trans-
porters, not only malfunctioning CFTR.

5.1.5. Possible function of estrogens in airways
It is well established that females with cystic fibrosis have a poorer

prognosis thanmales [85–87]. 17β-estradiol (E2) has been shown to in-
crease ENaC activity in alveolar cells of healthy donors [88] and bronchi-
al epithelial cells of women with cystic fibrosis [89]. It has also been
shown that the amiloride sensitive nasal potential in women with CF
was higher during the luteal phase compared to the follicular phase
[90], although we did not find different currents in postmenopausal
women compared to females in the reproductive age (unpublished
data). Tarran also showed recently that estrogen decreases UTP
depended Ca2+ regulation of ASL height [91].

As we have described above, sAC is involved in the regulation of
CFTR and CFTR is an important regulator of ASL volume. Catechol
estrogens inhibit sAC at an IC50 of 1 μM. The IC50 of tmAC is about
100 times higher (100 μM) [47]. Cytochrome P450 1B1 produces
catechol-estrogens by hydroxylation of E2 at a 2′ (2-hydroxy 17β-
estradiol) or 4′ (4-hydroxy 17β-estradiol) position. Interestingly,
microarray data from airway epithelial cells from cystic fibrosis
patients show a significant expression of cytochrome P450 1B1
(GDS4252), indicating a possible increased concentration of cate-
chol estrogen in the airway epithelium of women with CF. These
findings allow hypothesizing a possible role of the described worse
clinical presentation of women with CF by inhibition of sAC via
increased levels of catechol estrogens.

5.1.6. Role of sAC in the pulmonary endothelial barrier function
sAC as well as bicarbonate transporters have been described in

the arterial and venous pulmonary circulation, but only in the
venous endothelium a bicarbonate cAMP response was found [92].
Interestingly, cAMP produced by tmAC in the endothelium leads to
tightening of the endothelial barrier, whereas sAC activation leads
to a weakening of the junctions [92]. This is a clinically important
finding as it suggests to not use bicarbonate infusions in patients un-
dergoing permissive hypercarbia in the context of low volume, lung
protective ventilation [93] as this may worsen the lung damage in
ARDS.
5.2. Role of sAC in other organs

5.2.1. Testis and sperm
sAC isoforms enriched in the testis are involved in sperm motility

[94,95] and maturation [95]. sAC mRNA in testes is localized in cell
types of late stages in the spermatogenesis, i.e., from round spermatids
to early elongated spermatids [96]. The high observed expression levels
may indicate an important role for sAC in generating cAMP in spermato-
zoa required for either sperm maturation, initiation of motility, and/or
the acrosome reaction. Moreover, it has been suggested that sAC is pro-
duced as a high-molecular-weight precursor protein that is converted
to the active form by proteolytic cleavage as the sperm cells proceed
through the epididymal tract [10,11]. It was therefore postulated that
the activation of sAC results in an increase of the intracellular concentra-
tion of cAMP and the induction of the signaling cascade, leading to com-
pletion of sperm maturation. Alternative splicing of sAC mRNA may be
an additional mechanism responsible for the production of the shorter,
active isoform of the enzyme [23].

Interestingly, targeted disruption of a number of genes [97–99],
either suggested or shown to be involved in the cAMP-dependent path-
way leading to spermmaturation, resulted in fertility defects that were
mainly due to impaired sperm motility.

5.2.2. Pancreas
There are proposed roles for sAC in exocrine and endocrine pancre-

atic function. β-cells release insulin in response to various stimuli in-
cluding hormones, neurotransmitters and blood glucose levels. It was
known for decades that an increase in external glucose concentration
stimulates cAMP production while modulating the release of insulin
[100] but the source of this cAMP remained unknown until recently
[101] when a study using INS-1E insulinoma cells showed that glucose
and GLP-1 produce cAMP with distinct kinetics via different adenylyl
cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein-
responsive tmACs. In contrast, glucose leads to a delayed cAMP rise
mediated by HCO3

−, Ca2+, and ATP-sensitive sAC. These results demon-
strate that sAC- and tmAC-generated cAMP define distinct signaling
cascades in glucose metabolism [102].

5.2.3. Kidney
Several studies suggested the presence of various sAC splice variants

in the kidney [11,24,103,104]. Immunohistochemistry revealed that sAC
(or at least a subset of sAC variants) is preferentially expressed in cells of
the medullary and cortical thick ascending loop of Henle (TAL), in cells
of the distal tubule (DT) and in cells of the collecting duct (CD) [103,
104]. Because sAC is present throughout the nephron, it is a good candi-
date to integrate external (tubular fluid) and internal (plasma, renal in-
terstitium) signals with appropriate responses through cAMP signaling.

Using epididymal proton-secreting cells as a model system, another
group identified sAC as a sensor that detects luminal bicarbonate and
activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP
to regulate tubular pH. Renal intercalated cells express sAC and respond
to cAMP by increasing proton secretion, supporting the hypothesis that
sAC could function as a luminal sensor in renal tubules to regulate acid–
base balance [105].

Furthermore, sAC is involved in blood pressure homeostasis since
specific sAC inhibition by KH7 results in reduced Na+ reabsorption
[103]. Epithelial sodium channel (ENaC), Na+/K+-ATPase, andmineral-
ocorticoid receptor (MR) expression may involve binding of phosphor-
ylated CREB-p to CRE at the promoter level [106–108]. A recent study
showed that inhibition of sAC by KH7 significantly reduced CREB-medi-
ated promoter activity. Furthermore, KH7 and anti-sAC siRNA signifi-
cantly decreased mRNA and protein levels of the α subunits of ENaC
and Na+/K+-ATPase. Using atomic force microscopy, significant endo-
thelial cell softening was seen after sAC inhibition. This suggests that
sAC is a regulator of gene expression involved in aldosterone signaling
and an important regulator of endothelial stiffness [109].
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5.2.4. Nervous system

5.2.4.1. Regulation of breathing. Themajor regulators of acid base are the
kidney and the respiratory system. While the kidney is responsible for
excreting accumulated acid and retaining HCO3

−, the respiratory system
serves as a fast adjustable switch of CO2.While regulation by the kidney
takes place in the organ itself, the ventilatory part of the respiratory
function is regulated by chemoreceptors outside the lung, namely in
the carotid and aortic bodies and the brain stem.

Themajor determinant of the respiratory ventilatory rate is the arte-
rial partial pressure of CO2. Until recently it was felt that the peripheral
chemoreceptors were the major O2 sensor while central chemorecep-
tors contributed predominantly to the CO2/pH ventilatory response
[110]. Recent evidence suggests that central and peripheral chemore-
ceptors interact with each other and that the peripheral sensors can
modulate the central sensitivity to CO2/pH [111], recognizing the
importance of a functional carotid body for the full response to hyper-
capnia. In this context, it is interesting that there is a correlation
between central sleep apnea and asymptomatic carotid stenosis [112].

There has been a long debatewhether it is pH or CO2 that drives ven-
tilation. sAC investigators got interested in this when elevations in pCO2

were reported to increase cAMP in glomus cells of the carotid body
[113]. sAC expression was found in the carotid body and related non-
chemosensitive structures [114]. Transduction of the hypercapnic stim-
ulus into a functional chemoafferent neural signal involves many of the
same processes associated with hypoxia sensing. These include type I
cell depolarization, Ca2+ influx and neurosecretion [115]. However,
identification of the specific CO2 sensing mechanisms in type I cells in
response to hypercapnia, remains incompletely defined. Until recently
it was also unknown whether CO2 sensing is mediated by CO2/HCO3

−,
decreases in pH or both [110]. In 2013, Nunes et al showed that sAC
does not have a physiologically role in the cAMP production in isohydric
hypercapnia in the carotid body because: sAC expression is lower than
tmAC expression, changes in cAMP are not dependent on different
HCO3

− and CO2 concentrations and not influenced byKH7. No PKA activ-
ity could be registered upon different concentrations of HCO3

− [110].
These findings suggest that the enhanced cAMP generation and carotid
body chemoafferent discharge frequency associated with an increase in
CO2 is not mediated directly by CO2/HCO3

−, but is possibly a conse-
quence of a concurrent elevation in intra- and extracellular H+ genera-
tion [110].
5.2.4.2. Other CNS functions of sAC. In the choroid plexus, CO2metabolism
has long been linked to cerebrospinal fluid (CSF) secretion [116]. sAC
mRNA [117], protein [11] and activity [118] have been demonstrated
in the choroid plexus, and it can be hypothesized that HCO3

− regulation
of sAC plays a role in CSF homeostasis. In fact, some splice variants of
sAC [119] are involved in a novel mechanism of metabolic coupling
between neurons and astrocytes. It was shown that sAC is highly
expressed in astrocytes. HCO3

− activation of this enzyme via the
Na-HCO3 co-transporter (NBC), by either high [K+] or aglycemia, in-
creased intracellular cAMP, which leads to glycogen breakdown and
the delivery of lactate to neurons for use as an energy substrate
[119].

sAC is also present in developing neurons, where, depending on the
origin of the neuron, it is located in cell bodies, dendrites, axons and/or
growth cones [120]. The effects of sAC overexpression, namely axonal
outgrowth and elaboration of growth cones, resemble morphological
changes elicited by the treatment of axons with netrin-1. In cultured
dorsal root ganglia and spinal commissural neurons, sAC inhibition, ei-
ther by KH7, catechol estrogens or siRNA, blocked netrin-1-induced
growth cone elaboration and axonal growth [120]. Using pharmacolog-
ical and siRNA approaches, it was found that sAC activity is required for
netrin-1-induced cAMP generation leading to netrin-1-mediated
growth cone elaboration and axon outgrowth [120].
5.2.5. Eye
In both the corneal endothelium [121] and ciliary body [122], HCO3

−

stimulates fluid secretion. A role for sAC was first suggested by the ob-
servation that HCO3

− stimulates cAMP production in homogenates
from both tissues [118]. Subsequent to its molecular isolation, sAC was
confirmed to be present in primary cultures of bovine corneal endothe-
lial cells, and sAC activation increased CFTR dependent secretion of Cl−,
HCO3

− and/or ATP [123]. Although these studies were performed prior
to the availability of sAC-selective inhibitors, all data suggest that
cAMP produced by sAC stimulates PKA phosphorylation of apical
CFTR, thus increasing apical Cl− permeability [123,124]. It was also
demonstrated that higher HCO3

− in culturemedia increased sAC expres-
sion in corneal endothelial cells [125].

A role for sAC was also investigated in retinal ganglion cells (RGCs).
Retinal cells express HCO3

− transporters and carbonic anhydrases [126,
127]. Krebs cycle-derived HCO3

− activates mitochondrial sAC, which is
a critical metabolic sensor and modulates oxidative phosphorylation
[48,128]. Inhibition of sAC activity in RGCs using 2-CE [103] or
anti-sAC shRNA decreased RGC survival, while HCO3

− [125] in-
creased survival and axon growth in RGCs [129]. Another study
showed that relative levels of phosphorylated CREB and phosphory-
lated Bcl-2 were decreased in corneal endothelial cells treated with
2-CE or sAC siRNA, suggesting that HCO3

− dependent endogenous
sAC activity can mobilize anti-apoptotic signal transduction [130].

5.2.6. Skin
Because cAMP plays a vital role in the proliferation, differentiation,

and expression of key proteins in keratinocytes, the expression and lo-
calization of sAC were examined in normal and diseased human skin
[131]. sAC was upregulated in the nuclei of keratinocytes in certain
hyperproliferative skin diseases, including psoriasis and squamous cell
carcinoma (SCC) in situ. Interestingly, sAC was lost from the nucleus
when a malignant epithelial tumor acquired invasive properties in the
dermis. The same group previously demonstrated that nuclear sAC
was associated with activated CREB and found this trend to also exist
in human psoriasis lesions [132]. These data shed light on the com-
plexity of cAMP signaling in skin diseases and suggest that sAC
might represent a key player in the pathogenesis of hyperproliferative
skin disorders.

6. Summary

Soluble adenylyl cyclase represents a source of cAMP that can be
increased via bicarbonate. Because cAMP is a ubiquitous intracellular
signaling messenger, the potential physiological effects subjected to
sACmodulation aremultiple and they include proteins directly sensitive
to cAMP like cyclic nucleotide-gated ion channels, exchange proteins
activated by cAMP (Epac), aswell as proteins sensitive to Epac signaling
and PKA-phosphorylation. Immunolocalization studies reveal that
sAC is expressed in many tissues, which respond to bicarbonate or
carbon dioxide levels suggesting that sAC may function as a general
bicarbonate/CO2 sensor throughout the body and thus play a funda-
mental physiological role.
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