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Cystic Fibrosis (CF) disease is caused by mutations in the CFTR gene (CF transmembrane conductance regulator).
F508 deletion is themost representedmutation, and F508del-CFTR is absent of plasmamembrane and accumulates
into the endoplasmic reticulum (ER) compartment. Using specific Ca2+ genetics cameleon probes, we showed in
the human bronchial CF epithelial cell line CFBE that ER Ca2+ concentration was strongly increased compared to
non-CF (16HBE) cells, and normalized by the F508del-CFTR corrector agent, VX-809. We also showed that ER
F508del-CFTR retention increases SERCA (Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity whereas PMCA
(Plasma Membrane Ca2+ ATPase) activities were reduced in these CF cells compared to corrected CF cells
(VX-809) and non-CF cells. We are showing for the first time CFTR/SERCA and CFTR/PMCA interactions that
are modulated in CF cells and could explain part of Ca2+ homeostasis deregulation due to mislocalization of
F508del-CFTR. Using ER ormitochondria genetics Ca2+probes,we are showing that ER Ca2+ content,mitochondrial
Ca2+ uptake, SERCA and PMCA pump, activities are strongly affected by the localization of F508del-CFTR protein.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cystic Fibrosis (CF) disease is characterized by abnormal gastro-
intestinal and pulmonary epithelial ion transport and viscous mucus.
CF is an autosomal recessive disease caused by mutations in the CFTR
gene. Normally, CFTR (Cystic Fibrosis Transmembrane Conductance
Regulator) protein is localized at the apical plasma membrane from
epithelial cells, acting as a cAMP-regulated anion channel [1–3].
Currently, more than 1900 mutations in the CFTR gene are identified
and classified regarding their consequences onCFTR activity, expression
or localization. The most common mutation is a deletion of a phenylal-
anine at position 508 (F508del-CFTR), which confers an abnormal
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conformation to F508del-CFTR and its recognition by several endoplas-
mic reticulum (ER) chaperone proteins, like calnexin [4,5], calreticulin
[6], HSP 70 [7,8] and HSP90 [9]. These chaperones trapped F508del-
CFTR into the ER lumen in order to restore its standard conformation,
and to process the misfolded protein towards degradation, leading
to the absence of the CFTR protein at the cell surface. The absence of
F508del-CFTR protein at the plasma membrane and its ER retention
will have several significant consequences on a number of directly
CFTR associated functions and on cellular mechanisms regulated by
protein complexes including CFTR [10–12].

Since the last decade, several groups described a non-intuitive
consequence of CFTR mutation, which is an important deregulation
Ca2+ homeostasis in CF cells. Ca2+ signaling deregulations were ob-
served in several epithelial cell lines and also in primary epithelial cells
[13,14]. Interestingly, two hypotheses coexist in the literature to explain
the CF epithelial cells Ca2+ phenotype. Thework done by Ribeiro and col-
leagues Boucher's group showed that Ca2+ deregulation in CF epithelial
cells results from persistent infection in CF cells and not directly from
the presence of a mutated CFTR [15,16]. Others studies realized in the
absence of infectious factors showed in CF epithelial cell lines and CF
epithelial primary cells several deregulations of Ca2+ signaling directly
related to the mutated CFTR localization. OAG-mediated TRPC6 Ca2+

entry was demonstrated to be abnormally increased in CF epithelial
cells and this deregulation was reversed by pharmacological restoration
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of F508del-CFTR trafficking to cell surface [17,18]. In primary epithelial
cells, 2D epithelium and cultured epithelial cell lines, Store Operated
Ca2+ Entry (SOCE) appears significantly increased in CF cells, due to an
increased in Orai1 channel plasma membrane insertion [19]. IP3R medi-
ated ER Ca2+ release was also abnormally increased in CF epithelial cell
lines [20,21]. Mitochondria Ca2+ buffering activities were also showed
to be deregulated in CF epithelial cell lines [22–24]. This CF abnormal
Ca2+ phenotype takes a great importance in the CF physiopathology.
Calcium is a universal second messenger controlling numerous cellular
protein activities such as ion channels and enzymes involved in diverse
cellular processes such as cell proliferation [25,26], ionic secretion [27,
28], ciliary beat frequency [29,30], inflammation [23], proteinmaturation
[31] or trafficking [32,33]. Importantly, an uncontrolled and persistent
deregulation of intracellular Ca2+ concentration will lead to pathological
processes like apoptosis or to deregulation of Ca2+ dependent pathways.
In every cell, intracellular calciumconcentration ([Ca2+]intr) and calcium
fluxes are tightly controlled by an organelle compartmentalization of
Ca2+ ions (ER, Mitochondria) and via the fine tuning of Ca2+ permeable
ion channels and Ca2+ transporter activities. Among them SERCA
(Sarcoplasmic/Reticulum Ca2+ ATPase) and PMCA (Plasma Membrane
Ca2+ ATPase) CalciumATPase localized respectively at the ERmembrane
and plasma membrane, and Mitochondrial Ca2+ Uniporter (MCU)
[34–36] localized atmitochondrialmembrane, are essential in the control
of the [Ca2+]intr.

However, all the previous publishedwork related to deregulations in
Ca2+ signaling in CF cells had never explored the impact of F508del-CFTR
mutation expression on organelles Ca2+ homeostasis with a direct ap-
proach. In the current study, we deciphered the consequence of F508del
CFTRmutation on both cytoplasmic, ER andmitochondrial Ca2 homeosta-
sis using cameleon ER or mitochondrial targeted Ca2+ probes in well
characterized CF (CFBE) and non-CF (16HBE) bronchial epithelial cells
lines [37]. We are showing that ER Ca2+ content is strongly increased in
CF cells and SERCA and PMCA Ca2+ pumps activities are greatly
deregulated in CF cells probably as a consequence of their interaction
with the CFTR channel.
2. Materials and methods

2.1. Materials

Thapsigargin, ATP and Carbonyl cyanidem-chlorophenyl hydrazone
(CCCP) were obtained from Sigma. Acetoxymethyl ester form of Fura-2
(Fura-2/AM) was purchased from Molecular probes Europe (Leiden,
the Netherlands). The ER-targeted and mitochondrial-targeted
cameleon probes D1ER and 4mitD3cpv were kindly provided by
Drs. Amy Palmer and Roger Tsien. Forskolin and genistein are from LC
Laboratories.
2.2. Cell culture

CFBE (CFBE41o-) and 16HBE (16HBE14o-) cell lines originally devel-
oped by Dr. Gruenert, were generously provided by Pr Karl Kunzelmann
from the University of Regensburg (Deutschland). BHK cell lines stably
expressing F508del-CFTR and Wt-CFTR were obtained from Dr. John
Hanrahan from McGill University (Canada). Each cell line was grown
in Dulbecco's modified Eagle's medium completed with 10% Fetal
Bovine Serum and 1% penicillin/streptomycin, and incubated at 37 °C
and 5% CO2.
2.3. Iodide efflux

CFTR channels activity was assayed on epithelial cell populations by
the iodide (125I) efflux technique as described [38,5].
2.4. Cytosolic Ca2+ imaging

For Ca2+ imaging, cells were plated on 18 mm glass cover slips.
Changes in cytosolic Ca2+ concentration were measured with Fura-2.
Cells were loaded with 4 μM Fura-2/AM plus 2 μM pluronic acid for
45 min in the dark at room temperature in a medium containing (in
mM): 135 NaCl, 5 KCl, 1 MgCl2, 1.8 CaCl2, 10 Hepes, 10 glucose, and pH
adjusted at 7.45 with NaOH. Cells were washed twice and equilibrated
for 10–15 min in the same buffer to allow de-esterification of the dye.
Ratiometric images of Ca2+ signals were obtained using a microscope
(IX71, Olympus) equipped with a monochromator illumination system
(Polychrome V, TILL Photonics). Emission was collected through a
415DCLP dichroic mirror, by a 14-bit CCD camera (EXiBlue, Qimaging).
Image acquisition and analysis were performed with the Metafluor 6.3
software (Universal Imaging, West Chester, PA, USA). Experiments were
performed at room temperature in Hepes-buffered solution containing
(in mM): 135 NaCl, 5 KCl, 1 MgCl2, 1.8 CaCl2, 10 Hepes, 10 glucose, and
pH adjusted at 7.45 with NaOH. The Ca2+-free solution contained 1 mM
EGTA instead of 1.8 mM CaCl2.

The amplitude of SOC influx and TG-mediated Ca2+ release was
measured by calculating the difference between the basal and maximal
ratio. The rate of TG induced Ca2+ release or SOCE is approximated by the
maximal speed of Ca2+ concentration increase (first derivation of the sig-
nal). ATP induced signals were measured with the area under curve
(a.u.c.) of the signal (arbitrary unit, a.u.). PMCA activity was estimated
by the time constant τ when a single exponential fits the decrease in
the signal.

2.5. ER and mitochondrial Ca2+ measurements

CFBE and 16HBE cells were transiently transfected using LipoD293
(Tebu-bio) with 2 μg of cDNA encoding the D1ER or 4mitD3cpv con-
struct 48 h before the experiments. Ratiometric images of Ca2+ signals
were obtained using a microscope (Axio Observer, Zeiss) equipped
with a Lambda DG4 illumination system (Sutter Instrument Company,
Novato, CA, USA). Cells were illuminated at 440 nm (440AF21; Omega
Optical), and emission was collected through a 455DRLP dichroic mirror,
by a cooled, 12-bit CCD camera (CoolSnap HQ, Ropper Scientific, Trenton,
NJ, USA) alternatively at 480 nm (480AF30; Omega Optical) and 535 nm
(535AF26; Omega Optical). [Ca2+]ER was calculated as previously de-
scribed [39] from D1ER ratios using the equation.

R ¼ Rminþ Rmax−Rmin½ �=1þ 10 LogK0d−Log Ca2þ½ �ERð Þh� �
. Where Rmin

and Rmax are the minimal and maximal ratio obtained using appropriate
solutions, K′d is the apparent dissociation constant, and h is the Hill
coefficient derived from the in situ Ca2+ titration of the D1ER probe in
semi-permeabilized cells.

To quantify ER Ca2+ refilling and mitochondrial Ca2+ uptake, the
slope of the increase of FRET signal was determined by a linear fit. The
amplitude of ER Ca2+ depletion and mitochondrial Ca2+ uptake was
also measured by the difference between basal and TG response and
between peak of Ca2+ uptake and the end of TG response in Ca2+

free, respectively. To measure Ca2+ leak rates of the ER, passive ER
depletion was induced by TG and the D1ER responses were fitted with
a one-phase exponential decay function to extract the half-time (τ1/2).

2.6. Western blot

Protein extraction was performed with a lysis buffer (in mM): 20
Tris HCl pH 7.5, 150 NaCl, 1 EDTA, 1 EGTA, 1% Triton X100, 2.5 Na+

Pyrophosphate (tetrasodium), 1 glycerophosphate, 1 Na+ orthovanadate,
1 μg/ml leupeptin, and + complete protease inhibitor tablet (Roche).
After 30 min of incubation on ice, protein extracts were centrifugated
12min at 16,000g. 50 μg of protein (or 150 μg for CFTR) lysates were sep-
arated on 4–12% Bis/Tris pre-casted poly-acrylamide gels (Invitrogen) or
7.5% poly-acrylamide gels (for CFTR), and transferred onto PVDF
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membrane. Blots were incubated with primary antibodies diluted in
T-TBS and nonfat milk as follows: mouse monoclonal anti-PMCA
(clone 5F10, Pierce) (1/1000) (against all isoform of PMCA), mouse
monoclonal anti-SERCA2b ATPase (clone IID8, Santa Cruz) (1/250),
mouse monoclonal anti-CFTR M3A7 antibody (1/500) or mouse
monoclonal anti-GAPDH antibody (1/30 000). After 3 washes, blots
were incubated with horseradish peroxydase (HRP)-conjugated donkey
anti-mouse diluted 1:10,000 (Abcam), respectively, and revealed with
Luminata Forte reagent (Millipore). Acquisition was performed on
Chemi-Smart 5100 acquisition system (Vilber-Lourmat) with the
Chemi-Capt 5000 software, and analyses were done on ImageJ.

2.7. Immunoprecipitation

Protein G Dynabeads (Life Technology) were incubated for 1 h at
4 °C in PBS 0.02% Tween-20 with 2 μg of anti-CFTR (clone 24–1, R&D
Systems), anti-SERCA (ab3625, Abcam) or anti-PMCA antibodies
(clone 5 F10, Pierce). Then 1000 μg of proteins was incubated over-
night with antibodies-coupled beads. After several washes, protein–
antibody–beads complexes were precipitated in 25 μl of laemmli buffer
(2×) and separated on SDS–PAGE electrophoresis before revelation by
Western blot.

2.8. Duolink assay

To study PMCA–CFTR and SERCA–CFTR interactions, Proximity
Ligation Assay was performed using the Duolink in vivo IP approach
(Olink Bioscience, Uppsala, Sweden). Briefly, cells were fixed in 4% PFA
solution and permeabilized in 0.25% Triton X-100 solution. Saturation
was performed in blocking solution containing 2% goat serum and 0.2%
Tween. Cells were then incubated with primary antibodies in a blocking
solution at the following dilutions: 1/500 anti-PMCA (clone 5F10, Pierce)
and1/100 anti-CFTR (ab131553, Abcam) for PMCA–CFTR interaction, and
1/500 anti-SERCA (ab3625, Abcam) and 1/100 anti-CFTR (clone 24–1,
R&D Systems) for SERCA–CFTR interaction. Secondary antibodies incuba-
tion (PLA probe anti-rabbit PLUS Cat. No. 92002, PLA probe anti-mouse
minus Cat. No. 92004), probes ligation and amplificationwere performed
following manufacturer's instructions (Detection Kit, Cat. No. 92014).
Green fluorescent spots were observed on a confocal microscope (LSM
780, Carl Zeiss). Number of spots by imagewas counted using the ImageJ
software.

2.9. Statistics

Ca2+ measurement, Western blot and Duolink quantification data
are expressed as mean ± s.e.m. of n observations and were compared
with ANOVA analysis with post-hoc analysis with Dunnett. Differences
were considered statistically significant when P b 0.05. ns: non-
significant difference, *P b 0.05, **P b 0.01, and ***P b 0.001. All statistical
tests were performed using GraphPad Prism version 5.0 for Windows
(GraphPad Software).

3. Results

3.1. ER Ca2+ release and SOCE are abnormally increased in CF cells, and
normalized by CFTR correction with VX-809 treatment

As described previously, ER Ca2+ release and SOCE are increased in
cells expressing F508del-CFTR [17,19]. To evaluate ER Ca2+ content
and SOCE in our cellularmodels, we performed classical SOCE activation
protocol (Fig. 1A). Internal Ca2+ stores were depleted by 2 μM of TG in
Ca2+ free medium and then SOCE was measured after perfusion with
1.8 mM Ca2+ extracellular medium (Fig. 1A).

We first confirmed previous observations of a significant increase in
SOCE amplitude (Fig. 1B and C) and rate (Supplemental Fig. 1A) in CF
(CFBE) cells compared to non-CF cells (16HBE). To investigate if these
differences are due to the abnormal F508del-CFTR accumulation in the
ER, we have chosen to treat CF cells for 24 h with the pharmacological
CFTR corrector, VX-809 (Lumacaftor, Selleck Chemicals) at 10 μM [40,
41]. In order to confirm VX-809 potential to rescue mislocalization of
F508del-CFTR channels, we performed iodide efflux experiments to
evaluate CFTR activity (Fig. 1D and E). CFBE and 16HBE cells were incu-
bated 24 hwith 10 μMof VX-809, and then F508del-CFTR (CFBE) orWT
CFTR (16HBE) channel activities were stimulated by a cocktail of
forskolin (10 μM) and genistein (30 μM) [5]. As expected stimulation
of F508del-CFTR activity in uncorrected CFBE cells, did not induced an
iodide efflux (Fig. 1D and E).

However, VX-809 treatment rescued functional F508del-CFTR to
plasma membrane, as indicated by the significant increase of iodide
efflux observed in CF treated cells compared to untreated CFBE
cells (0.0275 ± 0.0047 min−1, n = 4 for untreated CFBE cells and
0.1420 ± 0.0155 min−1, n = 4 for VX-809 treated CFBE cells;
P = 0,0004). A similar VX-809 treatment had no impact on WT CFTR
activity (0.1950 ± 0.0202 min−1, n = 4 in untreated 16HBE cells and
0.2270 ± 0.01472 min−1. n = 4 in VX-809 treated 16HBE cells)
(Fig. 1D and E).

Based on these findings, we next investigated Ca2+ signaling in CFBE
(CF cells) treated with VX-809 to determine if this treatment normalized
SOCE parameters to values observed in 16HBE cells (non-CF cells). As ex-
pected VX-809 treatment had no impact on SOCE amplitude in non-CF
cells (Fig. 1C). For an unknown reason, the rate of SOCE was decreased
in VX-809 16HBE treated cells (Supplemental Fig. 1A). Interestingly,
rescuing F508del-CFTR activity induced a significant decreased in SOCE
amplitude to the level measured in non-CF cells (16HBE; 2.066 ±
0.09925 ratio/sec, n = 84 and VX-809 treated 16HBE; 1.826 ± 0.1136
ratio/sec, n = 64 in cells). The absence of significant difference in
SOCE amplitude between 16HBE and VX-809 CFBE treated cells
reflects the potency of this CFTR corrector to eliminate Ca2+ influx
defects. In this condition a strong and significant decrease of calcium
entry ratewas surprisingly observed ending up to a rate value lower than
what observed in 16HBE cells (16HBE; 0.08911 ± 0.006924 ratio/sec,
n = 87 and VX-809 treated 16HBE; 0.03307 ± 0.002053 ratio/sec,
n = 54).

ER Ca2+ release was also evaluated by measuring the amplitude
(Fig. 1F and G) and speed (Supplemental Fig. 1B) of the TG response
in Ca2+ free condition. Both parameters were significantly increased
by approximately 30% in CF (CFBE) cells compared to non-CF (16HBE)
cells (Fig. 1G and Supplemental Fig. 1B). As shown in Fig. 1G and Supple-
mental Fig. 1B, TG induced Ca2+ responsewas significantly normalized in
CF-corrected cells (VX-809 treated CF cells) to the values measured in
non-CF cells. Moreover, as observed for SOCE amplitude, VX-809 treat-
ment had no impact on TG-Ca2+ response in non-CF treated cells
(Fig. 1G).

Measuring TG induced Ca2+ response in a free extracellular Ca2+

medium with Fura-2 allows us to have an indirect estimation of the
ER Ca2+ content. Even if we abrogated Ca2+ influx in this condition,
the Plasma Membrane Ca2+ ATPase (PMCA) is always functional
allowing cytosolic Ca2+ extrusion to the extracellular space. Moreover
part of Ca2+ released from the ER is also captured by mitochondria.
Therefore, to quantify accurately the ER Ca2+ concentration and ER
Ca2+ fluxes, we measured Ca2+ variations directly inside the ER com-
partment with the Ca2+ sensitive ER-targeted cameleon probe D1ER
[42] (Fig. 2). To measure the ER Ca2+ concentration ([Ca2+]ER), we
performed a D1ER titration in semi-permeabilized cells (data not
shown) as described by Shen et al. [43]. [Ca2+]ER in CF cells is significantly
increased by 45% compared to non-CF cells (16HBE: 358 ± 26 μM,
n = 41; CFBE 525 ± 31 μM, n = 58) (Fig. 2A). In CF cells treated with
VX-809, the ER Ca2+ concentration was significantly decreased by
20% (treated CFBE: 432.5 ± 31 μM, n = 27) compared to uncorrected
CF cells and normalized to the valuemeasured in non-CF cells. No signif-
icant difference of ER Ca2+ concentrationwas observed between 16HBE
and VX-809 CFBE treated cells. In contrast, the VX-809 treatment did
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not modified [Ca2+]ER in non-CF cells (treated 16HBE: 345.7 ± 43 μM,
n = 12) (Fig. 2A).

As expected, TG stimulation induced a significantly more important
ER-Ca2+ depletion in CF cells than in non-CF cells (Fig. 2C). Interestingly,
the rate of [Ca2+]ER decrease evoked by TG stimulation was also signifi-
cantly increased in CF cells compared to corrected CF and non-CF cells
(Fig. 2B and D). These data suggest that the passive Ca2+ permeability
of the ER is also affected in CF epithelial cells or just reflect a change of
the electrochemical gradient for Ca2+ ions between the ER and the
cytoplasm. Similar differences were observed after TG-mediated
ER-Ca2+ depletion between CF and non-CF cells when stores were
depleted with an extracellular medium containing 1.8 mM Ca2+

(Supplemental Fig. 1C and D). VX-809 treatment of CFBE cells restored
ER-Ca2+ release amplitude and rate to values similar to what observed
in 16HBE cells (Fig. 2C and D). It has to be noticed that restoration of
F508del-CFTR activity, even if significant, was less effective when ER
calcium depletion was recorded in the presence of external Ca2+

(data not shown).
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of the TG-mediated ER Ca2+ release kinetic (Γ1/2) measured in VX-809 treated or untreated CF and non-CF cells (n= 87 for CFBE, n= 75 for 16HBE, n= 33 for VX-809 treated CFBE and
n = 21 for VX-809 treated 16HBE).
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These data obtained by directly monitoring Ca2+ changes in the ER
confirm that ER Ca2+ content is affected by the abnormal ER accumula-
tion of F508del-CFTR (Fig. 2C).

3.2. F508del-CFTR correction by VX-809 normalized ATP-mediated ER Ca2+

depletion in CF bronchial epithelial cells

Then,we analyzed ERCa2+depletion induced by amore physiological
agonist (100 μM ATP) that induces phospholipase C activation, InsP3
(inostitol triphosphate) production and the subsequent release of Ca2+

from the ER after InsP3 receptor activation (Fig. 3A). In Fura-2 loaded
cells exposed to an external Ca2+ free solution, ER Ca2+ releasemediated
by ATP stimulationwas significantly increased in CF cells (144 AUC± 5.3
a.u, n = 145) compared to non-CF cells (82 AUC ± 3.7 a.u, n = 178)
(Fig. 3B). Interestingly, VX-809 treatment significantly decreased this
ATP mediated ER Ca2+ release in CF cells (128 AUC ± 3.7 a.u, n = 172)
while this pharmacological treatment had no impact in non-CF cells.
Identical experiments realized in the presence of 1.8 mM external Ca2+

(Supplemental Fig. 1E and F) confirmed the increase in ATP induced ER
Ca2+ release and the partial correction by VX-809 treatment.

We measured next the ATP-induced ER Ca2+ depletion using
D1ER probes in cells exposed to an extracellular Ca2+ medium. As
presented, in Fig. 3C, 100 μM of ATP induced a rapid ER Ca2+ store
depletion in both human bronchial epithelial cell lines. However,
the amplitude of this ER Ca2+ depletion was approximately 2 fold
smaller than the magnitude of TG mediated depletion. In CF cells,
ER Ca2+ depletion was significantly increased compared to non-CF
cells (Fig. 3D) (CF; −0.3579 ± 0.0152 a.u (Δratio), n = 116 and non-
CF;−0.2833± 0.0209 a.u (Δratio), n= 86). Interestingly and similarly
to what observed with TG stimulation, re-localization of F508del-CFTR
out of the ER towards the plasma membrane by VX-809 treatment,
significantly normalized ER Ca2+ depletion in CF cells. As expected,
VX-809 treatment had no impact on ATP induced ER Ca2+ depletion
in 16HBE cells (Fig. 3D).
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3.3. Differences in ER Ca2+ refilling between CF and non-CF bronchial
epithelial cells

In F508del-CFTR expressing cells, we have shown that [Ca2+]ER and
TG or ATP-mediated ER Ca2+ depletion were strongly increased com-
pared to non-CF cells. Moreover, correction of F508del-CFTR trafficking
byVX-809 treatment normalized elevated [Ca2+]ER and ER Ca2+ release
(Figs. 1 to 3). The only knownmechanism to refill Ca2+ into the ER after
depletion is mediated by the Sarcoplasmic Reticulum Ca2+ ATPase
(SERCA) family protein. To explain the observed increase of [Ca2+]ER
in CF cells, we hypothesized that SERCA activity may be modified
when F508del-CFTR is retained in the ER. To verify our hypothesis, we
next estimated SERCA pump activity in CF and non-CF cells using D1ER
cameleon probe. After ER Ca2+ depletion by ATP stimulation
(100 μM) in the absence of extracellular Ca2+, refilling of ER Ca2+ stores
was induced by addition of external Ca2+ (1.8 mM). As represented
in Fig. 4A, addition of Ca2+ induced a rapid increase of [Ca2+]ER and a
return to its baseline level. Quantification of ER Ca2+ refilling rate
(Fig. 4B) approximated by the slope of ER Ca2+ increase, strongly sug-
gests that SERCA pump activity is increased in CF compared to non-CF
cells (CF; 0.007710 ± 0.0004164 ratio/sec, n = 111 and non-CF;
0.005773 ± 0.0006337 ratio/sec, n = 64). Correction of F508del-CFTR
abnormal trafficking by VX-809 treatment also fully normalizes this
change in SERCA activity in CFBE cells as we observed for ER Ca2+ con-
tent and release (Fig. 4B).

The significant increase in ER Ca2+ refilling amplitude observed in
CF cells compared to non-CF-cells confirmed that [Ca2+]ER is increased
as suggested by our previous experiments. Increase in the ER Ca2+

refilling is normalized in CF cells treated with VX-809 (Fig. 4C).
We next measured ER Ca2+ refilling after ER Ca2+ depletion induced

by tBHQ (tertiary butylhydroquinone), a reversible SERCA pump inhibi-
tor. After ER Ca2+ depletion, tBHQ (15 μM) was washed away and ER
Ca2+ refilling was then induced by addition of 1.8 mMCa2+ in the extra-
cellular medium. In these conditions, we observed similar results to what
obtainedwith anATP stimulation confirming the increase in SERCApump
activity in CF cells compared to non-CF (Fig. 4D–F). However, correction
by VX-809 in CF cells was only observed for the amplitude of the ER
Ca2+ refilling and not for its rate. Moreover, the expression level of
SERCA2b protein is similar in 16HBE and CFBE and is not affected by
VX-809 treatment (Supplemental Fig. 2A). This apparent up-regulation



400 500 600

1.8

2.0

2.2

2.4

2.6
CFBE

16HBE

0 Ca 1.8 Ca

ATP 100 M

Time (sec)

D
1 E

R
 R

at
io

 5
35

/4
75

 (a
.u

)

400 450 500 550 600

1.6

1.8

2.0

2.2

2.4
16HBE
CFBE

1.8 Ca0 Ca
tBHQ 15 M

Time (sec)

D
1 E

R
 R

at
io

 5
35

/4
75

 (a
.u

)

16HBE

16HBE VX-809
CFBE 

CFBE VX-809 

0.000

0.002

0.004

0.006

0.008

0.010

ns
ns*

ns

Sl
op

e 
ER

 C
a

2+
 re

fil
lin

g
 (r

at
io

/s
ec

)

16HBE

16HBE VX-809
CFBE

CFBE VX-809

0.000

0.004

0.008

0.012
ns**

ns

Sl
op

e 
ER

 C
a

2+
 re

fil
lin

g
 (r

at
io

/s
ec

)

**

16HBE

16HBE VX-809
CFBE

CFBE  V
X-809

0.0

0.2

0.4

0.6

ns

****

Am
pl

itu
de

 E
R 

Ca
2+

 re
fil

lin
g

 D
1

ER
 R

at
io

 5
35

/4
75

 (a
.u

)

*

16HBE

16HBE VX-809
CFBE

CFBE VX-809

0.0

0.1

0.2

0.3

0.4 ****

ns

Am
pl

itu
de

 E
R 

Ca
2+

 re
fil

lin
g

 D
1

ER
 R

at
io

 5
35

/4
75

 (a
.u

)

ns

μ

μ

Δ
Δ

A B C

D E F
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of SERCA pump activity in CF cells may also be reflected by the significant
decrease of basal Fura-2 ratio value measured in CFBE cells compared to
16HBE cells (16HBE; 1.058 ± 0.004 ratio 340/380, n = 529 and CFBE;
1.002±0.004 ratio 340/380, n=532). Since our experimental conditions
were always the same for Fura-2fluorescence acquisition, this ratio differ-
ence suggests that basal cytosolic Ca2+ concentration is lower in CF cells.
Moreover VX-809 treatment of CF cells partially restores the difference
with non-CF cells (Supplemental Fig. 2B).

3.4. PMCA activity and mitochondrial Ca2+ uptake are modified in CF cells

In the following experiments, we compared PMCA activity in CF and
non-CF treated or not with VX-809. PMCA activity was evaluated in
Fura-2 loaded cells. After SOCE activationwith TG, the external solution
containing 1.8 mM Ca2+ was replaced by a free Ca2+ medium when
SOCE reaches its maximal amplitude. In these experimental conditions,
SERCA pump activity was completely abolished by TG (irreversible
SERCA pump blocker) and the decrease in cytosolic [Ca2+], is mainly
due to PMCA activities and mitochondrial Ca2+ uptake. As suggested
on Fig. 5A and pointed out by time constant values of the decrease
(Fig. 5B), a significantly lower Ca2+ extrusion rate is surprisingly ob-
served in CF cells compared to non-CF cells (CFBE: 185.4 ± 13.14 sec,
n = 108; 16HBE: 99.73 ± 5.287 sec, n = 103). Interestingly, the
pharmacological F508del-CFTR trafficking correction by VX-809 treat-
ment induced a full normalization of Ca2+ extrusion rate, while VX-
809 had no impact in non-CF cells (Fig. 5B).

We evaluated next the PMCA activity in the absence of mitochondrial
Ca2+ uptake. We performed the same previously described experiments
in the presence of 2.5 μM CCCP, a mitochondrial protonophore that un-
couples mitochondria and abolishes Ca2+ uptakes in these organelles.
As expected and observed in the absence of CCCP, the rate of Ca2+ extru-
sion was also reduced in CF cells when both mitochondrial and ER Ca2+

uptake are abolished (Fig. 5C–D). Moreover, we observed in CF cells
that VX-809 restores Ca2+ extrusion due to PMCA activity to a level
almost similar to non-CF cells. VX-809 treatment had no impact on
PMCA activity in 16HBE cells (Fig. 5D). We confirmed by Western blot
analysis that PMCAprotein expression levelwasnot significantly different
between CF and non-CF cells and in VX-809 treated cells (Supplemental
Fig. 2A).

To explore the influence of F508del-CFTR expression on Ca2+ mito-
chondrial uptake, we measured this uptake after SOCE activation by
directly following changes in mitochondria Ca2+ concentration with
4mitD3cpv, a genetically encoded cameleon probe specifically targeted
into mitochondria [42]. ER Ca2+ store was depleted by TG treatment in
4mitD3cpv transfected epithelial cells and the extracellular Ca2+ free
medium was next changed to a solution containing 1.8 mM Ca2+ to
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for VX-809 treated 16HBE, in 4 different experiments).
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induce Ca2+ entry through SOC channels. As observed in Fig. 5, mito-
chondrial Ca2+ uptake was strongly increased in CFBE cells compared
to non-CF cells (CFBE; 0.06115 ± 0.008715 ratio/sec, n = 35 and
16HBE: 0.02615±0.004465 ratio/sec, n=20) (Fig. 5E–G). Surprisingly,
the correction of F508del-CFTR abnormal trafficking byVX-809 treatment
was not able to restore normal mitochondrial Ca2+ uptake suggesting
that deregulation of mitochondrial Ca2+ uptake may not be directly
related to F508del-CFTR retention in the ER.
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3.5. SERCA2b and PMCA interact differently withWt-CFTR and F508del-CFTR

As described previously in this study, SERCA and PMCA pump activ-
ities appear to be stronglymodifiedwhen F508del-CFTR accumulates in
the ER. As well demonstrated in the literature, CFTR is a cargo protein at
the cell surface which interacts with several different proteins (named
the CFTR interactome) [44]. The mislocalization of F508del-CFTR in
CF modifies this interactome and induces perturbations of protein
A

C

D

B

Fig. 6. PMCA and SERCA2b interactionwithwild-type or F508del-CFTR in human bronchial epithe
CFTR protein after immunoprecipitation of the SERCA pump in endogenous conditions. B, Co-imm
immunoprecipitation of the PMCA pump in endogenous conditions. C–D, Co-immunoprecipita
SERCA2b and CFTR antibodies in CFBE and 16HBE treated or not with VX-809 (24 h at 10 μM)
10 μM. Right panel, average values of the number of dots per cell in each experimental cell cond
antibodies in CFBE and 16HBE treated or notwith VX-809 (24 h at 10 μM). Green dots correspond
of the number of dots per cell in each experimental cell condition (n = 4–5).
activities. We investigated by a co-immunoprecipitation approach
the hypothesis that CFTR protein can interact with SERCA and
PMCA pumps and therefore modify their activities (Fig. 6).

As showed in Fig. 6A, we were able to immunoprecipitate CFTR with
SERCA. Both WT CFTR and F508del-CFTR are able to interact with
SERCA2b in CFBE and 16HBE cells. However, as shown by the differences
in band intensities, CFTR interaction with SERCA2b seems to be stronger
for WT CFTR than for F508del-CFTR (Fig. 6A). To confirm the interaction
lial cells. A, Co-immunoprecipitation between SERCA2b and CFTR.Western blot revelation of
unoprecipitation between PMCA and CFTR.Western blot revelation of the CFTR protein after
tion by Duolink assays. C, Left panel: Representative images of a Duolink experiment with
. Green dots correspond to an interaction between SERCA2b and CFTR proteins. Scale bar
ition (n = 4–5). D, Left panel: typical images of a Duolink experiment with PMCA and CFTR
to an interaction between PMCA and CFTR proteins. Scale bar 10 μM. Right panel,mean values
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and validate this latter observation,we realizedDuolink assays to quantify
these differences. We confirmed with this approach firstly the CFTR/
SERCA2b interaction in each cellular model, and secondly a higher level
of interaction between CFTR and SERCA2b in 16HBE cells compared to
CFBE cells (Fig. 6C). Even if we were not able to obtain an effect of
VX-809 treatment when interaction was evaluated by the IP approach,
it appears that restoration of F508del-CFTR localization normalized
the difference observed in interaction intensity (Fig. 6C). Additionally,
we verified the interaction between CFTR/SERCA2 in BHK cells stably
overexpressing WT CFTR or F508del-CFTR (Supplemental Fig. 3A and
B). Bothmature and non-mature forms of CFTR seem to be able to inter-
act with the SERCA pump.

Similar experimentswere next performed to investigate PMCA/CFTR
interaction. As showed in Fig. 6B, we were able to detect CFTR after
immuno-precipitating PMCA. Both WT CFTR and F508del-CFTR are
able to interact with PMCA. However CFTR/PMCA interaction level
seems to be lower in CF cells (Fig. 6B). Duolink assays confirmed the
CFTR/PMCA interaction and the significantly higher interaction level
between these two proteins in non-CF cells compared to CF cells.
Surprisingly, VX-809 treatment was not able to correct this difference
(Fig. 6D). Interaction between CFTR and PMCA was also explored in
BHK cells (Supplemental Fig. 3). In WT CFTR overexpressing BHK cells,
we observed a clear interaction between the mature form of CFTR
(band C) and PMCA in accordance with the localization of these two
proteins at the plasma membrane (Supplemental Fig. 3C). We were
not indeed able to detect interaction between CFTR and PMCA in
overexpressed F508del-CFTR BHK cells (Supplemental Fig. 3C).

4. Discussion

In this study,we try to decipher the deregulation of Ca2+homeostasis
in CF cells at the different hot spots of Ca2+ signaling (ER, Mitochondria,
and Plasmamembrane) in bronchial airway epithelial cells. Using a com-
bination of imaging and biochemical approaches we showed that (i) ER
Ca2+ concentration is increased in CF cells compared to CF cells, (ii)
SERCA pump activity is abnormally increased and PMCA activity de-
creased in CF cells, (iii) CFTR interacts with SERCA2b and PMCA and
these interactions may regulate their pump activities, and (iv) treatment
of CF cells with the new CFTR corrector VX-809 is able to correct most of
the calcium homeostasis deregulations observed.

Previous works have already reported a severe deregulation of Ca2+

homeostasis in CF human primary bronchial epithelial cells [13,19] and
in several human epithelial cell lines [14,16,23,45]. At the plasmamem-
brane level, the SOCE channel Orai1 and the non-SOCE Ca2+ channel
TRPC6 activities were demonstrated to be up-regulated in 2 different
CF epithelial cell models [17,19]. These defects were corrected by a
pharmacological or low temperature treatment. We also observed in
the present study that SOCE is abnormally increased in CFBE compared
to 16HBE cells, andwe demonstrated for the first time that correction of
F508del-CFTR abnormal trafficking by the VX-809 corrector normalized
SOCE in CF cells (Fig. 1) as observed in CF cells corrected by low temper-
ature ormiglustat exposure [14]. These results obtained in the absence of
infectious factors confirm that the presence of CFTR itself at the plasma
membrane down-regulates SOCE channel activity.

Concerning intracellular Ca2+ pools in CF cells, it was previously
reported that increase in Ca2+ release from the ER is linked to an expan-
sion of the ER and to an InsP3 receptor (InsP3R) hyperactivity [13,14].
InsP3R deregulation was directly correlated to the F508del-CFTR reten-
tion in the ER [20]. However consequences on ER Ca2+ content of
F508del-CFTR accumulation in this organelle had never been directly
characterized using specific targeted Ca2+ probes. In this context, we
measured specifically [Ca2+]ER, ER Ca2+ refilling and depletion by a
FRET approach using the ER targeted D1ER cameleon Ca2+ probe [42]. In-
terestingly, in CF bronchial epithelial cells, the abnormal ER retention of
F508del-CFTR strongly increased [Ca2+]ER (Fig. 2). This deregulation of
[Ca2+]ER seems to be linked to the accumulation of F508del-CFTR in the
ER as suggested by the recovery in [Ca2+]ER observed in VX-809 treated
cells.

ER calcium content is mainly regulated by the SERCA pump activity
and a change in its activity is a likely hypothesis to explain a change in
[Ca2+]ER. By looking at the ERCa2+ refilling in intact cell after store deple-
tion, we observed indeed an increase in SERCA pump activity in CF cells
compared to non-CF cells. SERCA pump is encoded by a family of three
genes, SERCA1, 2, and 3. SERCA1 is expressed in fast-twitch skeletal mus-
cle [46,47]. SERCA2 encodes SERCA2a, which is expressed predominantly
in cardiac and slow-twitch skeletal muscle [48–50]. SERCA2b is ubiqui-
tously expressed [49]. In bronchial and bronchiolar epithelial cells of CF
subjects and in different CF cell lines, SERCA2a expression was shown
to be significantly decreased compared to non-CF patients [51]. This
decrease was linked to a lower SERCA pump activity in CF pulmonary
epithelial cells. However Ca2+ ATPase activity was indirectly evaluated
in microsomal membranes of normal and CF cells. On the contrary, we
observed a similar expression of SERCA2b in CF (CFBE) and non-CF
(16HBE) human bronchial epithelial cells and SERCA3 expression was
poorly expressed in CFBE and 16HBE cells (Supplemental Fig. 3A). More-
over, modification of F508del-CFTR trafficking by VX-809 treatment does
not affect SERCA2b expression in our cellular models (Supplemental
Fig. 2) and restores SERCA pump activity in CF cells close to normal
level. Altogether, our data clearly show an increase in ER Ca2+ release
correlated with an the increase in [Ca2+]ER consequent to an enhanced
SERCA pump activity.

Free Ca2+ in the ER lumen is tightly regulated and is crucial for pro-
tein synthesis, recycling, and post-traductional modifications. Several
Ca2+-dependent chaperone proteins are localized into ER lumen [52].
Among them, calnexin (CNX) and calreticulin (CALR) have been de-
scribed to interact with CFTR [44] and involved in CFTR folding and traf-
fic. These ER proteins are strongly regulated by ER Ca2+ and
participated to calcium homeostasis [6,33,53,54]. An ER Ca2+ increase
contributes to the abnormal F508del-CFTR ER retention. Maintaining
low Ca2+ level in the ER with SERCA pump inhibitors such as curcumin
or thapsigargin also restores abnormal endogenous F508del-CFTR traf-
ficking in airway epithelial cells due to a decrease interaction between
F508del-CFTR and the chaperone protein calnexin [33,55,56].

CALR was shown also to bind SERCA2b and to inhibit Ca2+ ATPase
activity [57]. Similar observation was done with CNX and SERCA [58].
Calumenin is another example of a CFTR interacting protein [59] that
can inhibit SERCA2 pump function [60].

All these ER resident proteins interactingwith CFTRmay constitute a
protein complex with SERCA pump regulating its activity. Situations
such as CFTR retention in the ER will change the level of interaction
between these proteins and therefore impact ER Ca2+ signaling.

Interestingly, in the present study we demonstrated a close interac-
tion between CFTR and SERCA2b, and an enhancement of SERCA pump
activity in CF cells that is partially normalized by the pharmacological
relocalization of F508del-CFTR.

We would predict that increased CFTR protein in the ER when
F508del-CFTR is expressed coupled to an increase in [Ca2+]ER may
lead to more interaction between CFTR and SERCA.

However, Co-IPs obtained between CFTR and SERCA2b suggest that
the level of interaction between these two proteins is reduced in CF
cells. Using a Duolink assay, we confirmed SERCA2 and CFTR interaction
and the higher level of interaction between CFTR and SERCA2b in non-
CF cells compared to F508del-CFTR expressing cells (Fig. 6C). Correction
of aberrant localization of F508del-CFTR protein by VX-809 treatment
reduced ER Ca2+ concentration and SERCA pump activity probably by
allowing more SERCA2/CFTR interaction.

These results demonstrate that CFTR localization strongly regulates
SERCApumpactivity and that the deregulation of its Ca2+ATPase activity
contributes to the abnormal regulation of Ca2+ homeostasis in CF epithe-
lial cells.

In the present study, we highlight the idea that SERCA activity is
strongly up-regulated in CF epithelial cells inducing an increase of
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[Ca2+]ER in CF cells. This increase can explain the enhanced IP3R-
mediated Ca2+ release reported in previous works [20,21] and possibly
the increase in SOCE amplitude.

We also report a lower PMCA activity in CF cells that could be
corrected by VX-809 treatment. CFTRwas previously reported to interact
with plasma membrane ion channel. CFTR was shown to be functionally
and reciprocally coupled to TRPC6 channels within a molecular complex
in airway epithelial human cells [17,18]. Even if somehow controversial,
CFTR indirectly interacts with the epithelial sodium channel ENaC and
down-regulates its activity [61,62]. Our present results suggest that
PMCA is another plasma membrane ion transporter under the control of
CFTR.

Here, we demonstrated for the first time and by two different
approaches, a clear interaction between CFTR and PMCA and a deregu-
lation of PMCA activities in F508del-CFTR epithelial cells. PMCA was
found in caveolae and lipid rafts in different cellular types [63,64] like
CFTR protein [65], suggesting that glycosylated CFTR form interacts
preferentially to PMCA compared to non-CFTR mature form. Here, we
showed by Co-IP that PMCA seems to interact preferentially to the
glycosylated CFTR form (Fig. 6). This interaction between mature CFTR
and PMCA can explain the PMCA activity decrease observed in CF cells
(when mature CFTR is absent) contributing to the deregulation of
Ca2+ homeostasis in CF epithelial cells [14].

Another important aspect in the control of global Ca2+ homeostasis
is the role played by mitochondria in ER Ca2+ release and Ca2+ influx.
Mitochondrial Ca2+ buffering appears also deregulated in CF. Mitochon-
dria from CF fibroblasts are dysfunctional with an increase of Ca2+ signal
in CF mitochondria [24]. Il-1b induced mitochondrial Ca2+ uptake was
absent in CFTR-deficient IB3-1 cells compared to CFTR-corrected S9
cells [23]. In response to histamine stimulation, the CF mitochondria
Ca2+uptake is reduced compared to non-CF cells (human tracheal serous
gland cells) [22]. Interestingly, in the present study, we demonstrated
using amitochondria cameleon Ca2+ probe (4mitD3cpv) that mitochon-
dria Ca2+ uptake during SOC entry (TG stimulation) is increased in CF
epithelial cells.

Surprisingly, VX809was not able to normalize this increase in CF cells
suggesting that this deregulation was not due to the mislocalization of
F508delCFTR. This aspect has to be further investigated to decipher direct
and indirect consequences of mutated CFTR expression and localization
on Ca2+ homeostasis CF cells.

The proximity between ER–mitochondria and plasma membrane–
mitochondria creates Ca2+ microdomains that play a key role for the
function of both organelles particularly for mitochondria bioenergetics.
In several cellular models, mitochondria–plasma membrane Ca2+

microdomains and the mitochondrial Ca2+ uptake levels regulate
amplitude of CRAC currents [66–68]. More mitochondrial Ca2+ uptake
leads to a decrease of CRAC dependent Ca2+ inactivation and conse-
quently to an increase of SOCE. In line with these results, SOCE increase
in CF cells [19] could be partially explainedby an enhancedmitochondrial
Ca2+ uptake as observed in our study.

We provided here a potential global vision of Ca2+ homeostasis
deregulation in epithelial cells expressing a mutated F508del-CFTR.

Moreover, using several in vitro experimental approaches we have
shown for the first time two novel CFTR protein partners: SERCA2b and
PMCA. Both proteins are involved in the regulation of cellular Ca2+ ho-
meostasis. A decrease in the interaction between CFTR/SERCA2b in CF
cells is correlated to an enhanced activity of SERCA pump leading to the
abnormal increased of [Ca2+]ER. The absence of CFTR to the plasmamem-
brane in CF cells leads to a decrease in CFTR/PMCA interaction resulting in
a lower activity of the PMCA pump. Moreover, we are also showing
for the first time that in CF cells, re-localization of F508del-CFTR to
the plasmamembrane by the corrector VX-809 is able to correct defects
in SOCE, [Ca2+]ER, ER Ca2+ refilling and Ca2+ extrusion but does not
modify mitochondrial Ca2+ uptake perturbations. Our data confirmed
that CFTR protein ismore than a Cl− channel and that itsmislocalization
controls numerous proteins including SERCA2b and PMCA.
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