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a b s t r a c t

A k-rainbow path in a graph with colored edges is a path of length k where each edge has
a different color. In this note, we settle the problem of obtaining a constructive k-coloring
of the edges of Kn in which one may find, between any pair of vertices, a large number of
internally disjoint k-rainbow paths. In fact, our construction obtains the largest possible
number of paths. This problem was considered in a less general setting by Chartrand et al.
(2007) [6].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given an edge-colored simple graph G, a path P in G is called rainbow if the edges of P are assigned distinct colors. Let
l ≤ k be integers. Suppose that the edges of G are k-colored. For a, b ∈ V (G), denote by p(a, b) the maximum number of
internally disjoint rainbow paths of length l having endpoints a and b. The rainbow (k, l)-connectivity of G is the minimum
p(a, b) among all distinct a, b ∈ V (G).
A related concept has been studied in a sequence of papers by Chartrand et al. [5,6,4] and also [3,11]. In particular, the

following theorem is given.

Theorem 1 ([4]). For any r, there exists an explicit 2-coloring of Kr inwhich the number of bi-chromatic paths of length2 between
any pair of vertices is at least

b
√
r − 1c.

Using our definitions, the theorem above is a statement about the rainbow (2, 2)-connectivity of a given 2-coloring of
the edges of Kr . In this note, we greatly improve and generalize the above lower bound for graphs of sufficiently large order
by providing a different constructive coloring. Our construction attains asymptotically the maximum rainbow connectivity
possible.

Theorem 2. For any k ≥ 2 and r ≥ r0 = r0(k) there exists an explicit k-coloring of the edges of Kr having rainbow (k, 2)-
connectivity(k− 1

k
− o(1)

)
r.

More generally, we shall also consider the problem of finding longer rainbow paths.
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Theorem 3 (Main Result). For any 3 ≤ l ≤ k there exists r0 = r0(k) such that, for every r ≥ r0, there is an explicit k-coloring of
the edges of Kr having rainbow (k, l)-connectivity(

1− o(1)
) r
l− 1

.

This result is also asymptotically best possible, since any collection of internally disjoint paths of length l can contain at
most r/(l− 1) paths.
Our proof employs a very recent breakthrough due to Bourgain [2,12], which consists of a powerful explicit extractor.

Roughly speaking, an (explicit) extractor is a polynomial time algorithm used to convert some special probability
distributions into uniform distributions. (See [13] for a good but somewhat outdated survey on extractors.)
The application of extractors in graph constructions already appears as early as [16], where extractors are used directly to

obtain good expander graphs. Similar applications followed, e.g. [7,14]. Although some constructions are obtained by simply
looking at extractors from a graph perspective (extractors can be seen as graphs), the analysis of our construction is more
delicate and requires additional ingredients.
It is also noteworthy that a random k-coloring of a sufficiently large complete graph has asymptotically optimal rainbow

(k, l)-connectivity. Therefore, our problem is to obtain an explicit edge-coloring. By explicit, we mean that there is a
polynomial time algorithm to compute such an edge-coloring.1

2. Paths of length two

A simple application of the Cauchy–Schwarz Inequality shows that one cannot hope to find a k-coloring of E(Kr) in which
every pair of vertices is connected by (1− 1/k)(r − 1) rainbow paths of length two.

Theorem 4. For any k-coloring of the edges of Kr there exists a pair of vertices having at least
r − 1
k
− 1

monochromatic paths of length 2 between them.

Proof. Denote by χ : E(Kr) → [k] the fixed coloring of Kr . Let us count the triples (u, v, w) of different vertices satisfying
χ({u, w}) = χ({v,w}). For fixedw ∈ V = V (Kr) and l ∈ [k], denote byN(w, l) =

∣∣{v ∈ V : χ({v,w}) = l}∣∣ the number of
vertices connected tow by an edge of color l. Then, the number of pairs u 6= v ∈ V \ {w} such that uwv is a monochromatic
path is given by

k∑
l=1

N(w, l)
(
N(w, l)− 1

)
=

k∑
l=1

N(w, l)2 − r + 1.

Applying the Cauchy–Schwarz inequality we get that the number of such pairs is at least

1
k
(r − 1)2 − (r − 1).

Summing over everyw ∈ V and averaging over the pairs u 6= v, we have (r − 1)/k− 1, which implies that at least one pair
has at least this number of monochromatic 2-paths connecting its points. �

Observe that, in view of Theorem 4, the result of Theorem 2 is asymptotically best possible. Theorem 2 follows from the
proof of our main result, Theorem 3.

3. Extractors

In order to describe our construction, we need to introduce some background on the machinery of extractors, a subject
intensively developed during the past two decades. In particular, we shall use Bourgain’s recent breakthrough construction.
We follow the presentation of [12] in the brief recollection of Bourgain’s results contained in this section.
We start by defining away tomeasure randomness in (discrete) probability distributions. In what follows, we shall abuse

notation by using the same letter to denote a probability distribution and a random variable following that distribution.

Definition 5. A source is a probability distribution on binary strings of a fixed length. Let X be a source over {0, 1}n. The
min-entropy of X is defined as

H∞(X) = − log
(
max
a∈{0,1}n

P[X = a]
)
.

1 There are stronger notions of explicitness. For instance, one could ask for an algorithm to compute the color of an edge in polynomial time over the
size of the input (the pair of vertices), which is O(log |V |).
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Here, and throughout this manuscript, logarithms have base 2. We shall say that X is a δ-source if its min-entropy rate
r(X) = H∞(X)/n is at least δ.

An extractor is a function that converts some distribution into one that is close to uniform. To define precisely what it
means for two distributions to be close, we state the notion of statistical difference (also known as total variation distance).

Definition 6. The statistical difference between two sources X, Y ⊆ {0, 1}n, is defined as2

1
2
‖X − Y‖1 =

1
2

∑
a∈{0,1}n

∣∣P[X = a]− P
[
Y = a

]∣∣ .
We say that X is α-close to Y if 12‖X − Y‖1 ≤ α.

We are now ready to formally describe the extractor that will be used to define our constructive coloring. It will be
convenient to denote by {0, 1}n×2 the Cartesian product {0, 1}n × {0, 1}n; in particular, a function with domain {0, 1}n×2
will be thought of as a function with two parameters, each taking values in {0, 1}n.

Definition 7. A function E: {0, 1}n×2 → {0, 1}m is a two-source-extractor for min-entropy rate δ and error ε if, for any pair
of independent sources X and Y satisfying r(X), r(Y ) ≥ δ, the distribution of E(X, Y ) is ε-close to the uniform distribution
over {0, 1}m.
We say that the extractor E is strong if the sets

S =
{
x ∈ {0, 1}n : E(x, Y ) is ε-close to uniform

}
and

T =
{
y ∈ {0, 1}n : E(X, y) is ε-close to uniform

}
are such that P[X ∈ S], P[Y ∈ T ] ≥ 1− ε.

A classical construction of two-source-extractors is due to Vazirani, which generalized Hadamard matrices
(corresponding to the case wherem = 1 in Theorem 8).

Theorem 8 ([15,8]). For every constant δ > 0, there exists a polynomial time strong two-source-extractor Had: {0, 1}n×2 →
{0, 1}m, with m = Ωδ(n) and error ε = 2−Ωδ(n), that works with any independent sources X and Y having H∞(X)+ H∞(Y ) ≥
(1+ δ)n.

Bourgain’s idea was to first encode the input bits (and produce a larger, redundant string) and then apply the Hadamard
extractor of Theorem 8. To describe this encoding, we shall use some basic Finite Field Theory (the reader is referred to the
textbook of Dummit and Foote [9]).
Let g be a primitive element of GF(2n) (i.e., a generator of themultiplicative group GF(2n)×). Every element of GF(2n) can

be seen as an integer in [0, 2n − 1] and, clearly, also can be seen as an element of {0, 1}n. If x ∈ GF(2n) let #x denote the
integer corresponding to x. We define gx = g#x. Bourgain’s extractor can be taken as

Bou(x, y) = Had
(
x̄, ȳ
)
, (1)

where the encoding ·̄: {0, 1}n → {0, 1}2n is given by

x 7→ x̄ = (x, gx). (2)
The above extractor is able to inherit many useful properties of the Hadamard extractor in which it is based. In particular,

Bou is strong and symmetric (that is Bou(x, y) = Bou(y, x)).
A more sophisticated analysis of the Hadamard extractor given by Bourgain showed the following. Let X and Y be

independent distributions. Denote by 2X the distribution of a random variable that consists of summing two independent
samples from X . Then the distribution Had(X, Y ) is not very different from the distribution Had(2X, Y ). Therefore, if X is
structured3 in such a way that 2X has larger min-entropy than X , then it may be possible to obtain a uniform output from
Had using a source X which has a smaller min-entropy than that naturally required by Had.
We say that a source X grows with addition if there is t ≥ 2 such that tX has larger min-entropy than X . The role of

Bourgain’s encoding (2) is to map an arbitrary distribution X into another distribution X̄ which grows with addition (see
Lemma 9). Hence, applying the Hadamard extractor over the encoded inputs is statistically equivalent to applying the same
extractor over sources with higher min-entropy.

Lemma 9. Let 3X̄ = X̄ + X̄ + X̄ denote the distribution induced by sampling three independent elements x1, x2, x3 from X and
outputting (x1, gx1)+(x2, gx2)+(x3, gx3). Then there exists an absolute constant α > 0 such that H∞(3X̄) ≥ (1+α)·2·H∞(X).
In terms of min-entropy rates, r(3X̄) ≥ (1+ α) r(X).

2 The 1/2 factor is used to keep the statistical distance in the range [0, 1].
3 For instance, X could be a uniform distribution over a geometric progression.
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The price one has to pay in order to use 3X̄ instead of X̄ in the analysis of the extractor is an increase of the output error
as described by Lemma 10.

Lemma 10. Let X and Y be independent sources over {0, 1}n and suppose that H∞(t1X) ≥ k1, H∞(t2Y ) ≥ k2. Let
Had: {0, 1}n×2 → {0, 1}m be the Hadamard extractor and

ε = exp
{n− k1 − k2

c
+m

}
,

for c = c(t1, t2). Then Had(X, Y ) is ε-close to the uniform distribution over {0, 1}m.

In order to have a small ε in the above lemma, one needs to have sufficient min-entropy from t1X and t2Y (that is,
k1 + k2 > n). Moreover, the length of the outputmmust be sufficiently small. Given Lemma 9, after encoding (2), sources
withmin-entropy rate slightly smaller than 1/2 growwith addition into sources withmin-entropy rate slightly greater than
1/2. Applying Lemma 10 to those sources allows us to takem linear in n, while keeping the error ε exponentially small.

Theorem 11 ([2,12]). There exists an absolute constant ν > 0 such that the (explicit) function Bou: {0, 1}n×2 → {0, 1}m is a
strong extractor for sources of min-entropy (1/2− ν)n with m = Ω(n) and, furthermore, has error ε = 2−Ω(n).

Another important observation regarding the above encoding is the following.

Claim 1. Given any X, we have H∞(2X̄) ≥ 2H∞(X)− 1.

Proof. First, let us change variables by setting y = gx and then (x, gx) = (logg y, y). (We may assume that x 6= 0 by paying
a small price in terms of min-entropy: one can alter the original distribution by shifting all the probability from 0 to all the
other elements thus removing 0 from the support of the distribution without significantly decreasing the min-entropy.)
Since we have logg y1 + logg y2 = logg y1y2, an element of 2X̄ = X̄ + X̄ would be of the form x = (logg y1y2, y1 + y2). If we
have x = (logg y3y4, y3 + y4) then the following system of equations must be satisfied{

y1y2 = y3y4
y1 + y2 = y3 + y4.

Since this field has characteristic 2, we have y1 + y3 = y2 + y4 and it follows that

y21 + y
2
3 = (y1 + y3)

2
= (y1 + y3)(y2 + y4) = (y1y2 + y3y4)+ y1y4 + y2y3 = y1y4 + y2y3. (3)

Hence, y1(y1 + y4) = y3(y2 + y3) and we also have y1 + y4 = y2 + y3. Therefore either y1 = y4 (and y2 = y3) or y1 = y3
(and y2 = y4). Hence, an element of 2X̄ is the image of at most 2 pairs in X̄ × X̄ . The probability of any such element is
thus at most 2 times the maximum probability of a pair in X̄2. By the independence assumption, a pair in X̄2 has probability
bounded by 2−2H

∞(X). It follows that an element in 2X̄ has probability bounded by 2×2−2H
∞(X)
= 2−2H

∞(X)+1 and the claim
follows. �

From this we get that another interesting property of the Hadamard extractor is inherited by Bourgain’s extractor.

Lemma 12. For any positive constant γ , there is m = Ω(γ n) for which

Bou: {0, 1}n×2 → {0, 1}m,

as defined in (1) is a strong extractor for any X and Y such that either

(A) H∞(X)+ H∞(Y ) ≥ (1+ γ )n or
(B) H∞(X),H∞(Y ) ≥ (1/2− ν)n, where ν is the constant of Theorem 11.

Moreover, Bou has error ε = 2−Ω(γ n).

Proof. Let m1 = − γ n
2c(2,2) , where c(·, ·) is the implicit function in Lemma 10. Let m2 = Ω(n) be the output length of the

Bourgain extractor of Theorem11. Setm = min{m1,m2} and let the output length of both Had and Bou bem inwhat follows.
A:Given independent sourcesX and Y such thatH∞(X)+H∞(Y ) = (1+γ )n, by Claim1,H∞(2X̄)+H∞(2Ȳ ) ≥ (1+γ )2n−2.
By Lemma 10, Bou(X, Y ) = Had(X̄, Ȳ ) is 2−Ω(γ n)-close to the uniform distribution.
B: If X and Y satisfy H∞(X),H∞(Y ) ≥ (1/2− ν)n then the conclusion is immediate from Theorem 11. �

4. Coloring the edges of the complete graph

Let us define a coloring of the complete graph on 2n vertices. Fix Bou as the extractor of Lemma 12 with γ = ν/2 and
suppose thatm is the output length and ε is the error of the extractor. Let the vertex set of K2n be V = {0, 1}n. Let S1, . . . , Sk
be a balanced partition of {0, 1}m (that means

∣∣|Si| − |Sj|∣∣ ≤ 1 for every i, j). Let f : {0, 1}m → [k] be defined as f (x) = i iff
x ∈ Si. An edge {u, v} ∈ {0, 1}n×2 gets color χ({u, v}) = f

(
Bou(u, v)

)
(this is well defined since Bou is symmetric).
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Note that we are coloring a graph on 2n vertices. This coloring could have several local flaws (pairs of vertices which have
low rainbow connectivity). We shall later take an edge-coloring induced by an appropriate subset of these vertices as the
final coloring. More concretely, we have n = O(log r), where r is the order of the final graph.
Define Γ (v, l) =

{
w ∈ V : Bou(v,w) ∈ Sl

}
and set N(v, l) = |Γ (v, l)|.

Lemma 13. The above coloring satisfies the following for all but at most k 2νn/2 vertices v: for any color l ∈ [k], we have
N(v, l) ≥ (1− 2kε)2n/k.

Proof. Let Tl be a set of vertices v havingN(v, l) < (1−2kε)2n/k. Assume that |Tl| ≥ 2νn/2. Let Xl be the uniformdistribution
over Tl (thus having H∞(Xl) ≥ νn/2). Let Un be uniform over V = {0, 1}n. By Lemma 12, the distribution Bou(Xl,Un) should
be ε-close to uniform. But this leads to the following contradiction:

2−m|Sl| − ε ≤ P
[
Bou(Xl,Un) ∈ Sl

]
=
1
|Tl|

∑
v∈Tl

N(v, l)
|V |

< (1− 2kε)
1
k
.

Hence |Tl| < 2νn/2 and
∣∣⋃

l∈[k] Tl
∣∣ ≤ k 2νn/2. �

From this we can also conclude the following about pairs of vertices.

Lemma 14. For any vertex v ∈ V such that N(v, l) ≥ (1 − 2kε)2n/k holds for all l ∈ [k] there are at most k22νn/2+2k vertices
w such that, for some (j, l) ∈ [k]2, we have

|Γ (w, j) ∩ Γ (v, l)| < (1− 2kε)2
2n

k2
. (4)

Proof. The proof is similar to that of Lemma 13. For some fixed pair (j, l), let Tj,l be the set of verticesw for which (4) holds
and assume |Tj,l| ≥ 2νn/2+2k. Let Xj,l be the uniform distribution over Tj,l and Y be the uniform distribution over Γ (v, l).
Observe that H∞(Y ) ≥ n + log{1/k − 2ε} ≥ n − log 2k and hence, H∞(Xj,l) + H∞(Y ) ≥ (1 + ν/2)n. It follows that
Bou(Xj,l, Y ) is ε-close to uniform. On the other hand,

|Sj|
2m
− ε ≤ P

[
Bou(Xj,l, Y ) ∈ Sj

]
=

1
|Tj,l|

∑
w∈Tj,l

|Γ (w, j) ∩ Γ (v, l)|
N(v, l)

< (1− 2kε)
1
k
,

which is a contradiction. Therefore,
∣∣⋃

(j,l)∈[k]2 Tj,l
∣∣ ≤ k2 2νn/2+2k. �

Along the same lines we have the following.

Lemma 15. Given two sets X, Y ⊆ V with |X |, |Y | ≥ k 2(1/2−ν)n all but at most k 2(1/2−ν)n vertices x ∈ X have edges of all k
colors going to Y .

4.1. Randomly selecting a subgraph

Although the coloring provided by the Bourgain extractor is such that for most pairs (a, b), the number of k-rainbow
paths between a and b is very close to the best possible, we do not have any guarantee that this holds for all pairs. In order
to deal with this technicality, we first show that randomly selecting a small subset of vertices of K2n (much less than

√
2n)

the coloring induced on the edges spanned by those vertices is one satisfying the requirements. The use of the Bourgain
extractor (instead of the classical Hadamard extractor) is justified if one wishes to analyse the coloring induced by such a
small set of vertices. Since our final goal is a constructive coloring, we shall derandomize the vertex selection in Section 4.2.
Let p = 2−(1+ν)n/2. Assume that we pick elements from {0, 1}n uniformly and independently with probability p forming

some set V ′. Consider the coloring formed in the induced graph V ′. Observe that the expected cardinality of |V ′| is 2(1−ν)n/2.
Let us say that a pair (v,w) ∈ V 2 is bad (with respect to V ) if either v orw fails Lemma 13 for some color or if (4) holds for
some (j, l) ∈ [k]2. A pair is called good otherwise.
Let us estimate the expected number of bad pairs that are contained in V ′. The expected number of pairs containing

(at least) one vertex failing Lemma 13 is at most p2 · k2νn/2 · 2n = k2−νn/2. The expected number of pairs (v,w),
v 6= w ∈ V such that neither v nor w are exceptions in Lemma 13 but (4) holds for some (j, l) ∈ [k]2 is, by Lemma 14,
p2 · k22νn/2+2k · 2n = k22−νn/2+2k.
We also estimate the expected number of good pairs of V that are bad with respect to V ′: that is, u 6= v ∈ V is not a bad

pair but, for some fixed γ > 0 and some (j, l) ∈ [k]2,

∣∣Γ (w, j) ∩ Γ (v, l) ∩ V ′∣∣ < (1− γ )(1− 2kε)2
2(1−ν)n/2

k2
. (5)



D. Dellamonica Jr. et al. / Discrete Mathematics 310 (2010) 774–781 779

It follows by Chernoff’s inequality (see [10]) and the union bound that the expected number of quadruples (w, v, j, l)
satisfying (5) is at most

k2 · 22n · exp
{
−cp(1− 2kε)2

2n

k2

}
,

where c = c(γ ) > 0.
The number of bad pairs with respect to V ′ has expectation o(1). Since |V ′| is a binomial random variable, it is strongly

concentrated around its expectation (see Chernoff’s inequality [10]). By choosing an appropriate value of p, we have
|V ′| ∈ [r, r + r2/3] with probability 1 − o(1). By removing at most r2/3 arbitrary vertices, we get the final graph with
the prescribed number r of vertices. Observe that since we are removing a very small number of vertices in the end, the
effect on Eq. (5) is negligible. We shall derandomize the selection of V ′ in order to obtain a graph in which every pair is good
(with respect to V ′).

4.2. Derandomization

In order to obtain a constructive coloring of the edges of the complete graph,we have to derandomize the random choices
made above. So far, the following procedure has been defined: some large enough n is set and a coloring of the edges K2n is
given by projecting the output of Bourgain’s extractor onto the set of colors. A random vertex subset of this graph is taken
and, with probability 1− o(1), the induced edge-coloring has the desired properties.
We would like to stress that the reason we take such a strong construction as the Bourgain extractor (instead of relying

on the well-known Hadamard extractor) lies in the fact that we must select very few vertices of the initial complete graph
in order to ensure that no two vertices form a bad pair. On the other hand, we must be able to say something about the
distribution of the colors in subsets of the induced subgraph, and those subsets are very small relative to the original graph.
The derandomization technique that we shall use is the Method of Conditional Expectations [1]. The random induced

subgraph is determined by picking vertices independently with probability p. Suppose that the random decisions have been
made for all vertices in a subset S of the vertex set V . Namely, for each v ∈ S a random decision has been taken and a subset
S ′ = S ∩ V ′ has been selected. The remaining choices (for vertices in V \ S) are independent from the choices made for S
and it is simple to compute expectations in the conditional space where S ′ ⊆ S is fixed.
Let N = N0 + N1 + N2, N0, N1 and N2 be the random variables such that N0 counts the number of bad pairs; N1 counts

the number of good pairs in V that are not good with respect to V ′, namely, for some (j, l) ∈ [k]2, they satisfy (5); and
N2 = 2

∣∣|V ′| − (r + r2/3/2)∣∣ /r2/3. We showed that E[Ni] = o(1) for i = 1, 2, 3 (if we set p = (r + r2/3/2)2−n).
Note that, given S ′ ⊆ S, we can compute the conditional expectation E[N | V ′ ∩ S = S ′] in polynomial time (over

2n = poly(r)). Indeed, computing N0 is just a matter of enumerating all bad pairs in K2n and adding the conditional
probability of each one being selected. Computing N1 requires a somewhat similar computation: for each pair of vertices
and each pair of colors, the conditional probability of satisfying (5) is readily evaluated. Clearly, N2 is computed in constant
time. Themethodworks as follows: initially, S = ∅; given an arbitrary v ∈ V \S, we decidewhether vertex vwill be selected
by computing two conditional expectations, E1 = E[N | V ′ ∩ (S+ v) = S ′+ v] and E2 = E[N | V ′ ∩ (S+ v) = S ′]. Note that

E0 = E[N | V ′ ∩ S = S ′] = pE1 + (1− p)E2.
Clearly, min{E1, E2} ≤ E0. Take i ∈ {1, 2} such that Ei ≤ E0 and put v in S ′ if and only if i = 1. Update S ← S+ v and repeat.
Eventually the set S exhausts all elements of V . When that happens, there is a deterministically chosen set S ′ = V ′ ⊆ V

for which N = 0 (since N = o(1) is an integer). It follows that |V ′| ∈ [r, r + r2/3] and every pair of vertices in V ′ does not
satisfy (5) for any (j, l) ∈ [k]2. Remove an arbitrary set of vertices from V ′ so that we get |V ′| = r and let the induced colored
graph define the coloring of Kr .
In practice, to speed up the process, once a vertex v is chosen to be part of S ′, every vertex which forms a bad pair with

v is known not to belong to S ′ and we can update S to contain all these vertices while S ′ only gets v.

5. Internally disjoint rainbow paths

The powerful construction of Bourgain’s extractor resembles a random structure in such a way that a greedy algorithm
to find disjoint k-rainbow paths, which can easily be seen to work (almost surely) in a random coloring, also works with this
constructive coloring.
Proof of Theorem 3. After the derandomization of Section 4.2, we obtain a coloring of Kr (with V ′ = V (Kr)) in which, for
every pair v 6= w and every pair of colors (j, l) ∈ [k]2,∣∣Γ (w, j) ∩ Γ (v, l) ∩ V ′∣∣ ≥ (1− o(1)) r

k2
. (6)

Observe that this also implies an upper bound
∣∣Γ (w, j) ∩ Γ (v, l) ∩ V ′∣∣ ≤ (1+ o(1))r/k2 for all (j, l) ∈ [k]2.

For simplicity, in this proof we shall consider the case where the length l of the rainbow paths is equal to k. The same
proof yields the result for all 3 ≤ l ≤ kwith obvious modifications.
Let us fix some pair v 6= w and check that there are many disjoint k-rainbow paths between them. In order to find those

paths we use greedy Algorithm 1. We first classify vertices according to the color of the edges connecting them to both v
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andw: if the edge xv has color j and the edge xw has color l, we put x in Xjl. We wish to use vertices from those classes in a
uniform manner, so that they always have roughly the same cardinality. This is done by choosing the k − 1 largest classes
Xj1 l1 , . . . , Xjk−1 lk−1 and reordering them

4 so that j1 6= lk−1. By Lemma 15, if all classes have at least 2k2(1/2−ν)n elements, we
may find a sequence of vertices vm ∈ Xjm,lm form = 1, . . . , k− 1, v0 = v, vk = w such that the edges vivi+1 have all distinct
colors.
To simplify the notation, we denote X ∪ {x} by X + x and, similarly, X \ {x} is denoted X − x.

Algorithm 1: Finding disjoint paths
Input: vertices v 6= w.
P ← ∅ ;1

foreach (j, l) ∈ [k]2 do2
Xjl ← Γ (v, j) ∩ Γ (w, l) ∩ V ′ ;3

whilemin(j,l)∈[k]2 |Xjl| ≥ k21+(1/2−ν)n do4

let Xj1 l1 , . . . , Xjk−1 lk−1 be some collection of k− 1 sets satisfying j1 6= lk−1 and having maximum
∑k−1
m=1

∣∣Xjm lm ∣∣ ;5

Yk−1 ← Xjk−1 lk−1 ;6

form← k− 2 downto 1 do7

Ym ←
{
x ∈ Xjm lm : Γ (x, j) ∩ Ym+1 6= ∅ for all j = 1, . . . , k

}
;8

if |Ym| < k2(1/2−ν)n then9
abort ;10

pick v1 ∈ Y1 ;11
Xj1 l1 ← Xj1 l1 − v1 ;12
K ← {j1, lk−1} ;13
form = 2 to k− 1 do14
c ← min([k] \ K) ;15
K ← K + c ;16
pick vm ∈ Γ (vm−1, c) ∩ Ym ;17
Xjm lm ← Xlm lm − vm ;18

P ← P + vv1v2 . . . vk−1w ;19

It is straightforward to check that Algorithm 1 either aborts or obtains a collection of internally disjoint rainbow k-paths.
Let us first prove that the algorithm does not abort (when the coloring is given by our construction).
The only way this algorithm aborts is if there are two sets, Y = Ym+1 and X = Xjm lm with |X | > 2k2(1/2−ν)n and

|Y | ≥ k2(1/2−ν)n such that less than k2(1/2−ν)n vertices x ∈ X have edges of all colors going to Y . But this is a contradiction
with Lemma 15.
To prove that the path system P is large, we observe that by selecting the largest classes on line 5, the cardinalities of

the sets Xjl become balanced. This is formalized, when k ≥ 4, by Claim 2. A similar claim holds for k = 3 with some slight
modifications on the argument.

Claim 2. Suppose that there is a collection of k2 positive numbers such that the maximum difference between them is at most ∆.
If a procedure takes the k−1 largest elements and decreases them by one at each step, after at most ∆(k+3) steps, the maximum
difference between any pair becomes bounded by 1.

Proof. LetMi be the largest element andmi be the smallest element at the ith step.We denote by Ti,j the jth greatest element
at the ith step.
At any given step i, we have the following possibilities:
(i) Mi ≤ mi + 1: the next step also satisfies case (i);
(ii) Mi+1 = Mi ≥ mi + 2 and mi+1 = mi: this can only happen if Ti,k = Mi. Note that (ii) can hold for at most k + 1 steps
(since each time it happens, k− 1 numbers equal toMi are decreased).

(iii) Mi+1 = Mi − 1 ≥ mi + 1 andmi+1 = mi − 1: in this case we must have Ti,k−1 = Ti,k = · · · = Ti,k2 = mi. Observe that
a step in which (iii) holds cannot be followed by a step in which (ii) or (iii) holds.

(iv) Mi ≥ mi + 2, Ti,k < Mi and Ti,k−1 > mi: in this case, we haveMi+1 = Mi − 1 andmi+1 = mi.

Before we reach case (i), there can be at most k+ 2 steps consecutive steps in which only either (ii) or (iii) occurs. Every
time (iv) occurs, the difference between the largest and smallest element decreases by 1. Hence, in at most∆(k+ 3) steps
we must reach case (i). This completes the proof of Claim 2. �

4 The case k = 3 (or l = 3 in the general case) is slightly more complicated and we may have to replace one of the classes by a smaller one to find such
ordering.
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Note that, for the family of sets {Xjl}(j,l)∈[k]2 , the initial difference is

∆ = max
(j,l)∈[k]2

|Xjl| − min
(j,l)∈[k]2

|Xjl| = o(r/k2).

Hence, after o(r/k) steps, the sets are all balanced. In particular, since the procedure described by Claim 2 never increases
themaximumdifference, the condition of thewhile loop (line 4) remains true throughout the balancing process. This shows
that, when this loop finishes, every Xjl has cardinality at most k21+(1/2−ν)n + 1. Therefore, o(r) vertices remain in

⋃
Xjl, all

of the other vertices are used in (internally disjoint) k-paths of P , thus proving the theorem. �

From the same constructive edge-coloring, we get Theorem 2.

Proof of Theorem 2. It suffices to observe that the construction of Theorem 3 satisfies Eq. (6) for every pair of vertices and
every pair of colors. In particular, summing the left side of the inequality (6) over j 6= l, we are counting the number of bi-
chromatic paths of length 2 between v andw. The same sumon the right side of the inequality results in k(k−1)

(
1−o(1)

) r
k2

and therefore we conclude the proof of the theorem. �
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