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We consider Hardy spaces associated to the conjugated Beltrami equation on doubly
connected planar domains. There are two main differences with previous studies (Barat-
chart et al., 2010 [2]). First, while the simple connectivity plays an important role in
Baratchart et al. (2010) [2], the multiple connectivity of the domain leads to unexpected
difficulties. In particular, we make strong use of a suitable parametrization of an analytic
function in a ring by its real part on one part of the boundary and by its imaginary
part on the other. Then, we allow the coefficient in the conjugated Beltrami equation to
belong to W 1,q for some q ∈ (2,+∞], while it was supposed to be Lipschitz in Baratchart
et al. (2010) [2]. We define Hardy spaces associated with the conjugated Beltrami equation
and solve the corresponding Dirichlet problem. The same problems for generalized analytic
function are also solved.
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1. Introduction

1.1. Notations

Throughout the paper, let r0 ∈ (0,1) and define D := {z ∈ C; |z| < 1}, Dr0 := r0D and G2 := {z ∈ C; r0 < |z| < 1}. For all
r > 0, let Tr stand for the circle with center 0 and radius r.

We will make use of the operators

∂ := 1

2
(∂x − i∂y) and ∂ := 1

2
(∂x + i∂y).

Let Ω ⊂ C be a bounded domain, p ∈ [1,+∞]. We identify R
2 with C, writing ξ = x + iy for ξ ∈ C with x, y ∈ R, and

denote interchangeably the (differential of ) planar Lebesgue measure by

dm(ξ) = dx dy = (i/2)dξ ∧ dξ,

where dξ = dx + i dy and dξ = dx − i dy. A measurable function f : Ω → C belongs to L p(Ω) if and only if

‖ f ‖p
L p(Ω) :=

∫
Ω

∣∣ f (z)
∣∣p

dm(z) < +∞,

and to L∞(Ω) if and only if

ess sup
z∈Ω

∣∣ f (z)
∣∣ < +∞.

If p ∈ [1,+∞], say that f ∈ W 1,p(Ω) if and only if f ∈ L p(Ω) and ∂ f and ∂ f belong to L p(Ω), and set

‖ f ‖W 1,p(Ω) := ‖ f ‖L p(Ω) + ‖∂ f ‖L p(Ω) + ‖∂ f ‖L p(Ω).

Finally, denote by L p
R
(Ω) (resp. W 1,p

R
(Ω)) the real subspace of L p(Ω) (resp. W 1,p(Ω)) made of real-valued functions.

Say that a sequence ξn ∈ G2 approaches ξ ∈ ∂G2 non-tangentially if it converges to ξ while no limit point of
(ξn − ξ)/|ξn − ξ | belongs to the tangent line to ∂G2 at ξ . A function f on G2 has non-tangential limit � at ξ if f (ξn)

tends to � for any sequence ξn which approaches ξ non-tangentially.
If A( f ) and B( f ) are two quantities depending on a function f ranging in a set E , say that A( f ) ∼ B( f ) if and only if

there exists C > 0 such that, for all f ∈ E ,

C−1 A( f ) � B( f ) � C A( f ).

1.2. The conjugated Beltrami equation

Let ν ∈ W 1,∞
R

(G2) with ‖ν‖∞ < 1 and p ∈ (1,+∞). In [2], we focused on the Dirichlet problem for the conjugated
Beltrami equation:

∂ f = ν∂ f in D. (1)

Given ϕ ∈ L p
R
(T1), we proved that there exists a solution f of (1) satisfying

Re tr f = ϕ on T1, (2)

with

ess sup
0<r<1

‖ f ‖L p(Tr) < +∞, (3)

where

‖ f ‖L p(Tr) :=
(

1

2π

2π∫ ∣∣ f
(
reiθ )∣∣p

dθ

)1/p

.

0
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The fact that f solves (1) and satisfies (3) entails that f has a non-tangential limit almost everywhere on T1, denoted
by tr f , and the trace in (2) has to be understood in this sense. Moreover, f is unique up to a purely imaginary constant,
and if we normalize f by

2π∫
0

Im tr f
(
eiθ )dθ = 0,

then f is unique and

ess sup
0<r<1

‖ f ‖L p(Tr) � C p‖ϕ‖L p(T1).

The space of solutions of (1) satisfying (3) is a Hardy space on D, denoted by H p
ν (D), which shares many properties of the

classical H p(D) space. Note that, when ν = 0 in D, (1) exactly means that f is holomorphic and the solution of the Dirichlet
problem (2) belongs to the classical H p(D) space.

In the present work, we investigate the Dirichlet problem for the conjugated Beltrami equation in a doubly connected
domain D2 with analytic boundary. For simplicity of the presentation, we will restrict ourselves to the case of the ring
G2 = {z ∈ C; r0 < |z| < 1}. Since any D2 with analytic boundary is conformally equivalent to G2 with a conformal map
continuous up to the boundary, for some unique r0 ∈ (0,1) (see [9], see also [10]), all the results of Sections 2, 3 and 4
below remain valid in D2. An important difference with the case of simply connected domains, due to the fact that the
boundary has now two connected components, is that, in the Dirichlet problem, we prescribe the real part of the solution
on one part of the boundary and the imaginary part on the other. Another difference with [2] is that we only assume that
ν ∈ W 1,q

R
(G2) for some q ∈ (2,+∞] instead of being Lipschitz continuous.

To solve the Dirichlet problem in G2, we first introduce two classes of Hardy spaces in G2 (see Section 2). The first one,
denoted by H p

ν (G2), is made of solutions of the conjugated Beltrami equation in G2 satisfying a condition analogous to (3).
The second one, denoted by G p

A,B(G2), is made of so-called generalized analytic functions in G2, also satisfying a condition
analogous to (3). These two classes are related to each other by a trick going back to Bers and Nirenberg. Some properties
of G p

A,B(G2) are derived from the corresponding ones for the usual H p(G2) space (made of analytic functions). We then

solve the Dirichlet problem for generalized analytic functions in G p
A,B(G2) and deduce the solution of the Dirichlet problem

in H p
ν (G2).

We present the two classes of Hardy spaces in Section 2. Section 3 is devoted to the statement of the solution of the
Dirichlet problem for generalized analytic functions, while Section 4 contains the analogous statement for the conjugated
Beltrami equation. We then prove the essential properties of G p

A,B(G2) in Section 5. In Section 6, the results stated in
Section 3 are established, and the solution of the Dirichlet problem for the conjugated Beltrami equation is derived in
Section 7.

Remark 1.1. We especially emphasize that the parametrization used in the present work for holomorphic functions in G2
by the real part on one boundary and by the imaginary part on the other is a very explicit representation and is only valid
for G2. To extend the main results of this paper to higher multiplicities (i.e. multiply connected domains), it is possible to
use other parametrizations of holomorphic functions in q-connected domains by potentials (see [7,8]). This will be done in
a forthcoming paper.

2. Two classes of Hardy spaces in the ring

2.1. Classical Hardy spaces

Let us first recall what the classical Hardy spaces on D and G2 are ([5], Chapter 2 for D and Chapter 10 for G2). Let
p ∈ [1,+∞). Denote by H p(D) the space of holomorphic functions w in D such that

‖w‖H p(D) := sup
0<r<1

‖w‖L p(Tr) < +∞.

An essential feature of this space is that any function w ∈ H p(D) has a non-tangential limit almost everywhere in T1,
denoted by tr w , which belongs to L p(T1). One has

‖w‖H p(D) = ‖tr w‖L p(T1).

Moreover,

lim
r→1

2π∫ ∣∣w
(
reiθ ) − tr w

(
eiθ )∣∣p

dθ = 0.
0
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A function w : G2 → C is said to belong to H p(G2) if and only if w is holomorphic in G2 and

‖w‖H p(G2) := sup
r0<r<1

‖w‖L p(Tr) < +∞.

Again, any function w ∈ H p(G2) has a non-tangential limit almost everywhere in ∂G2, denoted by tr w . This non-tangential
limit belongs to L p(∂G2) and

‖tr w‖L p(∂G2) ∼ ‖w‖H p(G2). (4)

Again, one has

lim
r→r0

2π∫
0

∣∣w
(
reiθ ) − tr w

(
r0eiθ )∣∣p

dθ = 0 and lim
r→1

2π∫
0

∣∣w
(
reiθ ) − tr w

(
eiθ )∣∣p

dθ = 0.

Let us also recall a classical topological decomposition of H p(G2). Denote by H p(C\r0D) the space of holomorphic functions
w in C \ r0D such that

‖w‖H p(C\r0D) := sup
r>r0

‖w‖L p(Tr) < +∞.

Any function in H p(C \ r0D) has a trace on Tr0 , which belongs to L p(Tr0), and one defines H p,0(C \ r0D) as the space of
functions w ∈ H p(C \ r0D) such that

2π∫
0

tr w
(
r0eiθ )dθ = 0.

Then, one has

H p(G2) = H p(D)|G2 ⊕ H p(C \ r0D)|G2 (5)

and the decomposition is topological.
Finally, we recall a generalized Hilbert transform for the ring, already obtained in [6] under slightly stronger regularity

assumptions:

Proposition 2.1.1. Let (u1, v2r) ∈ L p
R
(Tr0) × L p

R
(T1). There exists a unique function g ∈ H p(G2) such that{

Re tr g = u1 on Tr0 ,

Im tr g = v2 on T1.
(6)

Moreover,

‖g‖H p(G2) � C p
(‖u1‖L p(Tr0 ) + ‖v2‖L p(T1)

)
. (7)

The operator

S(u1, v2) := (Im tr g|Tr0
,Re tr g|T1)

is L p
R
(Tr0) × L p

R
(T1)-bounded.

As a corollary, one has:

Proposition 2.1.2. Let g ∈ H p(G2). Assume that{
Re tr g = 0 on Tr0 ,

Im tr g = 0 on T1.

Then g = 0 in G2 .

Propositions 2.1.1 and 2.1.2 will be proved in Appendix B.



M. Efendiev, E. Russ / J. Math. Anal. Appl. 383 (2011) 439–450 443
2.2. New classes of Hardy spaces on G2

Let us now introduce two classes of Hardy spaces on G2, both generalizing H p(G2). Let q ∈ (2,+∞) and ν ∈ W 1,q
R

(G2).
Note that ν ∈ L∞(G2) by the Sobolev embeddings, and we always assume in the sequel that

‖ν‖∞ < 1 (8)

and that

p >
q

q − 2
. (9)

Let H p
ν (G2) denote the space of measurable functions f : G2 → C solving

∂ f = ν∂ f in G2 (10)

in the sense of distributions and satisfying furthermore

ess sup
r0<r<1

‖ f ‖L p(Tr) < +∞. (11)

Equipped with the norm

‖ f ‖H p
ν (G2) := ess sup

r0<r<1
‖ f ‖L p(Tr), (12)

H p
ν (G2) is a Banach space. Clearly, when ν = 0, H p

ν (G2) coincides with the classical H p(G2) space.
The second class of Hardy spaces we consider is made of generalized analytic functions in G2 (see [11]). Let p and q as

before and A, B ∈ Lq(G2). By “generalized analytic functions”, we mean solutions of

∂ w = Aw + B w in G2 (13)

in the sense of distributions. Denote by G p
A,B(G2) the space of all measurable functions w on G2 solving Eq. (13) in the

sense of distributions and satisfying

ess sup
r0<r<1

‖w‖L p(Tr) < +∞, (14)

equipped with the norm

‖w‖G p
A,B (G2) := ess sup

r0<r<1
‖w‖L p(Tr). (15)

It is also a Banach space, which is obviously equal to H p(G2) when A = B = 0.
Let us now summarize essential properties of these spaces. We begin with G p

A,B(G2):

Proposition 2.2.1.

1. For any w ∈ G p
A,B(G2), there exist w̃ ∈ Cα(G2) for all α ∈ (0,1 − 2

q ) and F ∈ H p(G2) such that w = ew̃ F . One has ‖w̃‖∞ � C
where C > 0 only depends on A and B. Moreover, w̃ can be chosen in such a way that Im w̃ = 0 on ∂G2 .

2. Any function w ∈ G p
A,B(G2) has a non-tangential limit at almost every point ξ ∈ ∂G2 , denoted by tr w(ξ). Moreover, tr w ∈

L p(∂G2) and, for all w ∈ G p
A,B(G2),

‖tr w‖L p(∂G2) ∼ ‖w‖G p
A,B (G2).

Finally, for all w ∈ G p
A,B(G2),

lim
r→r0

2π∫
0

∣∣w
(
reiθ ) − tr w

(
r0eiθ )∣∣p

dθ = 0 and lim
r→1

2π∫
0

∣∣w
(
reiθ ) − tr w

(
eiθ )∣∣p

dθ = 0. (16)

3. Any function w ∈ G p
A,B(G2) belongs to L p1 (G2) for all p1 ∈ [p,2p) and

‖w‖L p1 (G2) � C p1‖w‖G p
A,B (G2).

4. If w ∈ G p
A,B(G2), Re tr w = 0 on ∂Tr0 and Im tr w = 0 on ∂T1 , then w = 0.
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Note that the principle of the factorization given by assertion 1 actually goes back to Bers and Vekua (see [11], see also
[3,4]). The proof of this proposition will be given in Section 5.

The link between H p
ν and G p

A,B is given by a trick which originally appeared in [4]. Given ν ∈ W 1,q
R

(G2) satisfying (8),
define

B = ∂ν√
1 − ν2

∈ Lq(G2).

Then f ∈ H p
ν (G2) if and only if the function w defined by

w := f − ν f√
1 − ν2

=
√

1 − ν

1 + ν
Re f + i

√
1 + ν

1 − ν
Im f (17)

belongs to G p
0,B(G2) (see [2]). Using the fact that (17) is equivalent to f = w+νw√

1−ν2
and that ν is continuous in G2 by the

Sobolev embeddings, we derive from Proposition 2.2.1 the following properties of H p
ν (G2):

Proposition 2.2.2.

1. Any function f ∈ H p
ν (G2) has a non-tangential limit at almost every point ξ ∈ ∂G2 , denoted by tr f (ξ). Moreover, tr f ∈ L p(∂G2)

and, for all f ∈ H p
ν (G2),

‖tr f ‖L p(∂G2) ∼ ‖ f ‖H p
ν (G2).

Finally, for all f ∈ H p
ν (G2),

lim
r→r0

2π∫
0

∣∣ f
(
reiθ ) − tr f

(
r0eiθ )∣∣p

dθ = 0 and lim
r→1

2π∫
0

∣∣ f
(
reiθ ) − tr f

(
eiθ )∣∣p

dθ = 0. (18)

2. If f ∈ H p
ν (G2), Re tr f = 0 a.e. on Tr0 and Im tr f = 0 a.e. on T1 , then f = 0 in G2 .

Remark 2.1. If, instead of (17), we define

w = f − ν f ,

then a straightforward computation yields that f ∈ H p
ν (G2) if and only if w ∈ G p

A,B(G2) with

A = − ν∂ν

1 − ν2
, B = − ∂ν

1 − ν2
.

3. The Dirichlet problem for generalized analytic functions in the ring

As in [2, Theorem 4.4.1.2], we solve the Dirichlet problem associated to Eq. (13) in G p
A,B(G2). More precisely:

Theorem 3.1. Let p ∈ (1,+∞). For all −→ϕ = (ϕ1,ϕ2) ∈ L p
R
(Tr0) × L p

R
(T1), there exists a unique function w ∈ G p

A,B(G2) such that{
Re tr w = ϕ1 a.e. on Tr0 ,

Im tr w = ϕ2 a.e. on T1.
(19)

Moreover, there exists C p,A,B,r0 > 0 only depending on p, A, B and r0 such that

‖w‖G p
A,B (G2) � C p,A,B,r0

(‖ϕ1‖L p(Tr0 ) + ‖ϕ2‖L p(T1)

)
. (20)

Remark 3.1.

1. Note the form of the boundary condition (19): we prescribe the real part of w on the inner circle and its imaginary
part on the outer circle. Even when A = B = 0, i.e. for holomorphic functions, it is not possible in general to prescribe
the real part of w on both circles. Indeed, let u1 ∈ L2(Tr0) and u2 ∈ L2(T1) be real-valued and assume that there exists
a holomorphic function w in G2 such that

Re w = u1 on Tr0 and Re w = u2 on T1.
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Writing u1(r0eit) = ∑
n∈Z

u1,nrn
0eint , u2(eit) = ∑

n∈Z
u2,neint and w(z) = ∑

n∈Z
anzn , computations analogous to [6,

p. 948], yield

u1,n = anrn
0 + a−nr−n

0

and

u2,n = an + a−n

for all n ∈ Z. In particular, u1,0 = u2,0. For more on this, see [8].
2. Let us point out a difference with Theorem 4.4.1.2 of [2]: in the disk, if the real part of w is prescribed on the boundary,

then the solution of the Dirichlet problem in the corresponding Hardy space is unique up to an imaginary constant.
Here, once the real part of w on the inner circle and the imaginary part on the outer one are fixed, the solution is
unique.

Theorem 3.1 will be established in Section 6.

4. The Dirichlet problem for the conjugated Beltrami equation in the ring

We conclude with the solution of the Dirichlet problem in H p
ν (G2):

Theorem 4.1. For all −→ϕ = (ϕ1,ϕ2) ∈ L p
R
(Tr0) × L p

R
(T1), there uniquely exists f ∈ H p

ν (G2) such that:{
Re tr f = ϕ1 a.e. on Tr0 ,

Im tr f = ϕ2 a.e. on T1.
(21)

Moreover, there exists C p,ν,r0 > 0 only depending on p, ν and r0 such that:

‖ f ‖H p
ν (G2) � C p,ν,r0

(‖ϕ1‖L p(Tr0 ) + ‖ϕ2‖T1

)
. (22)

5. Proofs of the properties of Hardy spaces

This section is devoted to the proof of Proposition 2.2.1. Assertion 1 is a slightly modified version of the similarity
principle stated in [7, Theorem 2.1], in the more general context of multiply connected domains, under the extra assumption
that w ∈ Cβ(G2) for some β ∈ (0,1). We provide here a quick proof for the reader’s convenience.

Let e : G2 → R be the solution of⎧⎪⎨⎪⎩
�e = 0 in G2,

e = 0 on T1,

e = 1 on Tr0 .

Set

a :=
∫

Tr0

∂e

∂n
dσ ,

where ∂
∂n stands for the normal derivative and dσ for the surface measure on ∂G2. By the Hopf lemma, a > 0. Define

c := a−1 > 0.

Consider the function ψ defined on ∂G2 by

ψ(z) = 0 if z ∈ T1, ψ(z) = α if z ∈ Tr0 , (23)

where α ∈ R will be chosen later. Define also, for all z ∈ G2,

g(z) =
{

A(z) + B(z) w(z)
w(z) if w(z) �= 0,

0 if w(z) = 0.

Applying Theorem 4.5 in [7] with the function ψ given by (23) yields a function w̃ ∈ C0,γ (G2) for some γ � 1 − 2
q (this

follows from [11] and holds whenever w is measurable) such that w = ew̃ F where F is holomorphic in G2,

Im w̃ = 0 on T1

and
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Im w̃ = α + cα

∫
Tr0

∂e

∂n
dσ − 4 Im

∫ ∫
G2

g(ζ )∂e(ζ )dζ ∧ dζ

= 2α − 4 Im
∫ ∫
G2

g(ζ )∂e(ζ )dζ ∧ dζ on Tr0 .

Choosing α appropriately therefore gives Im w̃ = 0 on ∂G2. Finally, since w satisfies (14) and w̃ is bounded in G2 by a
constant only depending on A and B , F also satisfies (14). �

Assertion 2 follows at once from assertion 1 and the fact that w̃ is continuous in G2. For assertion 3, in view of
assertion 1, it is clearly enough to establish the conclusion for functions in H p(G2). But this follows from (5) and the
fact that the corresponding property holds for functions in H p(D) (Lemma 5.2.1 in [2]) and therefore also for functions in
H p(C \ r0D), since

w ∈ H p(C \ r0D) ⇔ z �→ w

(
r0

z

)
∈ H p(D).

Finally, let w ∈ G p
A,B(G2) satisfy the assumptions of assertion 4. Write w = ew̃ F as in assertion 1. Since w̃ is real-valued

on ∂G2, an easy computation shows that F satisfies the assumptions of Proposition 2.1.2. As a consequence, F = 0 and
w = 0. �
6. Solving the Dirichlet problem for generalized analytic functions

The proof is divided in two steps: we first solve a different Dirichlet type problem, prescribing the analytic projection of
the trace of the solution, from which we derive the conclusion of Theorem 3.1.

6.1. The analytic projection

We consider here a version of the analytic projection adapted to the case of the ring (see [5]). Given −→ϕ = (ϕ1,ϕ2) ∈
L p(Tr0) × L p(T1), define, for all z ∈ G2,

C(
−→ϕ)(z) := 1

2π

∫
Tr0

ϕ1(ζ )

ζ − z
dζ + 1

2π

∫
T1

ϕ2(ζ )

ζ − z
dζ,

where, in the first integral, Tr0 is described clockwise and T1 is described counterclockwise.
The function C(

−→ϕ) is holomorphic in G2 and actually belongs to the Hardy space H p(G2). It therefore has a non-
tangential limit at almost every point of ∂G2, and we set

P+(
−→ϕ) := (

tr C(
−→ϕ)|Tr0

, tr C(
−→ϕ)|T1

)
.

Note that P+ is L p
R
(Tr0) × L p

R
(T1)-bounded.

6.2. The Dirichlet problem for generalized analytic functions with prescribed analytic projection

Our first step towards Theorem 3.1 is the solution of the Dirichlet problem for generalized analytic functions with pre-
scribed analytic projection:

Theorem 6.2.1. Let p ∈ (1,+∞). For all g ∈ H p(G2), there exists a unique w ∈ G p
A,B(G2) such that

P+(tr w) = (tr g|Tr0
, tr g|T1). (24)

Moreover,

‖w‖G p
A,B (G2) � C p‖g‖H p(G2). (25)

Proof. The argument is inspired by the one of Theorem 4.4.1.1 in [2]. Consider the operator T defined, for all w ∈ L p(G2)

and all z ∈ G2 by

T w(z) :=
∫ ∫

w(ζ )

ζ − z
dζ ∧ dζ .
G2
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Define also, for all f ∈ L p(C) and all z ∈ C,

T̆ f (z) :=
∫ ∫
G2

f (ζ )

ζ − z
dζ ∧ dζ .

We claim:

Proposition 6.2.1.

1. The operator T is bounded from L p(G2) to W 1,p(G2) and compact on L p(G2). Moreover, for all w ∈ L p(G2),

∂(T w) = w. (26)

2. The operator T̆ is bounded from L p(C) to W 1,p
loc (C).

3. Let w ∈ L p(G2) and g ∈ H p(G2). Assume that

w = g + T (Aw + B w).

Then there exists p0 > 2 such that Aw + B w ∈ L p0(G2) and

‖Aw + B w‖L p0 (G2) � C‖g‖H p(G2). (27)

4. The operator w �→ w − T (Aw + B w) is an isomorphism from L p(G2) onto itself.
5. For all w ∈ G p

A,B(G2),

w = C(tr w) + T (Aw + B w), a.e. in G2. (28)

6. If w ∈ G p
A,B(G2) and P+(tr w) = 0 a.e. on ∂G2 , then w(z) = 0 for all z ∈ G2 .

The proof of this proposition will be given in Appendix A. Relying on the conclusions of Proposition 6.2.1, let us conclude
the proof of Theorem 6.2.1. Proposition 6.2.1, assertion 4, yields a function w ∈ L p(G2) such that

w = g + T (Aw + B w).

Since g is holomorphic in G2, assertion 1 in Proposition 6.2.1 shows that ∂ w = Aw + B w . Moreover, since g ∈ H p(G2),
it follows from item 3 in Proposition 6.2.1 that Aw + B w ∈ L p0 for some p0 > 2 with estimate (27), and therefore
T (Aw + B w) ∈ W 1,p0(G2) ⊂ L∞(G2), with∥∥T (Aw + B w)

∥∥
L∞(G2)

� C‖g‖H p(G2).

As a consequence, w ∈ G p
A,B(G2) and (25) holds. Formula (28) now shows that g = C(tr w) and therefore (tr g|Tr0

, tr g|T1) =
P+(tr w). Uniqueness of w follows from assertion 6 in Proposition 6.2.1.

6.3. Solution of the Dirichlet problem for generalized analytic functions

Let us conclude the proof of Theorem 3.1, arguing as for the proof of Theorem 4.4.1.2 in [2]. Define T : G p
A,B(G2) →

L p
R
(Tr0) × L p

R
(T1) by

T w = (Re tr w|Tr0
, Im tr w|T1).

The operator T is bounded from G p
A,B(G2) to L p

R
(Tr0) × L p

R
(T1), and the conclusion of Theorem 3.1 exactly means that T is

an isomorphism from G p
A,B(G2) onto L p

R
(Tr0) × L p

R
(T1).

In order to establish this fact, we define an operator S from L p
R
(Tr0) × L p

R
(T1) to G p

A,B(G2) in the following way. For all
−→
ψ = (ψ1,ψ2) ∈ L p

R
(Tr0) × L p

R
(T1), Proposition 2.1.1 yields the unique function g ∈ H p(G2) such that{

Re tr g = ψ1 on Tr0 ,

Im tr g = ψ2 on T1,

with

‖g‖H p(G2) � C
(‖ψ1‖L p(Tr0 ) + ‖ψ2‖L p(T1)

)
. (29)

Define now w := S(ψ1,ψ2) as the unique function w ∈ G p
A,B(G2) (given by Theorem 6.2.1) such that P+(tr w) =

(tr g|Tr0
, tr g|T1). Recall also that

‖w‖G p
(G ) � C‖g‖H p(G2). (30)
A,B 2
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Thus, (29) and (30) show that S is continuous. It is plain to see that S is one-to-one on L p
R
(Tr0) × L p

R
(T1). Moreover, let

w ∈ G p
A,B(G2). If g = C(tr w), one has g ∈ H p(G2) and P+(tr w) = tr g . Setting ϕ1 = Re tr g|Tr0

and ϕ2 = Im tr g|T1 , one has

S(ϕ1,ϕ2) = w , which shows that S is onto. Therefore, S is an isomorphism from L p
R
(Tr0) × L p

R
(T1) onto G p

A,B(G2). To

check that T is an isomorphism from G p
A,B(G2) onto L p

R
(Tr0) × L p

R
(T1), it is therefore enough to check that A := T ◦ S is

an isomorphism from L p
R
(Tr0) × L p

R
(T1) onto itself.

The operator A is L p
R
(Tr0) × L p

R
(T1)-bounded. Moreover, formula (28) yields that, for all

−→
ψ ∈ L p

R
(Tr0) × L p

R
(T1), one has

A−→
ψ = −→

ψ + B−→
ψ

where

B−→
ψ := (

Re tr
(
T (Aw + B w)

)∣∣
Tr0

, Im tr
(
T (Aw + B w)

)∣∣
T1

)
and w := S(

−→
ψ). If g := C(tr w), (28) shows that w = g + T (Aw + B w) and item 3. in Proposition 6.2.1 therefore yields that

Aw + B w ∈ L p0(G2) for some p0 > 2 and

‖Aw + B w‖L p0 (G2) � C‖g‖H p(G2) � C
(‖ψ1‖L p(Tr0 ) + ‖ψ2‖L p(T1)

)
,

so that T (Aw + B w) ∈ W 1,p0(G2) and∥∥T (Aw + B w)
∥∥

W 1,p0 (G2)
� C

(‖ψ1‖L p(Tr0 ) + ‖ψ2‖L p(T1)

)
.

As a consequence, and since W 1,p0(G2) ⊂ C0,γ (G2) with γ := 1 − 2
p0

, the operator B is bounded from L p
R
(Tr0) × L p

R
(T1)

to C0,γ (Tr0) × C0,γ (T1), and is therefore compact on L p
R
(Tr0) × L p

R
(T1). Since, by Proposition 2.2.1, assertion 4, T , and

therefore A, are injective on L p
R
(Tr0) × L p

R
(T1), it follows that A is actually an isomorphism from L p

R
(Tr0) × L p

R
(T1) onto

itself. Thus, T is an isomorphism from G p
A,B(G2) onto L p

R
(Tr0) × L p

R
(T1), which yields the existence and the uniqueness

of w . Finally, (20) follows from the boundedness of T −1. �
7. Solution of the Dirichlet problem for the conjugated Beltrami equation

We establish now Theorem 4.1. Define

σ := 1 − ν

1 + ν
,

and note that, because of (8), there exist 0 < c < C such that c � σ(z) � C for almost every z ∈ G2. Set ψ1 = ϕ1σ
1/2 ∈

L p
R
(Tr0) and ψ2 = ϕ2σ

−1/2 ∈ L p
R
(T1). Theorem 3.1 yields the unique function w ∈ G p

0,B(G2) such that{
Re(tr w) = ψ1 a.e. on Tr0 ,

Im(tr w) = ψ2 a.e. on T1.

If f := w+νw√
1−ν2

, then f ∈ H p
ν (G2) and, as in the proof of Theorem 4.4.2.1 in [2], satisfies (21) and (22). Uniqueness of f

follows from Proposition 2.2.2, assertion 3.
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Appendix A. Proof of the properties of some operators

Proof of Proposition 6.2.1. The proofs of assertions 1 and 2 are identical to the corresponding ones in the case of the disk
(see assertion 4 in Proposition 5.2.1 in [2]).

Let us now turn to point 3. We first check that Aw + B w ∈ L p0(G2) for some p0 > 2. The Hölder inequality yields that
Aw + B w ∈ Lr(G2) with 1

r = 1
p + 1

q .

Assume first that p >
2q

q−2 . In that case, r > 2, and we are done.

Assume now that p = 2q
q−2 , so that r = 2. Then T (Aw + B w) ∈ W 1,2(G2) ⊂ Lt(G2) for all t < +∞. As a consequence,

since g ∈ Ls(G2) for all s ∈ (1,2p) (Proposition 2.2.1, item 3), w ∈ Ls(G2) for all s ∈ (1,2p). Since lims→2p
1
q + 1

s = 1
q + 1

2p =
1
r − 1

2p < 1
2 , there exists s ∈ (1,2p) such that 1

p0
:= 1

q + 1
s < 1

2 . Thus, Aw + B w ∈ L p0(G2).

Assume finally that p <
2q

q−2 , so that r < 2. Then T (Aw + B w) ∈ W 1,r(G2) ⊂ Lr∗
(G2) with 1

r∗ = 1
r − 1

2 . Since furthermore

p >
q

q−2 by assumption (9), one has r∗ > 2p, so that again w ∈ Ls(G2) for all s ∈ (1,2p). Therefore, for all s ∈ (1,2p), if
1 = 1 + 1 , one has Aw + B w ∈ L p0(G2). Since 1 + 1 = 1∗ − 1 + 1 < 1 , one concludes as before.
p0 q s q 2p r 2p 2 2
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We will now establish (27) and assertion 4 simultaneously, making use of the following notation: for any function u
on G2, denote by ŭ its extension by 0 outside G2.

Define T1(w) := T (Aw + B w) for w ∈ L p(G2), and observe first that T1 is compact on L p(G2). Indeed, since A, B ∈ Lq(G2)

and w ∈ L p(G2), Aw + B w ∈ Lr(G2) with r = pq
p+q . It follows from assertion 1 that T1 is bounded from L p(G2) to W 1,r(G2),

and this space is always compactly embedded in L p(G2). Indeed, this is immediate when r � 2, and if r < 2, this follows
from the fact that p < r∗ := 2r

2−r since q > 2.
To prove that I − T1 is an isomorphism from L p(G2) onto itself, it is therefore enough to check that it is one to one.

Let w ∈ L p(G2) such that w = T1 w = T (Aw + B w). Assertion 3 shows that Aw + B w ∈ L p0(G2) for some p0 > 2. Set now

u = T̆ (Aw
�+ B w) ∈ W 1,p0

loc (C).
It holds in the sense of distributions that

∂u = Aw
�+ B w = Ău + B̆u a.e. in C. (31)

In addition, u(z) clearly goes to 0 when |z| goes to +∞. It now follows from the generalized Liouville theorem [1, Proposi-
tion 3.3] that u = 0, therefore w = 0.

Coming back to assertion 3, if w = g + T (Aw + B w), with w ∈ L p(G2) and g ∈ H p(G2) ⊂ L p(G2), one deduces from
assertion 4 that w = (I − T1)

−1 g , which yields

‖w‖L p(G2) � C‖g‖L p(G2).

Estimate (27) follows. Indeed, when p >
2q

q−2 > 2,

‖Aw + B w‖Lr(G2) � C‖w‖L p(G2) � C‖g‖L p(G2) � C‖g‖H p(G2),

with 1
r = 1

p + 1
q . When p = 2q

q−2 , one has, for all t < +∞,∥∥T (Aw + B w)
∥∥

Lt (G2)
� C

∥∥T (Aw + B w)
∥∥

W 1,2(G2)
� C‖Aw + B w‖L2(G2) � C‖w‖L p(G2) � C‖g‖L p(G2),

and since

‖g‖Ls(G2) � C‖g‖H p(G2)

for all s ∈ (1,2p), (27) follows. Finally, when p <
2q

q−2 ,∥∥T (Aw + B w)
∥∥

Lr∗ (G2)
� C

∥∥T (Aw + B w)
∥∥

W 1,r(G2)
� C‖Aw + B w‖Lr(G2) � C‖w‖L p(G2),

and one concludes similarly.
For assertion 5, consider now w ∈ G p

A,B(G2). By assertion 1, ∂(w − T (Aw + B w)) = 0 in the sense of distributions, so

that the function w − T (Aw + B w) is holomorphic in G2, and therefore belong to W 1,r
loc (G2) for all r ∈ (1,+∞). Since

T (Aw + B w) ∈ W 1,r(G2), we obtain w ∈ W 1,r
loc (G2) for all r ∈ (1,+∞). For all ε > 0, the Cauchy–Green formula therefore

yields

w(z) = 1

2π i

∫
Tr0+ε

w(ζ )

ζ − z
dζ + 1

2π i

∫
T1−ε

w(ζ )

ζ − z
dζ + T

(
(Aw + B w)χG2,ε

)
(z), r0 + ε < |z| < 1 − ε, (32)

with

G2,ε := {
z ∈ C; r0 + ε < |z| < 1 − ε

}
.

Letting ε → 0 in (32), and using (16) for the two first terms and dominated convergence and assertion 1 for the third one,
we obtain (28).

Finally, for point 6, assume that w ∈ H p(G2) and P+(tr w) = 0 a.e. on ∂G2. The function C(tr w) is in H p(G2) and its
trace vanishes on ∂G2, which entails that it is zero in G2. Formula (28) therefore yields that w = T (Aw + B w), which in
turn, by assertion 4, shows that w = 0. �
Appendix B. Proof of some properties of functions in H p(G2)

Proof of Proposition 2.1.1. We argue similarly as in [6, Theorem 2.2]. For all k ∈ Z, define

u1,k := 1

2π

2π∫
u1

(
r0eiθ )e−ikθ dθ and v2,k := 1

2π

2π∫
v2

(
eiθ )e−ikθ dθ.
0 0
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The proof of Theorem 2.2 in [6] shows that, if a function g satisfying the conclusions of Proposition 2.1.1 exists, then one
has g(z) = ∑

k∈Z
akzk in G2, with

ak := 2
rk

0u1,k + iv2,k

r2k
0 + 1

. (33)

This already proves uniqueness of g .
Recall now that, according to Theorem 2.3 in [6], for all functions f1 ∈ L2

R
(Tr0) and g2 ∈ L2

R
(T1), there exists a unique

holomorphic function w in G2 such that Re w = f1 on Tr0 and Im w = g2 on T1. If the operator S is defined by w =
S( f1, g2), Theorem 2.5 in [6] shows that S can be written as

S( f1, g2) = (H0 f1 + Â f1 + B̂ g2, H0 g2 + Ĉ f1 + D̂ g2)

where H0 stands for the usual Hilbert transform and Â, B̂, Ĉ and D̂ are linear integral operators with analytic kernels. This
shows that S extends to an L p

R
(Tr0) × L p

R
(T1)-bounded operator.

Given now u1, v2 ∈ L p
R
(Tr0) × L p

R
(T1), set (u2, v1) = S(u1, v2) and

−→
ψ := (u1 + iu2, v1 + iv2).

Define now

g := C(
−→
ψ).

Since
−→
ψ ∈ L p(Tr0) × L p(T1), the function g belongs to H p(G2) and the definition of

−→
ψ yields that (6) and (7) hold. �

Proof of Proposition 2.1.2. it is an immediate corollary of Proposition 2.1.1. �
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