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Abstract

In this paper, the critical point theory is employed to establish existence and multiple solutions for
a second-order difference boundary value problem.
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1. Introduction

Let R and Z be the sets of real numbers and integers, respectively. For any a, b ∈ Z, a < b,
denote [a, b] = {a, a + 1, . . . , b}. Assume that N is a given positive integer with N > 2. We
consider the second-order difference boundary value problem (briefly BVP)

�(pk−1�xk−1) + qkxk + f (k, xk) = 0, k ∈ [1,N], (1.1)
x0 = xN, p0�x0 = pN�xN. (1.2)
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As usual, � denotes the forward difference operator defined by �xk = xk+1 − xk , �2xk =
�(�xk), pk and qk ∈ R for all k ∈ [1,N]. We will assume throughout this paper that

(A) For any k ∈ [1,N], f (k, ·) : [1,N] × R → R is continuous.
(B) pN �= 0.

Early in 1999, by employing a fixed point theorem in cone, the existence of positive periodic
solutions for the BVP was investigated by Atici and Guseinov [1]. In 2003, by using the upper
and lower solution method, Atici and Cabada [2] considered Eq. (1.1) with pk = 1 subject to the
boundary value condition

x0 = xN, �x0 = �xN

and obtained the existence and uniqueness results. See [1,2] for more details.
There are many other literature dealing with the similar second-order difference equation sub-

ject to various boundary value conditions. We refer to [1–8] and references therein. However,
we note that these results were usually obtained by analytic techniques and various fixed point
theorems. For example, the upper and lower solution method [5–7], the conical shell fixed point
theorems [1,3], the Brouwer and Schauder fixed point theorems [2,4,7], topological degree the-
ory [8]. As we know, the critical point theory has played an important role in dealing with the
existence and multiple results for differential equations, which include the boundary value prob-
lems, please see [9–11] and references given therein. However, few research has been done to
use such a powerful tool to handle the difference BVP. Very recently, in [12], Agarwal, Perera
and O’Regan have employed the mountain pass lemma to study the following discrete equation

�2y(k − 1) + f
(
k, y(k)

) = 0, k ∈ [1,N],
under Dirichlet boundary value conditions, and have obtained the existence of multiple solutions.
To the best of our knowledge, this work is the one among a few which deal with difference
problems via variational method.

The aim of this paper is to apply some basic theorems in critical point theory to establish
existence and multiple results. For a fuller treatment on critical point theory used here we refer
the reader to [13,14].

2. Auxiliary results and variational framework

Let E be a real Banach space and J ∈ C1(E,R). A critical point of J is a point x0 ∈ E where
J ′(x0) = 0 and a critical value is a number c such that J (x0) = c. The following is the definition
of Palais–Smale condition.

Definition 2.1. We say that J satisfies the Palais–Smale condition if every sequence {xn} ⊂ E,
such that J (xn) is bounded and J ′(xn) → 0 as n → +∞, has a converging subsequence.

The following lemmas play an important role in proving our main results.

Lemma 2.1. [13, p. 423] Let E be a real reflexive Banach space, and let J be weakly lower
(upper) semicontinuous such that

lim‖x‖→∞J (x) = +∞
(

lim‖x‖→∞J (x) = −∞
)
.
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Then, there exists x0 ∈ E such that

J (x0) = inf
x∈E

J (x)
(
J (x0) = sup

x∈E

J (x)
)
.

Furthermore, if J has bounded linear Gâteaux derivative, then J ′(x0) = 0.

Denote by θ the zero of E and by Sn−1 the (n − 1)-dimensional unit sphere; we have

Lemma 2.2. [14, p. 53] Let E be a real Banach space, J ∈ C1(E,R) with J even, bounded from
below and satisfying the P–S condition. Suppose J (θ) = 0, and there is a set K ⊂ E such that K

is homeomorphic to Sn−1 by an odd map, and supK J < 0. Then J possesses at least n distinct
pairs of critical points.

We will now establish the variational functional of BVP.
Let RN be the N -dimensional Hilbert space with the usual inner product and the usual norm

(x, y) =
N∑

i=1

xiyi, ‖x‖ =
(

N∑
i=1

x2
i

) 1
2

, ∀x, y ∈ RN.

Define a functional J on RN as

J (x) = 1

2

N∑
k=1

[−pk−1|�xk−1|2 + qk|xk|2 + 2F(k, xk)
]
, (2.1)

where F(k,u) = ∫ u

0 f (k, t) dt and x0 = xN . Obviously, J (θ) = 0. Let

E = {
χ | χ = (x0, x1, . . . , xN , xN+1), where x0 = xN, pN�xN = p0�x0

}
.

Then by the assumption (B) it is easy to see that E is isomorphic to RN . In the following, when
we say x ∈ RN , we always imply that x can be extended to χ ∈ E if it is necessary. Now we claim
that if xT = (x1, x2, . . . , xN) ∈ RN is a critical point of J , then χ = (x0, x1, . . . , xN , xN+1) ∈ E

is precisely a solution of BVP.
Indeed, for every u,v ∈ RN it results

F(k,u + sv) = F(k,u) +
u+sv∫
u

f (k, t) dt = F(k,u) + svf (k,u + θksv), θk ∈ (0,1).

Moreover, for any x, y ∈ RN , we have

J (x + sy) = J (x) + s

N∑
k=1

[−pk−1�xk−1�yk−1 + qkxkyk + ykf (k, xk + θksyk)
]

+ s2

2

N∑
k=1

[−pk−1|�yk−1|2 + qk|yk|2
]
.

Hence

(
J ′(x), y

) =
N∑[−pk−1�xk−1�yk−1 + qkxkyk + ykf (k, xk)

]
. (2.2)
k=1
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On the other hand, we have from the boundary value condition pN�xN = p0�x0, yN = y0 that

N∑
k=1

[
�(pk−1�xk−1)

]
yk =

N∑
k=1

(pk�xkyk − pk−1�xk−1yk)

= −
N−1∑
k=1

pk�xk�yk + pN�xNyN − p0�x0y1

= −
N∑

k=1

pk−1�xk−1�yk−1.

So, if J ′(x) = 0, then from (2.2) we have

N∑
k=1

[
�(pk−1�xk−1) + qkxk + f (k, xk)

]
yk = 0.

Note that y ∈ RN is arbitrary, hence we obtain

�(pk−1�xk−1) + qkxk + f (k, xk) = 0, k ∈ [1,N].
Therefore, if x is a critical point of J , then χ is exactly the solution of BVP.

3. Main results

Now we establish the existence of at least one solution to problem BVP.

Theorem 3.1. Assume that there exists a constant δ with δ > 4p − q such that

inf
k∈[1,N ] lim

u→∞
f (k,u)

u
� δ, (3.1)

where

p = max
k∈[1,N ]

{|pk|
}
, q = min

k∈[1,N ]{qk}. (3.2)

Then BVP has at least one solution.

Proof. By (3.1), there exists a constant M > 0 such that |u| � M implying

f (k,u)

u
� δ − ε, for k ∈ [1,N], (3.3)

where ε = 1
2 (δ − 4p + q) > 0.

We first consider the case u � 0. If u > M , we have from (3.3) that f (k,u) � (δ − ε)u, and
then

F(k,u) =
u∫

0

f (k, s) ds =
M∫

0

f (k, s) ds +
u∫

M

f (k, s) ds

�
M∫

f (k, s) ds +
u∫
(δ − ε)s ds
0 M



H. Liang, P. Weng / J. Math. Anal. Appl. 326 (2007) 511–520 515
= δ − ε

2

(
u2 − M2) +

M∫
0

f (k, s) ds

� δ − ε

2
u2 + C1,

where

C1 = inf
k∈[1,N ]

{ M∫
0

f (k, s) ds − δ − ε

2
M2

}
.

If 0 � u � M , then

F(k,u) = δ − ε

2
u2 + F(k,u) − δ − ε

2
u2

� δ − ε

2
u2 + inf

0�u�M
k∈[1,N ]

{ u∫
0

f (k, s) ds − δ − ε

2
u2

}
,

so there is a constant C2 such that

F(k,u) � δ − ε

2
u2 + C2, u � 0.

If u � 0, by a similar argument we also obtain that there is a constant C3 such that

F(k,u) � δ − ε

2
u2 + C3.

Thus we get C ∈ R such that

F(k,u) � δ − ε

2
u2 + C, ∀u ∈ R, k ∈ [1,N], (3.4)

where C is a constant.
Moreover, for every x ∈ RN , we have

J (x) = −1

2

N∑
k=1

pk−1|�xk−1|2 + 1

2

N∑
k=1

qk|xk|2 +
N∑

k=1

F(k, xk)

� −p

2

N∑
k=1

|�xk−1|2 + q

2

N∑
k=1

|xk|2 +
N∑

k=1

F(k, xk)

� −p

2

N∑
k=1

(|xk| + |xk−1|
)2 + q

2

N∑
k=1

|xk|2 + δ − ε

2

N∑
k=1

|xk|2 + NC

� −2p

N∑
k=1

|xk|2 + q

2

N∑
k=1

|xk|2 + δ − ε

2

N∑
k=1

|xk|2 + NC

=
(

δ − ε

2
− 2p + q

2

)
‖x‖2 + NC

= ε ‖x‖2 + NC.

4
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Note that ε > 0, thus J (x) → +∞ as ‖x‖ → +∞, i.e., J (x) is a coercive map. In view of
Lemma 2.1, we know that there exists at least one x̃ ∈ RN such that J ′(x̃) = 0, hence BVP has
at least one solution. We complete the proof. �
Corollary 3.1. Suppose that

(1) uf (k,u) � 0 holds for |u| large sufficiently;
(2) there exist δ1 > 0 and α > 1 such that

inf
k∈[1,N ] lim|u|→+∞

|f (k,u)|
|u|α � δ1. (3.5)

Then BVP has at least one solution.

Proof. By conditions (1) and (2), it is easy to see that

inf
k∈[1,N ] lim

u→∞
f (k,u)

u
= +∞,

so the assumption of Theorem 3.1 is satisfied, and the conclusion comes from Theorem 3.1
immediately. �
Remark. Suppose that the conditions in Theorem 3.1 are satisfied and that there exists k ∈ [1,N]
such that f (k,0) �= 0, then BVP has at least one nonzero solution.

In order to establish our next theorem, we need to give some notations. We rewrite J (x) as
follows:

J (x) = −1

2
xT Ax + 1

2

N∑
k=1

qk|xk|2 +
N∑

k=1

F(k, xk), (3.6)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

p0 + p1 −p1 0 · · · 0 −p0
−p1 p1 + p2 −p2 · · · 0 0

0 −p2 p2 + p3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · pN−2 + pN−1 −pN−1
−p0 0 0 · · · −pN−1 pN−1 + p0

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

.

and xT denotes the transpose of x.
It is clear that 0 is an eigenvalue of A. Let η = (1,1, . . . ,1)T and Y = span{η}. Evidently the

eigenspace of A associated to 0 is Y . Set

AN−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

p0 + p1 −p1 0 · · · 0 0
−p1 p1 + p2 −p2 · · · 0 0

0 −p2 p2 + p3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · pN−3 + pN−2 −pN−2

0 0 0 · · · −p p + p

⎞
⎟⎟⎟⎟⎟⎟⎠

.

N−2 N−2 N−1 (N−1)×(N−1)
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Assume that {pk}Nk=0 satisfies pk > 0 for k ∈ [0,N − 1], then it is easy to check that AN−1 is
positive-definite. Hence rankA = rankAN−1 = N − 1, which implies that A are positive semi-
definite and all eigenvalues of A is positive except for 0. Denote these eigenvalues of A by
λ1, λ2, . . . , λN , where λi > 0, i = 1,2, . . . ,N − 1; λN = 0.

Corresponding to each eigenvalue λi , i = 1,2, . . . ,N , there exist eigenvectors ηi (i =
1,2, . . . ,N ) such that Aηj = λjηj and

(ηi, ηj ) =
{

0, i �= j,

1, i = j,
i, j = 1,2, . . . ,N.

Let X = span{η1, η2, . . . , ηN−1}, then RN = X ⊕ Y . Thus for any x ∈ RN , there exists
unique {bj }Nj=1, such that x = ∑N

j=1 bjηj . Moreover, it is clear that ‖x‖2 = ∑N
j=1 b2

j . Let

λ = mini∈[1,N−1]{λi}, λ̄ = maxi∈[1,N ]{λi}, then λ̄ � λ > 0, and

xT Ax =
N∑

j=1

λjb
2
j � λ̄‖x‖2. (3.7)

Lemma 3.1. Assume that pk > 0 for k ∈ [0,N − 1], and

(i) there exist constants β1, β2, . . . , βN such that limu→∞ f (k,u)
u

� βk , k ∈ [1,N];
(ii) r := mink∈[1,N ]{qk + βk} > λ̄.

Then J satisfies the P–S condition.

Proof. Suppose that {x(n)}∞n=1 ⊂ RN with {J (x(n))} is bounded and J ′(x(n)) → 0 as n → +∞.
By (2.2) we find

(
J ′(x), x

) = −
N∑

k=1

pk−1|�xk−1|2 +
N∑

k=1

[
qk|xk|2 + xkf (k, xk)

]

= −xT Ax +
N∑

k=1

[
qk|xk|2 + xkf (k, xk)

]
,

hence

N∑
k=1

[
qk

∣∣x(n)
k

∣∣2 + x
(n)
k f

(
k, x

(n)
k

)] = (
x(n)

)T
Ax(n) + (

J ′(x(n)
)
, x(n)

)

� λ̄
∥∥x(n)

∥∥2 + (
J ′(x(n)

)
, x(n)

)
. (3.8)

We have from (i) that there exists a constant C > 0 such that

f (k,u)u � (βk − ε0)u
2 − C, ∀u ∈ R,

where ε0 = r−λ̄ , thus
2
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N∑
k=1

[
qk

∣∣x(n)
k

∣∣2 + x
(n)
k f

(
k, x

(n)
k

)]
�

N∑
k=1

(qk + βk − ε0)
∣∣x(n)

k

∣∣2 − NC

� (r − ε0)

N∑
k=1

∣∣x(n)
k

∣∣2 − NC

= r + λ̄

2

∥∥x(n)
∥∥2 − NC.

In view of (3.8) we obtain

r + λ̄

2

∥∥x(n)
∥∥2 − NC � λ̄

∥∥x(n)
∥∥2 + (

J ′(x(n)
)
, x(n)

)
or

r − λ̄

2

∥∥x(n)
∥∥2 �

(
J ′(x(n)

)
, x(n)

) + NC �
∥∥J ′(x(n)

)∥∥∥∥x(n)
∥∥ + NC.

Note that J ′(x(n)) → 0 as n → ∞ and r−λ̄
2 > 0, so {x(n)} is bounded. Since RN is N -dimensional

Hilbert space, the above argument implies that there exists a converging subsequence of {x(n)},
thus the proof of Lemma 3.1 is completed. �
Theorem 3.2. Assume that f (k,u) is odd on its second variable u, and the conditions of Lem-
ma 3.1 hold. In addition, suppose that

(iii) there exist constants μ1,μ2, . . . ,μN such that limu→0
f (k,u)

u
� μk , k ∈ [1,N ];

(iv) r̄ := maxk∈[1,N ]{qk + μk} < λ.

Then BVP has at least 2(N − 1) distinct solutions.

Proof. Since f (k,u) is odd in u, then J is an even functional. Moreover, according to
Lemma 3.1, J satisfies the P–S condition.

Let ε1 = λ−r̄
2 , it follows from condition (iii) that there exists ρ > 0 such that

f (k,u)

u
� μk + ε1, for |u| � ρ,

and therefore

F(k,u) � μk + ε1

2
u2, |u| � ρ. (3.9)

For any x = (x1, x2, . . . , xN) ∈ X, we have x = ∑N−1
i=1 biηi and ‖x‖ = (

∑N−1
i=1 b2

i )
1
2 , so

xT Ax =
N−1∑
i=1

λib
2
i � λ

N−1∑
i=1

b2
i = λ‖x‖2. (3.10)

Consequently, if ‖x‖ � ρ, then
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J (x) = −1

2
xT Ax + 1

2

N∑
k=1

qk|xk|2 +
N∑

k=1

F(k, xk)

� −λ

2
‖x‖2 + qk + μk + ε1

2

N∑
k=1

|xk|2

� −λ

2
‖x‖2 + r̄ + ε1

2
‖x‖2

= −λ − r̄ − ε1

2
‖x‖2 = −ε1

2
‖x‖2. (3.11)

Let σ = ε1
2 ρ2, then J (x) � −σ < 0 for x ∈ K , where

K = {
x ∈ X

∣∣ ‖x‖ = ρ
}
.

It is clear that K is homeomorphic to SN−2 by odd map.
On the other hand, by condition (i), it is easy to see that there exists a constant C such that

F(k,u) � βk − ε0

2
u2 − C, ∀u ∈ R, (3.12)

where ε0 = r−λ̄
2 .

For any x ∈ RN , we have from (3.12) that

J (x) = −1

2
xT Ax + 1

2

N∑
k=1

qk|xk|2 +
N∑

k=1

F(k, xk)

= −1

2

N∑
k=1

λkb
2
k + 1

2

N∑
k=1

qk|xk|2 +
N∑

k=1

F(k, xk)

� − λ̄

2

N∑
k=1

b2
k + 1

2

N∑
k=1

(qk + βk − ε0)x
2
k − NC

� − λ̄

2
‖x‖2 + r − ε0

2
‖x‖2 − NC

= ε0

2
‖x‖2 − NC. (3.13)

Thus infx∈RN J (x) > −∞. By Lemma 2.2 and the above result, J possesses at least (N − 1)

distinct pairs of critical points, i.e., BVP has at least 2(N − 1) distinct solutions. �
Corollary 3.2. Assume that f (k,−u) = −f (k,u) and pk > 0, k = 0,1, . . . ,N − 1. In addition,
suppose that

(a) conditions (1), (2) in Corollary 3.1 hold;
(b) limu→0

f (k,u)
u

� 0;
(c) maxk∈[1,N ]{qk} < λ.

Then the BVP possesses at least 2(N − 1) distinct solutions.
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Proof. Let q = mink∈[1,N ]{qk}, β = 2λ̄−q , by assumptions (1), (2) in Corollary 3.1, it is obvious
that

inf
k∈[1,N ] lim|u|→+∞

f (k,u)

u
� β.

Let βk = β (k = 1,2, . . . ,N ), then r = mink∈[1,N ]{qk + βk} = β + q = 2λ̄ > λ̄. So both (i) and
(ii) in Lemma 3.1 are satisfied. Moreover, by conditions (b) and (c) it is easy to verify that (iii),
(iv) are true. Thus the conclusion comes from Theorem 3.2 immediately. �

We can get from Corollary 3.2 directly

Corollary 3.3. Assume that pk > 0, qk � 0 and f (t, u) = ∑m
i=1 g(t)|u|αi sgnu, where g(t) is

continuous with g(t) > 0 and αi > 1 for each i ∈ [1,N]. Then the BVP possesses at least
2(N − 1) distinct solutions.
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