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Abstract

We present results for the three-loop universal anomalous dimengjgfy) of Wilson twist-2 operators in theV = 4
Supersymmetric Yang—Mills model. These eegsions are obtained by extting the most complicatl contributions from the
three loop non-singlet anatous dimensions in QCDhich were calculated recently. Their singularitieg at 1 coincide with
the predictions obtained from the BFKL equation fdr= 4 SYM in the next-to-leading order. The asymptotics/gfi(j) at
large j is in an agreement with the expectations based on arpiitgion between week and strong coupling regimes in the
framework of the AdS/CFT correspondence.

0 2004 Elsevier B.\MOpen access under CC BY license.

1. Introduction

The anomalous dimensions (AD) of the twist-two Wilson operators govern the Bjorken scaling violation for
parton distributions in a framework of Quantum Chromodynamics (QRP) These quantities are expressed
through the Mellin transformation

1
Yab(J) :/dxxj_lwb_)a(x)
0

of the splitting kerneldv,,_, , (x) for the Dokshitzer—Gribov—Lipatov—Altarelli-Parisi (DGLAP) equatj@ahwhich
relates the parton densitigs(x, 02) (hereaften = 1, g, ¢ for the spinor, vector and sealparticles, respectively)
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with different values of0? as follows

1
d dy X
Wfa(% Q2) = / ? ;Wb—m(;>fb(y, Q2)~

The anomalous dimensions and splitting kernels in QCD are well known up to the next-to-leading order (NLO) of
the perturbation theorji].

The QCD expressions for AD can be transformed to the case ofteel supersymmetric Yang—Mills theories
(SYM) if one will use for the Casimir operato€ss, Cr, Ty the following value<Cy = Cr = N, Ty = N./2 (the
last substitution follows from the fact, that each gluideing a Majorana particle gives a half of the contribution
for the Dirac spinor). For extended supersymmetric tlesathe anomalous dimensions cannot be obtained in this
simple way, because additional cahtitions coming from scalar partés should be also taken into acco(@it.
Recently these anomalous dimensions were tated in the next-to-leading approximatipd] for the N' = 4
supersymmetric Yang—Mills theory.

It turns out, that the expressions for eigenvalues of the AD matrix in\the 4 SYM can be derived directly
from the QCD anomalous dimensions without tedious calculations by using a number of plausible arguments. The
method elaborated in Rgb] for this purpose is based on special properties of solutions of the Balitsky—Fadin—
Kuraev—Lipatov (BFKL) equatiof6,7]in this model and a new relation between the BFKL and DGLAP equations
(see[3]). In the NLO approximation this method gives the emtrresults for AD eigenvalues, which was checked
by direct calculations ifg]. Its properties will be reviewed below only shortly and a more extended discussion can
be found in[5].

Next-to-next-to-leading order (NNLO) c@ctions to AD in QCD were calculated recenf8]! in the non-
singlet case. Using these results and the method of Refie derive in this Letter the eigenvalues of the anomalous
dimension matrix for théV" = 4 SYM in the NNLO approximation.

2. Evolution equation in N =4 SYM

The reason to investigate the BFKL and DGLAP equations in the case of supersymmetric theories is based on a
common belief, that the high symmetry may significantly simplify the structure of these equations. Indeed, it was
found in the leading logarithmic approximation (LLA)O], that the so-called quasi-partonic operatorsvin= 1
SYM are unified in supermultiplets with anomalous dimensions obtained from universal anomalous dimensions
yuni(j) by shifting its arguments by an integer number. Further, the anomalous dimension matrices for twist-2
operators are fixed by the superconformal invarigi€§. Calculations in the maximally extendéd = 4 SYM,
where the coupling constant is not renormalized, give even more remarkable results. Namely, it turns out, that
here all twist-2 operators enter in the same multiplet, their anomalous dimension matrix is fixed completely by the
super-conformal invariance and its univeraabmalous dimension in LLA is proportional ®(j — 1) — ¥ (1),
which means, that the evolution equations for the matrix elements of quasi-partonic operators in the multicolor
limit N. — oo are equivalent to the Schrodinger equation for an integrable Heisenberg spin [ibde]. In
QCD the integrability remains only in a small sector of the quasi-partonic opefa@jtdn the case of\V' = 4
SYM the equations for other sets of operators are also integibdte 6] Evolution equations for quasi-partonic
operators are written in an explicitly super-conformal form in RET].

Similar results related to the integrability of the multi-color QCD were obtained earlier in the ReggE Bit
Moreover, it was showf8], that in theN = 4 SYM there is a deep relation eten BFKL and DGLAP evolution
equations. Namely, thg-plane singularities of AD of the Wilson twist-2 operators in this case can be obtained

1 see also Ref9] for the singlet case.
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from the eigenvalues of the BFKL kernel by their analytic continuation. The NLO calculatioNs4n4 SYM
demonstratefb], that some of these relations are valid also in higher orders of perturbation theory. In particular,
the BFKL equation has the property of the Hermitian separability, the linear combinations of the multiplicatively
renormalized operators do not depend on the coupling congiargigenvalues of the anomalous dimension matrix
are expressed in terms of the universal functigg(j) which can be obtained also from the BFKL equatjbh
The results foyyni(j) were checked by the direct calculations in Héf.

In the A/ = 4 SYM theory[19] we have the following field content: one glugnfour Majorana fermiona and
three complex scalags. All particles belong to the adjoint representation of the gauge gsal(p/.). This model
possesses an interr@dll (4) symmetry. In theV = 4 SYM theory one can introduce the following color a8idi(4)
singlet local Wilson twist-2 operatof$0,20-22]

08, i =8G%, Dy, Dy Dy, G, .
(5231 ..... pp = SGZM1DMZDM3 .. 'D/‘.i—lézuj’ o
(9/)11 ,,,,, wj = 3‘)_»? VirDyiz - Dy Adi, o
@/)11 ..... wj = 3‘)_\?)/5)/”12)”2 .. 'D/Lj )\ai’ "
Of.. wi = S¢¢DuyDyy -+ Dy, b, .

whereD,, are covariant derivatives. The spindssand field tensoG ,,, describe gluinos and gluons, respectively,
and ¢, is the complex scalar fields appearing in the= 4 supersymmetric model. Indicés=1,...,4 and
r=1,...,3 refer toSU(4) and SO(6) ~ SU(4) groups of inner symmetry, respectively. The symBdmplies

a symmetrization of each tensor in the Lorentz indiges. . ., 1; and a subtraction of its traces. The anomalous
dimension matrices can be written for unpolarized polarized cases, respectively, as follows

Veg Ver Vgo Vea Ve
Yunpol= | Yrg Var Yi¢ |> Ypol = J;i& ?ix . (6)
Vos Ve Voo ¢

Note, that in the super-multiplet of twist-2 operators there are also operators with fermion quantum numbers
and operators anti-symmetric in two Lorentz indif&3,22] For the casé/” = 4 the multiplicatively renormalized
operators were found in an explicit way and their univitysaroperties for all ordersfgperturbation theory were
formulated in Refs[5,12].

After their diagonalization, the new unpolarizgdand polarizedr AD matrices have the following form

v+(j)  v+o(j)  y+—()) } } - .
y =V umpolV = | v+ (D 0 vo-() |, 7=V LypallV = ;*%?) V;—((jf)) )
v () vol)  r-() —+ -

which corresponds to AD matrices for multiplicatiyelenormalizable linear combinations of operati}-(5).
Here, the matricey/, V~1, vV and V1 were calculated if5] and in LO we havey,,(j) =0, Y1, (j) = 0 for
l,m =+,0,—. In NLO the AD matrices become triang|é] due to superconformal invariance breakiag],
similar to the case oV = 1 SYM [21]. The eigenvalueg;(j) andy;(j) govern the power-like violation of the
Bjorken scaling for the parton distributions.

Due to the fact that all twist-2 operators belong to the same supermultiplet the anomalous dimggjcarsd
y1(j) (I =+, 0, —) have the propertig$,12]

YD =v+(G—D=yv0—-2=7-( =3 =y-(j =4 =runi(j), (€)

whereyyni(j) is the universal anomalous dimension.
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3. Method of obtaining AD eigenvaluesin A/ =4 SYM

As it was already pointed out in Introduction, the universal anomalous dimension can be extracted directly from
the QCD results without finding the sealparticle contribution. This possibility is based on deep relation between
DGLAP and BFKL dynamics in the&/ = 4 SYM [3,5].

To begin with, the eigenvalues of the BFKL kernel turn out to be analytic functions of the conform#tsatn
least in two first orders of perturbation the¢®}. Further, in the framework of theR-schemg24] one can obtain
from the BFKL equation (sef@]), that there is no mixing among the special functions of different transcendentality
levelsi,? i.e., all special functions at the NLO correction contain only sums of the teymigj’ (i = 3). More
precisely, if we introduce the transcendentality leveltfar eigenvalues of integral kernels of the BFKL equations
as functions o} and appearing in the perturbation theory in an adance with the compléty of the terms in the
corresponding sums

1 1
U~ w’wﬂ’wg(z)w_z, lp”wﬂ”wg(g)w_y
14 Y 14

then for the BFKL kernel in the leading order (LO) and in NLO the corresponding levels-areé andi = 3,
respectively.

Because inV =4 SYM there is a relation between the BFKL and DGLAP equations [3&4), the similar
properties should be valid for the anomalous dimensions themselves, i.e., the basic f%(ﬂfi(qnsyjﬁi) (j) and

yjﬁ?(j) are assumed to be of the typesl/j’ with the levelsi = 1, i = 3 andi = 5, respectively. An exception

could be for the terms appearing at a given order from previous orders of the perturbation theory. Such contributions
could be generated and/or removed by an approximate fienormalization of the coupling constant. But these
terms do not appear in tH@R-scheme.

It is known, that at the LO and NLO approximations the most complicated contributionsi(withandi = 3,
respectively) are the same for all LO and NLO anomalous dimensions in QRE@vith the SUSY relation for
the QCD color factor€’r = C4 = N¢)2 and for the LO and NLO scalar-scalar anomalous dimengiind his
property allows one to find the universal anomalous dimens,iéﬁisj') andyﬁ(j) without knowing all elements
of the anomalous dimension matfB], which was verified by the exact calculationg4.

Using above arguments, we conclude, that at the NNLO level there is only one possible candigzléﬁ?e(f@r
Namely, it is the most complicated part of the non-singlet QCD anomalous dimension matrix (with the SUSY
relation for the QCD color factor§ r = C4 = N.). Indeed, after the diagonalization of the anomalous dimension
matrix the eigenvalueg (j) andy; (/) in Eq. (7)should have this most complicated part as a common contribution
because they differ each from otheysly by a shift of the argument (sdeq. (8) and their differences are
constructed from less complicated terms. The non-diagonal matrix elemempis (¢ in Eq. (7) contain also
only less complicated terms (see, for example, AD exact expressions at LO and NLO approximationglh Ref.
for QCD and Ref[4] for ' =4 SYM) and therefore they cannot generate the most complicated contributions to
vi(j) andyi(j).

Thus, the most complicated part of the non-singlet NNLO QCD anomalous dimension should coincide (up to
color factors) with the universal anomalous dimens;iéﬁ(j).

2 Note that similar arguments were used alsd28] to obtain analytic results for contributions of some complicated massive Feynman
diagrams without direct calculations.
3 The property is valid also at NNLO approximation: see results of [Rgf.
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4. NNL O anomalousdimension for A" =4 SYM

The final three-loop resdifor the universal anomalous dimensigg(j) for V' =4 SYM is

. «aN,
v () =yuni() = ay Q) + a2y R+ a2 Gy + -, a= 4;, )
where

1 0

_yum (.] + 2) _Slv (10)
1 _ _

i +2) = (Ss+53) = 2521+ 251(52 + 5-2). (11)
1 _ _ _ _ _ _ _

32VLE§?(J +2)=25_385—S5—25_253—35_5+245_2111+6(S_41+S-32+S523)

—12(5_311+ S_212+5-221) — (S2 +287)(35_3+ S3 — 25_2.1)
— 51(85'_4 + 3'32 + 485,85 5+ 255 + 384 — 125'_3,1 — 105'_2,2 + 165'_2,1’1) (12)
andS,; = S.(j), Sa.p =Sa.p(J), Sa.p.c = Sa.p.c(j) are harmonic sums
/1 /1
SaN=D_ = Sabe (V= —She..(m). (13)
m=1 m=1
J
) =" . ="
Sal =) — &mhm=zrn&cwx
m=1 m=1
S—abie() =D/ S_ape..()) + S—ape..(00) (L= (=1)). (14)

The expressionld) is defined for all integer values of arguments (§&26]) but can be easily analytically
continued to real and complgxby the method of Refg5,27].

The limit j — 1 is importantfor the investigation of the smalbehavior of parton distributions (see revigdi]
and references therein)sgecially it became populaecently because there are new experimental data at small
produced by the H1 and ZEUS Collaborations in HERZ].

Using asymptotic expressions for harmonic sumsj at 1 + » — 1 we obtain for the\N = 4 universal
anomalous dimensiopni(j) in Eq. (9)

YOt o =2+ o), .

Vi L+ o) = —3243 +0(0h). o
1 1

Vumi (1+ ) =323~ — 23204~ — 112005 + 256302 + O (') a7

in an agreement with the predictions (1 +w), yul)(l + w) and also for the first term qﬁﬁf(l + w) coming
from an investigation of BFKL equation at NLO accuracy3j.

4 Note, that in an accordance with R¢T] our normalization ofy () contains the extra factor1/2 in comparison with the standard
normalization (sefl]) and differs by sign in comparison with Vermaseren—Moch-\Vogt[Bhe

5 Unfortunately, the results of Reff3,5] contain a misprint. Namely, the coefficient in frontat obtained in the limiti — 1 in Eq. (39)
of Ref.[5] should be multiplied by a factor 4.
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5. Resummation of yyni and the AAS/CFT correspondence

In the limit j — oo the AD result§10)—(12)are simplified significantly. Note, that this limit is related to the
study of the asymptotics of structure functions and cross-sections-atl corresponding to the quasi-elastic
kinematics of the deep-inelastip scattering.

We obtain the following asymptotics for th'é = 4 universal anomalous dimensigmi(j) in Eq. (9)with

Vu(g?(j) =—4(nj+y)+0(j 7). (18)
Vim () =802 j + ye) + 123+ 0(j ), (19)
y2(j) = ~88a(n j + ye) — 160283 — 805+ O (jL). (20)

Recently there was a great progén the investigation of they" = 4 SYM theory in a framework of the
AdS/CFT corresponden¢28] where the strong-coupling limét; N. — oo is described by a classical supergravity
in the anti-de Sitter spac&dSs x $°. In particular, a very interesting predicti¢29] (see alsd30]) was obtained
for the large;j behavior of the anomalous dimension for twist-2 operators

y()=a@nj, =2

— 44 (21)

in the strong coupling regime (see REF3] for asymptotic correction8)

. 3In2
lim a= —Zl/z + ? + 0(1—1/2). (22)

Z—>00

On the other hand, all anomalous dimensipng) andy;(j) (i = +, 0, —) coincide at largg and our results
for yuni(j) in Eq. (9)allow one to find three first terms of the smalexpansion of the coefficient(z)

|imoa=—z+—z — =+ (23)

For resummation of this series we suggest the following equatioh )’

"2

z7=—da+ 3¢ (24)

interpolating between its weak-coupling expansion up to NNLO
2
~ m° 5, 1 43 4
-2 = 2

=—z4 52" — o'z +0(z%) (25)
and strong-coupling asymptotics

a~—1.1026&Y2 4 0.6079+ O(z"?). (26)

It is remarkable, that the prediction for NNLO basedtbe above simple equatios valid with the accuracy
~ 10%. It means, that this extrapolation seems to be good for all valugs of
Further, forj — 2 due to the energy—momentum conservation

yD=0G=-2y @+, (27)

6 Here we took into account, that in our normalizatiej) contains the extra factor1/2 in comparison with that in Ref29].
7 Note, that we use thBR-scheme for coupling constant which removely12 from coefficients ofi in Eq. (28) of Ref[4] (see[5,34]).
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where the coefficient’(2) can be calculated from our above results in three first orders of the perturbation theory:

2 4 6

T T T
‘= T 2 T s 28
V@ =it gt (28)

We use the following interpolating equation foe= y/(2)

~ 1=
—z=—a+ E& . (29)

G=—"zt+ooz?— Bt (30)

Note, that similar to the case of largethe prediction for NNLO based on the above simple equation is valid with
the accuracy~ 20%.
On the other hand using the same method of resummation as we used akipwedarbtain for large

y'(2) = —0.8597%Y2 4 0.6079+ - - -. (31)

Let us take into account, that in this limit=1/2+iv + (j — 1)/2— 1+ (j — 2)/2 for the principal series of
unitary representations of the Mdbius group appearing in the BFKL equaiiohherefore we obtain for large

j=2-1163%2"Y2_0.146Q"1, (32)

in agreement with the result that the Pomeron in the strong coupling regime coincides with the gfagjtorhe
correction~ z~%? to the graviton spirj = 2 coincides in form with that obtained in R¢&6] from the AdS/CFT
correspondence but the coefficient in frontof/? was not calculated yet.

6. Conclusion

Thus, in this Letter we constructed the anomalous dimengigit;) for the A = 4 supersymmetric gauge
theory in the next-to-next-to-leading approximation and verified its self-consistency in the Reggd) and
quasi-elastic { — oo) regimes. Our result for universal anomalous dimensigh-a# could be used to determine
anomalous dimension of Konishi opera{86] up to 3-loops. It is remarkable, that our results coingidéth
corresponding predictions from dilatati@perator approach and integrabili87,38] The method, developed for
this construction, can be applied also to less symmetric cagésof, 2 SYM and QCD, which are very important
for phenomenological applications. For the verificataf the AAS/CFT correspondence the calculations of the
various physical quantities iV’ = 4 SYM attract a great interest due to aspibility to develop non-perturbative
approaches to QCD.

We demonstrated above that the expressions intaipglaetween the week and strong regime work remarkably
well both in limit j — oo andj — 2. The integrability of the evolution equations for the quasi-partonic operators
in LLA [11,12]is an interesting property 0¥ = 4 SYM which should be verified on NLO and NNLO level. We
hope to discuss these problems in our future publications.

8 We are grateful to Niklas Beisert and Matthias Staudacher for pointing this to us.
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