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Abstract

We present results for the three-loop universal anomalous dimensionγuni(j) of Wilson twist-2 operators in theN = 4
Supersymmetric Yang–Mills model. These expressions are obtained by extracting the most complicated contributions from the
three loop non-singlet anomalous dimensions in QCD which were calculated recently. Their singularities atj = 1 coincide with
the predictions obtained from the BFKL equation forN = 4 SYM in the next-to-leading order. The asymptotics ofγuni(j) at
largej is in an agreement with the expectations based on an interpolation between week and strong coupling regimes in
framework of the AdS/CFT correspondence.
 2004 Elsevier B.V.

1. Introduction

The anomalous dimensions (AD) of the twist-two Wilson operators govern the Bjorken scaling violati
parton distributions in a framework of Quantum Chromodynamics (QCD)[1]. These quantities are express
through the Mellin transformation

γab(j) =
1∫

0

dx xj−1Wb→a(x)

of the splitting kernelsWb→a(x) for the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equation[2] which
relates the parton densitiesfa(x,Q2) (hereaftera = λ,g,φ for the spinor, vector and scalar particles, respectively
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with different values ofQ2 as follows

d

d lnQ2
fa

(
x,Q2) =

1∫
x

dy

y

∑
b

Wb→a

(
x

y

)
fb

(
y,Q2).

The anomalous dimensions and splitting kernels in QCD are well known up to the next-to-leading order (N
the perturbation theory[1].

The QCD expressions for AD can be transformed to the case of theN = 1 supersymmetric Yang–Mills theorie
(SYM) if one will use for the Casimir operatorsCA,CF ,Tf the following valuesCA = CF = Nc , Tf = Nc/2 (the
last substitution follows from the fact, that each gluinoλi being a Majorana particle gives a half of the contribut
for the Dirac spinor). For extended supersymmetric theories the anomalous dimensions cannot be obtained in
simple way, because additional contributions coming from scalar particles should be also taken into account[3].
Recently these anomalous dimensions were calculated in the next-to-leading approximation[4] for the N = 4
supersymmetric Yang–Mills theory.

It turns out, that the expressions for eigenvalues of the AD matrix in theN = 4 SYM can be derived directl
from the QCD anomalous dimensions without tedious calculations by using a number of plausible argume
method elaborated in Ref.[5] for this purpose is based on special properties of solutions of the Balitsky–F
Kuraev–Lipatov (BFKL) equation[6,7] in this model and a new relation between the BFKL and DGLAP equat
(see[3]). In the NLO approximation this method gives the correct results for AD eigenvalues, which was check
by direct calculations in[4]. Its properties will be reviewed below only shortly and a more extended discussio
be found in[5].

Next-to-next-to-leading order (NNLO) corrections to AD in QCD were calculated recently[8]1 in the non-
singlet case. Using these results and the method of Ref.[5] we derive in this Letter the eigenvalues of the anomal
dimension matrix for theN = 4 SYM in the NNLO approximation.

2. Evolution equation in N = 4 SYM

The reason to investigate the BFKL and DGLAP equations in the case of supersymmetric theories is ba
common belief, that the high symmetry may significantly simplify the structure of these equations. Indeed
found in the leading logarithmic approximation (LLA)[10], that the so-called quasi-partonic operators inN = 1
SYM are unified in supermultiplets with anomalous dimensions obtained from universal anomalous dim
γuni(j) by shifting its arguments by an integer number. Further, the anomalous dimension matrices for
operators are fixed by the superconformal invariance[10]. Calculations in the maximally extendedN = 4 SYM,
where the coupling constant is not renormalized, give even more remarkable results. Namely, it turns
here all twist-2 operators enter in the same multiplet, their anomalous dimension matrix is fixed completel
super-conformal invariance and its universalanomalous dimension in LLA is proportional toΨ (j − 1) − Ψ (1),
which means, that the evolution equations for the matrix elements of quasi-partonic operators in the m
limit Nc → ∞ are equivalent to the Schrödinger equation for an integrable Heisenberg spin model[11,12]. In
QCD the integrability remains only in a small sector of the quasi-partonic operators[13]. In the case ofN = 4
SYM the equations for other sets of operators are also integrable[14–16]. Evolution equations for quasi-parton
operators are written in an explicitly super-conformal form in Ref.[17].

Similar results related to the integrability of the multi-color QCD were obtained earlier in the Regge limi[18].
Moreover, it was shown[3], that in theN = 4 SYM there is a deep relation between BFKL and DGLAP evolution
equations. Namely, thej -plane singularities of AD of the Wilson twist-2 operators in this case can be obt

1 See also Ref.[9] for the singlet case.
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from the eigenvalues of the BFKL kernel by their analytic continuation. The NLO calculations inN = 4 SYM
demonstrated[5], that some of these relations are valid also in higher orders of perturbation theory. In par
the BFKL equation has the property of the Hermitian separability, the linear combinations of the multiplic
renormalized operators do not depend on the coupling constant, the eigenvalues of the anomalous dimension ma
are expressed in terms of the universal functionγuni(j) which can be obtained also from the BFKL equation[5].
The results forγuni(j) were checked by the direct calculations in Ref.[4].

In theN = 4 SYM theory[19] we have the following field content: one gluong, four Majorana fermionsλ and
three complex scalarsφ. All particles belong to the adjoint representation of the gauge groupSU(Nc). This model
possesses an internalSU(4) symmetry. In theN = 4 SYM theory one can introduce the following color andSU(4)

singlet local Wilson twist-2 operators[10,20–22]:

(1)Og
µ1,...,µj

= ŜGa
ρµ1

Dµ2Dµ3 · · ·Dµj−1G
a
ρµj

,

(2)Õg
µ1,...,µj

= ŜGa
ρµ1

Dµ2Dµ3 · · ·Dµj−1G̃
a
ρµj

,

(3)Oλ
µ1,...,µj

= Ŝλ̄a
i γµ1Dµ2 · · ·Dµj λ

a i ,

(4)Õλ
µ1,...,µj

= Ŝλ̄a
i γ5γµ1Dµ2 · · ·Dµj λ

a i,

(5)Oφ
µ1,...,µj

= Ŝφ̄a
r Dµ1Dµ2 · · ·Dµj φ

a
r ,

whereDµ are covariant derivatives. The spinorsλi and field tensorGρµ describe gluinos and gluons, respective
and φr is the complex scalar fields appearing in theN = 4 supersymmetric model. Indicesi = 1, . . . ,4 and
r = 1, . . . ,3 refer toSU(4) andSO(6) � SU(4) groups of inner symmetry, respectively. The symbolŜ implies
a symmetrization of each tensor in the Lorentz indicesµ1, . . . ,µj and a subtraction of its traces. The anomal
dimension matrices can be written for unpolarized and polarized cases, respectively, as follows

(6)γunpol=
∣∣∣∣∣
γgg γgλ γgφ

γλg γλλ γλφ

γφg γφλ γφφ

∣∣∣∣∣ , γpol =
∣∣∣∣ γ̃gg γ̃gλ

γ̃λg γ̃λλ

∣∣∣∣ .
Note, that in the super-multiplet of twist-2 operators there are also operators with fermion quantum n

and operators anti-symmetric in two Lorentz indices[10,22]. For the caseN = 4 the multiplicatively renormalized
operators were found in an explicit way and their universality properties for all orders of perturbation theory were
formulated in Refs.[5,12].

After their diagonalization, the new unpolarizedγ and polarized̃γ AD matrices have the following form

(7)γ = V −1γunpolV =
∣∣∣∣∣

γ+(j) γ+0(j) γ+−(j)

γ0+(j) γ0(j) γ0−(j)

γ−+(j) γ−0(j) γ−(j)

∣∣∣∣∣ , γ̃ = Ṽ −1γpolṼ =
∣∣∣∣ γ̃+(j) γ̃+−(j)

γ̃−+(j) γ̃−(j)

∣∣∣∣
which corresponds to AD matrices for multiplicatively renormalizable linear combinations of operators(1)–(5).
Here, the matricesV, V −1, Ṽ and Ṽ −1 were calculated in[5] and in LO we haveγlm(j) = 0, γ̃lm(j) = 0 for
l,m = +,0,−. In NLO the AD matrices become triangle[4] due to superconformal invariance breaking[23],
similar to the case ofN = 1 SYM [21]. The eigenvaluesγl(j) and γ̃l(j ) govern the power-like violation of th
Bjorken scaling for the parton distributions.

Due to the fact that all twist-2 operators belong to the same supermultiplet the anomalous dimensionsγl(j) and
γ̃l(j ) (l = +,0,−) have the properties[5,12]

(8)γ+(j) = γ̃+(j − 1) = γ0(j − 2) = γ̃−(j − 3) = γ−(j − 4) = γuni(j),

whereγuni(j) is the universal anomalous dimension.
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3. Method of obtaining AD eigenvalues in N = 4 SYM

As it was already pointed out in Introduction, the universal anomalous dimension can be extracted direc
the QCD results without finding the scalar particle contribution. This possibility is based on deep relation betw
DGLAP and BFKL dynamics in theN = 4 SYM [3,5].

To begin with, the eigenvalues of the BFKL kernel turn out to be analytic functions of the conformal spin|n| at
least in two first orders of perturbation theory[5]. Further, in the framework of theDR-scheme[24] one can obtain
from the BFKL equation (see[3]), that there is no mixing among the special functions of different transcenden
levels i,2 i.e., all special functions at the NLO correction contain only sums of the terms∼ 1/j i (i = 3). More
precisely, if we introduce the transcendentality level forthe eigenvalues of integral kernels of the BFKL equati
as functions ofγ and appearing in the perturbation theory in an accordance with the complexity of the terms in the
corresponding sums

Ψ ∼ 1

γ
, Ψ ′ ∼ β ′ ∼ ζ(2) ∼ 1

γ 2
, Ψ ′′ ∼ β ′′ ∼ ζ(3) ∼ 1

γ 3
,

then for the BFKL kernel in the leading order (LO) and in NLO the corresponding levels arei = 1 andi = 3,
respectively.

Because inN = 4 SYM there is a relation between the BFKL and DGLAP equations (see[3,5]), the similar
properties should be valid for the anomalous dimensions themselves, i.e., the basic functionsγ

(0)
uni (j), γ

(1)
uni (j) and

γ
(2)
uni (j) are assumed to be of the types∼ 1/j i with the levelsi = 1, i = 3 andi = 5, respectively. An exceptio

could be for the terms appearing at a given order from previous orders of the perturbation theory. Such cont
could be generated and/or removed by an approximate finite renormalization of the coupling constant. But the
terms do not appear in theDR-scheme.

It is known, that at the LO and NLO approximations the most complicated contributions (withi = 1 andi = 3,
respectively) are the same for all LO and NLO anomalous dimensions in QCD[1] (with the SUSY relation for
the QCD color factorsCF = CA = NC )3 and for the LO and NLO scalar-scalar anomalous dimensions[4]. This
property allows one to find the universal anomalous dimensionsγ

(0)
uni (j) andγ

(1)
uni (j) without knowing all elements

of the anomalous dimension matrix[5], which was verified by the exact calculations in[4].
Using above arguments, we conclude, that at the NNLO level there is only one possible candidate forγ

(2)
uni (j).

Namely, it is the most complicated part of the non-singlet QCD anomalous dimension matrix (with the
relation for the QCD color factorsCF = CA = Nc). Indeed, after the diagonalization of the anomalous dimen
matrix the eigenvaluesγl(j) andγ̃l(j ) in Eq. (7)should have this most complicated part as a common contribu
because they differ each from othersonly by a shift of the argument (seeEq. (8)) and their differences ar
constructed from less complicated terms. The non-diagonal matrix elements ofγab(j) in Eq. (7) contain also
only less complicated terms (see, for example, AD exact expressions at LO and NLO approximations in[1]
for QCD and Ref.[4] for N = 4 SYM) and therefore they cannot generate the most complicated contributi
γl(j) andγ̃l(j ).

Thus, the most complicated part of the non-singlet NNLO QCD anomalous dimension should coincide
color factors) with the universal anomalous dimensionγ

(2)
uni (j).

2 Note that similar arguments were used also in[25] to obtain analytic results for contributions of some complicated massive Feyn
diagrams without direct calculations.

3 The property is valid also at NNLO approximation: see results of Ref.[9].
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4. NNLO anomalous dimension for N = 4 SYM

The final three-loop result4 for the universal anomalous dimensionγuni(j) for N = 4 SYM is

(9)γ (j) ≡ γuni(j) = âγ
(0)
uni (j) + â2γ

(1)
uni (j) + â3γ

(2)
uni (j) + · · · , â = αNc

4π
,

where

(10)
1

4
γ

(0)
uni (j + 2) = −S1,

(11)
1

8
γ

(1)
uni (j + 2) = (S3 + S̄−3) − 2S̄−2,1 + 2S1(S2 + S̄−2),

(12)

1

32
γ

(2)
uni (j + 2) = 2S̄−3S2 − S5 − 2S̄−2S3 − 3S̄−5 + 24S̄−2,1,1,1 + 6(S̄−4,1 + S̄−3,2 + S̄−2,3)

− 12(S̄−3,1,1 + S̄−2,1,2 + S̄−2,2,1) − (
S2 + 2S2

1

)
(3S̄−3 + S3 − 2S̄−2,1)

− S1
(
8S̄−4 + S̄2−2 + 4S2S̄−2 + 2S2

2 + 3S4 − 12S̄−3,1 − 10S̄−2,2 + 16S̄−2,1,1
)

andSa ≡ Sa(j), Sa,b ≡ Sa,b(j), Sa,b,c ≡ Sa,b,c(j) are harmonic sums

(13)Sa(j) =
j∑

m=1

1

ma
, Sa,b,c,...(j ) =

j∑
m=1

1

ma
Sb,c,...(m),

S−a(j) =
j∑

m=1

(−1)m

ma
, S−a,b,c,...(j ) =

j∑
m=1

(−1)m

ma
Sb,c,...(m),

(14)S̄−a,b,c,...(j ) = (−1)jS−a,b,c,...(j ) + S−a,b,c,...(∞)
(
1− (−1)j

)
.

The expression (14) is defined for all integer values of arguments (see[5,26]) but can be easily analyticall
continued to real and complexj by the method of Refs.[5,27].

The limit j → 1 is important for the investigation of the small-x behavior of parton distributions (see review[31]
and references therein). Especially it became popular recently because there are new experimental data at smx

produced by the H1 and ZEUS Collaborations in HERA[32].
Using asymptotic expressions for harmonic sums atj = 1 + ω → 1 we obtain for theN = 4 universal

anomalous dimensionγuni(j) in Eq. (9)

(15)γ
(0)
uni (1+ ω) = 4

ω
+ O

(
ω1),

(16)γ
(1)
uni (1+ ω) = −32ζ3 + O

(
ω1),

(17)γ
(2)
uni (1+ ω) = 32ζ3

1

ω2 − 232ζ4
1

ω
− 1120ζ5 + 256ζ3ζ2 + O

(
ω1)

in an agreement with the predictions forγ
(0)
uni (1+ ω), γ

(1)
uni (1+ ω) and also for the first term ofγ (2)

uni (1+ ω) coming
from an investigation of BFKL equation at NLO accuracy in[3].5

4 Note, that in an accordance with Ref.[7] our normalization ofγ (j) contains the extra factor−1/2 in comparison with the standar
normalization (see[1]) and differs by sign in comparison with Vermaseren–Moch–Vogt one[8].

5 Unfortunately, the results of Refs.[3,5] contain a misprint. Namely, the coefficient in front ofâ3 obtained in the limitj → 1 in Eq. (39)
of Ref. [5] should be multiplied by a factor 4.
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In the limit j → ∞ the AD results(10)–(12)are simplified significantly. Note, that this limit is related to t
study of the asymptotics of structure functions and cross-sections atx → 1 corresponding to the quasi-elas
kinematics of the deep-inelasticep scattering.

We obtain the following asymptotics for theN = 4 universal anomalous dimensionγuni(j) in Eq. (9)with

(18)γ
(0)
uni (j) = −4(lnj + γe) + O

(
j−1),

(19)γ
(1)
uni (j) = 8ζ2(ln j + γe) + 12ζ3 + O

(
j−1),

(20)γ
(2)
uni (j) = −88ζ4(ln j + γe) − 16ζ2ζ3 − 80ζ5 + O

(
j−1).

Recently there was a great progress in the investigation of theN = 4 SYM theory in a framework of the
AdS/CFT correspondence[28] where the strong-coupling limitαsNc → ∞ is described by a classical supergrav
in the anti-de Sitter spaceAdS5 × S5. In particular, a very interesting prediction[29] (see also[30]) was obtained
for the large-j behavior of the anomalous dimension for twist-2 operators

(21)γ (j) = a(z) lnj, z = αNc

π
= 4â

in the strong coupling regime (see Ref.[33] for asymptotic corrections)6

(22)lim
z→∞a = −z1/2 + 3 ln2

4π
+O

(
z−1/2).

On the other hand, all anomalous dimensionsγi(j) andγ̃i(j ) (i = +,0,−) coincide at largej and our results
for γuni(j) in Eq. (9)allow one to find three first terms of the small-z expansion of the coefficienta(z)

(23)lim
z→0

a = −z + π2

12
z2 − 11

720
π4z3 + · · · .

For resummation of this series we suggest the following equation forã [4]7

(24)z = −ã + π2

12
ã2

interpolating between its weak-coupling expansion up to NNLO

(25)ã = −z + π2

12
z2 − 1

72
π4z3 + O

(
z4)

and strong-coupling asymptotics

(26)ã ≈ −1.1026z1/2 + 0.6079+O
(
z−1/2).

It is remarkable, that the prediction for NNLO based onthe above simple equation is valid with the accuracy
∼ 10%. It means, that this extrapolation seems to be good for all values ofz.

Further, forj → 2 due to the energy–momentum conservation

(27)γ (j) = (j − 2)γ ′(2) + · · · ,

6 Here we took into account, that in our normalizationγ (j) contains the extra factor−1/2 in comparison with that in Ref.[29].
7 Note, that we use theDR-scheme for coupling constant which removes−1/12 from coefficients of̃a in Eq. (28) of Ref.[4] (see[5,34]).
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where the coefficientγ ′(2) can be calculated from our above results in three first orders of the perturbation t

(28)γ ′(2) = −π2

6
z + π4

72
z2 − π6

540
z3 + · · · .

We use the following interpolating equation for˜̃a = γ ′(2)

(29)
π2

6
z = −˜̃a + 1

2
˜̃a 2

.

Its solution at smallz up to NNLO is

(30)˜̃a = −π2

6
z + π4

72
z2 − π6

432
z3 + · · · .

Note, that similar to the case of largej , the prediction for NNLO based on the above simple equation is valid
the accuracy∼ 20%.

On the other hand using the same method of resummation as we used above forã, we obtain for largez

(31)γ ′(2) = −0.8597z1/2 + 0.6079+ · · · .
Let us take into account, that in this limitγ = 1/2 + iν + (j − 1)/2 → 1 + (j − 2)/2 for the principal series o
unitary representations of the Möbius group appearing in the BFKL equation[7]. Therefore we obtain for largez

(32)j = 2− 1.1632z−1/2 − 0.1460z−1,

in agreement with the result that the Pomeron in the strong coupling regime coincides with the graviton[36]. The
correction∼ z−1/2 to the graviton spinj = 2 coincides in form with that obtained in Ref.[36] from the AdS/CFT
correspondence but the coefficient in front ofz−1/2 was not calculated yet.

6. Conclusion

Thus, in this Letter we constructed the anomalous dimensionγuni(j) for the N = 4 supersymmetric gaug
theory in the next-to-next-to-leading approximation and verified its self-consistency in the Regge (j → 1) and
quasi-elastic (j → ∞) regimes. Our result for universal anomalous dimension atj = 4 could be used to determin
anomalous dimension of Konishi operator[35] up to 3-loops. It is remarkable, that our results coincide8 with
corresponding predictions from dilatation operator approach and integrability[37,38]. The method, developed fo
this construction, can be applied also to less symmetric cases ofN = 1, 2 SYM and QCD, which are very importa
for phenomenological applications. For the verification of the AdS/CFT correspondence the calculations of
various physical quantities inN = 4 SYM attract a great interest due to a possibility to develop non-perturbativ
approaches to QCD.

We demonstrated above that the expressions interpolating between the week and strong regime work remarka
well both in limit j → ∞ andj → 2. The integrability of the evolution equations for the quasi-partonic oper
in LLA [11,12] is an interesting property ofN = 4 SYM which should be verified on NLO and NNLO level. W
hope to discuss these problems in our future publications.

8 We are grateful to Niklas Beisert and Matthias Staudacher for pointing this to us.
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