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Abstract This paper focuses on experimental and analytical behavior of the ultimate moment of

the connections of steel I-beams to square concrete-filled steel tube columns. External stiffeners

around the columns are used at the beam flange levels. Five specimens are tested monotonically.

The test parameters are the column stiffener dimensions and filling the steel tube column with con-

crete. Two types of failure modes are observed; beam flange failure and stiffener failure. The exper-

imental results show that the ultimate moment of the connection is increased by increasing

stiffener’s dimensions and filling the steel tube column with concrete. ANSYS finite element pro-

gram is used to simulate the behavior, taking into account both geometric and material nonlinear-

ities. Analytical results that are in fair agreement with the experimental ones are then used to discuss

the influence of the main geometric parameters on the connection behavior. The parameters are the

stiffener and column dimensions as well as filling the steel tube column with concrete. Different

square column cross sections are chosen to cover the three classes of section classifications accord-

ing to Egyptian code of practice, which are: compact, non compact or slender. The increase in the

ultimate moment of the connections is based upon both column cross sections’ compactness and

stiffener dimensions while the maximum advantages occur with slender columns.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Housing and Building National Research

Center.
Introduction

Concrete-filled steel tube (CFT) columns combine the ductility

generally associated with steel structures with the stiffness of
concrete components. They have many advantages compared
to other composite column types such as: the steel tube pro-
vides a convenient formwork for the concrete; it prevents

spalling of concrete and the concrete core delays local buckling
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Fig. 2 Schematic drawing of specimen NS-50-12.
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Fig. 1 Steel I-beam welded to square tube column.
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Fig. 3 Schematic drawing of specimen CS-50-12.
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of the steel tube. Also, the steel tube provides continuous
confinement for the concrete-filling which helps the column

to offer favorable ductility. Consequently, CFT columns may
be well suited for buildings constructed in regions at high seis-
mic risks. However, their use has been limited due, in part, to

the difficulties in the design and detailing of satisfactory con-
nections, and to the lack of construction experience of such
columns.

Several researches have been carried out for decades on dif-
ferent types of moment connections of steel I-beams to square
tube columns. The most widely used connection type is the
external stiffeners that surround the tube columns, as shown

in Fig. 1. The use of external stiffeners increases the ultimate
moment of the connection most significantly. The force trans-
fer mechanism of such connection is discussed and verified

against experimental program [1]. The static strength of steel
I-beam to rectangular hollow column section connections is
a thesis that consists of experimental and numerical investiga-

tions [2]. The influence of concrete filling of the columns as well
as the effect of a composite floor on the behavior and strength
of such connection are included. Ultimate moment of such
connections is improved by the presence of stiffeners around

the column or by filling the column with concrete because
the deterioration of the connection due to failure in column
wall is prevented by shifting the stress concentration away

from the column wall. Other research works [3–9] have been
carried out to study the behavior of moment connections of
steel I-beams to steel tube columns.

In this paper, five experimental tests were carried out mono-
tonically. The test parameters are the column stiffener dimen-
sions and filling the steel tube column with concrete. A finite

element analysis is presented to model the non-linear behavior
of the in-plane moment connections between steel I-beams and
square steel tube columns with stiffening plates around the col-
umns under vertical loads only, no lateral loads are considered.

The analytical results are verified against the experimental. The
finite element model is used to conduct a parametric study with
different dimensions of square columns, stiffeners and filling

the column with concrete.
Test arrangement and procedure

General

An experimental program of five specimens has been con-
ducted to investigate the behavior of moment connections be-

tween steel I-beams and CFT columns. Some parameters are
taken constant throughout the tests such as: the square column
cross section dimensions are 250 · 10, the cross section of the

beam is IPE 300, the length of the column is 1500 mm, and the
total beam span between end supports is 2000 mm. Figs. 2–6
illustrate schematic drawings of each specimen showing the
location of stiffener and other dimensions. Each steel tube col-

umn is fillet welded to a lower end plate of 50 mm thickness at
the bottom, while the top end is kept open to allow filling the
tube with concrete. Stiffening plates are welded to the tube col-

umn using fillet welds. Beam flanges are welded to stiffening
plates using complete penetration groove welds, and the beam
web is welded to the tube column using fillet welds. For conve-

nience, each specimen has an individual designation involving
two letters followed by a series of numbers, as tabulated in
Table 1. The first letter represents the presence of concrete in-
side the column, ‘‘N’’ for column not filled with concrete, ‘‘C’’

for column filled with concrete. The second letter represents
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Fig. 4 Schematic drawing of specimen CS-75-12.
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Fig. 5 Schematic drawing of specimen CS-50-6.
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Fig. 6 Schematic drawing of specimen NI-50-12.

Table 1 Specimens and stiffener dimensions for current

experimental program.

Specimen Stiffener dimensions (mm) Filling the column

with concrete
bst tst

NS-50-12 50 12 No

CS-50-12 50 12 Yes

CS-75-12 75 12 Yes

CS-50-6 50 6 Yes

NI-50-12 50 12 No
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shape of stiffener, ‘‘S’’ for square shaped column stiffener, ‘‘I’’
for inclined side column stiffener. Meanwhile, the numbers fol-

lowing the letters denote stiffener width (bst) followed by stiff-
ener thickness (tst) in mm.

Material properties of test specimens

Specimens CS-50-12, CS-75-12 and CS-50-6 are filled with con-
crete of compressive strength 35 MPa, which is the average

compressive strength of five concrete cubes that are cast and
tested on the same day as the specimens, and had a minimum
age of 28 days prior to testing. An expanding grout admixture
providing volume expansion and increasing fluidity without

segregation is used. Four steel tensile coupons are cut from
each flat steel sheet before manufacturing and tested under ten-
sion. The results of the tests show that the steel yield strength,

Fy, is 390 MPa for columns, Fy, is 410 MPa for all stiffeners ex-
cept for thickness 6 mm, where Fy, is 261 MPa. Finally, for the
beams Fy, is 250 MPa, and the modulus of elasticity of steel,

Es, is 200,000 MPa.

Test setup and loading

The specimens are centered in the testing machine to ensure
that the compressive axial load is applied without any eccen-
tricity. The top end of the steel tubes is covered first with the
cap plate of thickness 50 mm and then rested on the upper
bearing of the testing machine which itself rests on a ball bear-

ing to allow rotation in all directions. Column load, as mea-
sured by test machine load cell, is applied at very slow rate
and is maintained for about one minute to record the measure-

ments. So, the connection between steel I-beams and square
tube columns will be subjected to in-plane moment and the col-
umn is not preloaded. To produce two pin ends of the beams,

the beam end is rested on a roller bearing. This roller bearing
consists of two thick plates 200 · 200 mm with 40 mm thick-
ness, and the two plates have a groove of depth 8 mm. A cylin-
drical roller of diameter 40 mm is placed above the two plates

to allow end rotation without sliding. Fig. 7 shows a schematic
drawing for the loading and instrumentation setup.

Instrumentation

The load cell, which is used to record the applied load, is
placed between the top end of the specimen and the testing ma-

chine. The values of ultimate moment of the connections are
obtained as the reaction force at the beam support, which is
half the value measured by load cell, multiplied by the distance
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Fig. 7 Test setup for the specimens and arrangement of LVDTs and strain gauges.

Table 2 Comparison between ultimate moment obtained by

current experiments and those obtained by the proposed finite

element model.

Specimen MEXP. (kN m) MFEM (kN m) MFEM/MEXP.

NS-50-12 110.73 112.25 1.01

CS-50-12 160.175 163.8 1.02

CS-75-12 175.12 183.36 1.04

CS-50-6 102.38 104.48 1.02

NI-50-12 110.14 111.1 1.01

Mean 1.02

Standard deviation 0.01
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between the beam support and the beam-to-column connec-
tion. LVDTs monitor the vertical movement of the stiffener
plate at the beam position (LVDT 1), the vertical movement

of the beam compression flange (LVDT 2), and the horizontal
movement of the column wall at the beam compression flange
position (LVDT 3). Strain gauges 1 and 2 are located, on the

sides that are not connected to beam flange, at the stiffener
plate and at column steel wall, respectively. Also, the strain
gauges are placed at stiffener plate welded to the beam flange

width (strain gauge 3) and finally, at the edges of beam com-
pression flange (strain gauge 4). Fig. 7 shows also the arrange-
ment of LVDTs and the strain gauges. All the measurements
are recorded directly in the computer by a data acquisition sys-

tem and curves are plotted automatically.

Experimental results and discussions

The pertinent measurements are expressed in terms of the ap-
plied experimental load versus the vertical deformation of stiff-
ener plate, beam flange, column steel wall inward deformation,

and longitudinal strains which are measured using strain
gauges. The ultimate moment of the connection of each spec-
imen,MEXP., is given in Table 2. Also, this table shows the ulti-

mate moment obtained by the proposed numerical analysis
that will be explained later in Section 4. It can be noticed that,
the ultimate moment increases by 45%, when the column is

filled with concrete. When bst is increased from 50 mm to
75 mm, the ultimate moment increases by 10%, but when tst
is increased from 6 mm to 12 mm, the increase is 57%. For
more details of the test results, refer to Fawzy [10]. Future
cyclic testing of such connections is recommended to reach a
full conclusion on their structural adequacy.

Failure modes

Fig. 8 shows the deformed shape during test for specimen NI-

50-12. The presence of stiffeners causes failure of all specimens
at the beam compression flange due to local buckling, except
for specimen CS-50-6, in which failure occurs at the stiffener,

as shown in Fig. 9.

Displacements

Table 3 shows the test loads and the corresponding maximum

displacement values recorded by the different LVDTs. In
all tests, LVDTs from 1 to 3 show that the relationship is



Fig. 8 Deformed shape during test for specimen NI-50-12.

Fig. 9 Stiffener failure for specimen CS-50-6.

Table 3 Test loads and the corresponding maximum values

recorded by LVDTs (mm).

Specimen Loads (kN) LVDT 1 LVDT 2 LVDT 3

NS-50-12 268.3 13.5 19.3 3

CS-50-12 359 1.23 14.7 2

CS-75-12 437 6.5 12.8 1.5

CS-50-6 248.2 7.3 13.1 1.84

NI-50-12 267 11.9 13.7 6

Fig. 10 Horizontal displacement of column steel wall measured

by LVDT 3 versus applied load for specimen NS-50-12.

Fig. 11 Vertical displacement of beam flange measured by

LVDT 2 versus applied load for specimen NI-50-12.
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nonlinear, characterized by an ascending branch up to failure
and the maximum displacement at failure is considerably in-
creased. For specimen CS-50-12, where column is filled with

concrete, local buckling of the stiffener and of the beam com-
pression flanges is decreased by 90% and 25%, respectively,
compared to specimen NS-50-12. By decreasing the thickness

of the stiffener to 6 mm, its vertical displacement increases
by 53% and the local buckling of the beam compression flange
decreases by 20%. In specimen NI-50-12, the stiffener shape

has no sharp edges, thus the local buckling decreases by
14% and 30% for stiffener and beam compression flange,
respectively, with respect to specimen NS-50-12. The face of
the column steel wall of specimens NS-50-12 and NI-50-12 de-

forms inward at the compression flange location by 3 mm and
6 mm, respectively. The deformations decrease when the spec-
imens are filled with concrete, causing displacement of 2 mm

for specimen CS-50-12 and 1.5 mm for specimen CS-75-12.
So, the ductility of the connection increases by not filling the
tube with concrete and by reducing stiffener thickness, but

the ultimate moment is reduced. Fig. 10 shows horizontal dis-
placement of column steel wall measured by LVDT 3 for spec-
imen NS-50-12. It can be noticed that the displacement
decreases under load in the lower part before it increases, since

column wall may not yet started obtaining the load from the
beam. Also, Figs. 11–13 show vertical displacement of beam
flange measured by LVDT 2 for specimens NI-50-12, CS-50-

6 and CS-50-12, respectively.

Strains

Table 4 shows the test loads and the corresponding maximum
strain values recorded by the different strain gauges. The com-
mon feature in strain curves is that the relationship is directly

proportional to failure. Filling the column with concrete de-
creases the strains recorded by strain gauges 1 and 2 by 95%
and 88%, respectively, as the concrete decreases the local



Fig. 13 Vertical displacement of beam flange measured by

LVDT 2 versus applied load for specimen CS-50-12.

Fig. 12 Vertical displacement of beam flange measured by

LVDT 2 versus applied load for specimen CS-50-6.

Fig. 14 Average micro strain of stiffener by strain gauge 1 versus

applied load for specimen CS-50-6.

Fig. 15 Average micro strain of beam flange by strain gauge 4

versus applied load of specimen CS-50-6.
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buckling of the adjacent elements. However, Strain gauge 3

shows an increase in the strains by three times, which signifies
the role of concrete that shifts the local buckling waves toward
the stiffener zone and accordingly, strain gauge 4 detects a de-

crease in the strains by 48%.
Local buckling of the stiffener is inevitable as bst increases

and tst decreases. The increase in the strains measured by strain
gauge 1 is almost 3.6 times for specimen CS-75-12 compared to

CS-50-12 and is 4.5 times for specimen CS-50-6 compared to
CS-50-12. Similarly, the strains, recorded by strain gauge 2, in-
crease by 38% for specimen CS-75-12 compared to CS-50-12,

but almost are not affected by changing tst. Also, by increasing
Table 4 Test loads and the corresponding maximum strain values

Specimen Loads (kN) Strain gauge 1

NS-50-12 268.3 422

CS-50-12 359 22.5

CS-75-12 437 82

CS-50-6 248.2 100

NI-50-12 267 65.5
bst, the strains decrease by 66% as a result of redistribution at
the location of strain gauge 3. The strains recorded by strain

gauge 4 at beam compression flange are doubled in specimen
CS-75-12 compared to CS-50-12, meanwhile, it increases by
11% in specimen CS-50-6 compared to specimen CS-50-12.

Figs. 14 and 15 show average micro strain for specimen CS-
50-6 of stiffener by strain gauge 1 and of beam flange by strain
gauge 4, respectively.

The least value of the strains is recorded by strain gauge 1
that is located at specimen NI-50-12, compared to NS-50-12,
as a sign of the small portion of the stresses passing around
the column wall. Also, a decrease in the strains by 35%, at

the location of strain gauge 2 is noticed. However, there is
an increase in the strains recorded by strain gauge 3 by 5%,
accompanied by a decrease of 24% in the strains that are re-

corded by strain gauge 4. Although the shape of the stiffener
influences the stress path through the connection, the ultimate
moment of the connection is slightly affected between speci-

mens NS-50-12 and NI-50-12.
recorded by strain gauges (micro strain).

Strain gauge 2 Strain gauge 3 Strain gauge 4

739 2930 12,270

95 9550 6380

131 3230 15,130

91 15,020 7030

482.6 3090 9320



Fig. 16 Average micro strain by strain gauge 3 versus applied

load calibrating finite element model with experimental test for

specimen CS-50-6.

Fig. 17 Average micro strain by strain gauge 2 versus applied

load calibrating finite element model with experimental test for

specimen CS-50-12.

Investigation of in-plane moment connections 49
Numerical analysis

In order to provide a wide parametric study of the behavior
of moment connections between steel I-beams and square

CFT columns, a three dimensional finite element model has
been developed. Both material and geometric nonlinearities
are taken into consideration. The steel tube, concrete core,

steel beams, column stiffener and the end plates are defined
in the ANSYS program [11] as individual bodies. Element
type for steel parts is Shell 43 which has membrane and bend-
ing capabilities and has six degrees of freedom at each node;

three translations and three rotations. The weld is idealized by
providing common nodes for the steel beam, stiffeners and
column tube at the weld locations. SOLID 65 is used to mod-

el the concrete. The solid element has eight nodes with three
transitional degrees of freedom at each node. In addition, the
element is capable of simulating plastic deformation, crack-

ing, crushing and also, simulating creep of concrete in three
orthogonal directions. To simulate the bond between the steel
tube and the concrete core, contact element CONTA 174 is

used [12]. It allows the contact pressure to be transmitted be-
tween the concrete and the steel tube when they are in con-
tact, while no pressure is transmitted if separation occurs,
so no tension is allowed to be transmitted between the two

surfaces. The friction between the two faces is maintained
as long as they remain in contact. Material properties of the
column steel wall, stiffener plates and steel beam are defined

by the tensile test results of coupons taken from specimens.
Yield stress, shear modulus, and Poisson’s ratio of the end
column plates are as those of the steel shell element but

with higher modulus of elasticity to avoid the deformations
of the plates. A uniaxial stress strain relationship is used to
model concrete in compression taking confinement into

consideration [13].
To simulate the boundary conditions, the end surfaces of

the column are assumed free to move while the ends of steel
beams are restrained. One end of the steel beam is hinge while

the other is roller. To simulate the column under axially con-
centric load, a distributed pressure is applied at the surface
of the upper end plate incrementally until failure takes place.

Solution technique is the arc length method. This method is
used as an incremental control technique between nodal force
and nodal displacements. Modified Newton Raphson method

is used as an iterative solution.

Comparison between experimental and analytical results

Table 2 shows also the ultimate moment of the connection of
finite element analysis, MFEM. Fair agreement is achieved be-
tween both experimental and analytical results for most speci-
mens. As expected, the analytical model shows results higher

than the experimental for most specimens, due to the perfect
conditions assumed for the finite element model, for example,
the effect of weld and residual stresses are not included. Fig. 16

shows the average micro strain obtained from strain gauge 3
versus applied load relationship for specimen CS-50-6 for both
finite element model and experimental results. Similarly,

Fig. 17 illustrates the strain measured from strain gauge 2
for specimen CS-50-12. It can be noticed that the two curves
are almost identical with good agreement. Another verification

of the analytical model is carried out against the experimental
work presented by Park et al. [1] and is published in Dessouki

et al. [14].

Parametric study

A parametric study is conducted using the proposed finite ele-
ment model. The first parameter is the presence of a square
shaped stiffener around the column at the beam flange levels.

The studied bst are 50, 75 and 100 mm and tst are 10, 15 and
20 mm. The models that are not filled with concrete are com-
pared with others that are filled with concrete of compressive
strength 35 MPa, which is the second parameter. The third

parameter is the columns’ cross section dimensions that are gi-
ven in Table 5. Six different column cross sections are chosen
to cover the three classes of section classifications according to

ECP [15], which are: compact, non compact or slender. For
convenience, each specimen has an individual designation
involving two letters followed by a number. The first letter

represents the square column shape ‘‘S’’, and the second letter
represents column cross section defined by (Wc · Tc). Mean-
while, the number following the two letters, shown in Table 6,
denotes the sample number.

Some values are constant throughout this study for in-
stance, the length of the investigated tubular columns is
3000 mm, the length of the investigated beam that is connected

to the mid-height of the column, is 1000 mm on each side of



Table 6 Ultimate moment of the connections between beam IPE 400 and square columns not filled with concrete and using different

stiffener dimensions.

Sample number (Id) Un-stiffened column Stiffened column Effect of stiffener

bst (mm) tst (mm)

20 15 10

Mult1 (kN m) Mult2 (kN m) Mult3 (kN m) Mult4 (kN m) Mult2/Mult1 Mult3/Mult1 Mult4/Mult1

S-a-1 82.9 50 210.2 192.5 168.7 2.53 2.32 2.03

S-b-2 92.4 217.5 203.2 175.05 2.35 2.20 1.89

S-c-3 181.2 237.5 207.01 193.5 1.31 1.14 1.07

S-d-4 192.7 250 218.3 210.2 1.30 1.13 1.09

S-e-5 198.9 258.4 223.4 210.5 1.30 1.12 1.06

S-f-6 101.5 208.3 174 132 2.05 1.71 1.30

S-a-7 82.9 75 250.3 199 170.8 3.02 2.40 2.06

S-b-8 92.4 261.7 223.1 193.2 2.83 2.41 2.09

S-c-9 181.2 276.8 246.2 219.9 1.53 1.36 1.21

S-d-10 192.7 278.2 258.3 232.6 1.44 1.34 1.21

S-e-11 198.9 280.6 259.4 234.1 1.41 1.30 1.18

S-f-12 101.5 249.6 227.5 170 2.46 2.24 1.67

S-a-13 82.9 100 287.7 262.9 212.5 3.47 3.17 2.56

S-b-14 92.4 290.5 266.4 214.03 3.14 2.88 2.32

S-c-15 181.2 304.5 303.3 244.6 1.68 1.67 1.35

S-d-16 192.7 326.1 322.6 254.1 1.69 1.67 1.32

S-e-17 198.9 332.7 325.8 257.5 1.67 1.64 1.29

S-f-18 101.5 317.6 275.5 217 3.13 2.71 2.14

Table 7 Ultimate strength of moment connections between beam IPE 400 and square columns filled with concrete and using different

stiffener dimensions.

Sample number

(Id)

Un-stiffened

column

Stiffened column Effect of

concrete

Effect of concrete

and stiffener
bst (mm) tst (mm)

20 15 10

Mult5 (kN m) Mult6 (kN m) Mult7 (kN m) Mult8 (kN m) Mult5/Mult1 Mult6/Mult1 Mult7/Mult1 Mult8/Mult1

S-a-19 110.5 50 241.3 221.1 195 1.33 2.91 2.66 2.35

S-b-20 120.2 243.6 228.7 196.8 1.30 2.64 2.47 2.13

S-c-21 196.8 254.2 229.9 215.1 1.09 1.40 1.27 1.19

S-d-22 209.8 264.1 231. 224.9 1.09 1.37 1.20 1.17

S-e-23 219.8 266.9 232.7 230.1 1.11 1.34 1.17 1.16

S-f-24 112 218 181 145 1.10 2.15 1.78 1.43

S-a-25 110.5 75 258.9 235. 208.4 1.33 3.12 2.83 2.51

S-b-26 120.2 271.7 249.6 210.8 1.30 2.94 2.70 2.28

S-c-27 196.8 282.8 253.9 239 1.09 1.56 1.40 1.32

S-d-28 209.8 289.6 268 256.6 1.09 1.50 1.39 1.33

S-e-29 219.8 292.4 266.3 259.9 1.11 1.47 1.34 1.31

S-f-30 112 262.8 236 187 1.10 2.59 2.33 1.84

S-a-31 110.5 100 322.8 283.1 254.3 1.33 3.89 3.41 3.07

S-b-32 120.2 328.2 287.2 256.2 1.30 3.55 3.11 2.77

S-c-33 196.8 330.1 328.8 277.3 1.09 1.82 1.81 1.53

S-d-34 209.8 343.7 335.4 279.6 1.09 1.78 1.74 1.45

S-e-35 219.8 346.5 338.5 282 1.11 1.74 1.70 1.42

S-f-36 112 330 286.5 239.7 1.10 3.25 2.82 2.36

Table 5 Square column cross sections used in the analytical study.

Square

column (Id)

Wc · Tc (mm) [Wc/Tc] Class of

section

Compactness limits according to ECP [15]

Compact Non-compact

S-a 300 · 10 30 Compact [Wc/Tc] 6 [58/(Fy)
0.5] = 30.6 [Wc/Tc] 6 [64/(Fy)

0.5] = 33.7

S-b 350 · 10 35 Slender

S-c 400 · 12 33.3 Non-compact

S-d 450 · 15 30 Compact Where ‘‘Fy’’ is the steel yield strength in (t/cm2),

For steel grade 52, Fy = 3.60 t/cm2S-e 500 · 15 33.3 Non-compact

S-f 550 · 10 55 Slender

50 A.K. Dessouki et al.



Fig. 18 Stress distribution (t/cm2) of un-stiffened square column

300 · 10 not filled with concrete.

Fig. 19 Stress distribution (t/cm2) of square column 300 · 10

with stiffener 50 · 20 not filled with concrete.

Fig. 20 Mult/Mp ratio versus tst for column S-a with different bst.

Fig. 21 Mult/Mp ratio versus tst for column S-b with different bst.

Fig. 22 Mult/Mp ratio versus tst for column S-c with different bst.

Fig. 23 Mult/Mp ratio versus tst for column S-d with different bst.
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the column wall and finally, the beam cross section is IPE 400.
The curves are plotted showing a non dimensional ratio
between ultimate moment of the connection to the plastic
moment of the beam (Mult/Mp) versus bst or tst.
Results and discussions of numerical analysis

Table 6 shows the effect of changing stiffener and square col-

umn cross section dimensions on the ultimate moment of the
connections; while Table 7 demonstrates the effect of filling
the column with concrete only or using both stiffeners and fill-
ing the column with concrete.



Fig. 24 Mult/Mp ratio versus tst for column S-e with different bst.

Fig. 26 Mult/Mp ratio versus tst for square columns not filled

(S-a-1) and filled with concrete (S-a-19).

Fig. 25 Mult/Mp ratio versus tst for column S-f with different bst.

Fig. 27 Mult/Mp ratio versus tst for square columns not filled

(S-b-2) and filled with concrete (S-b-20).

Fig. 28 Mult/Mp ratio versus tst for square columns not filled

(S-c-3) and filled with concrete (S-c-21).

Fig. 29 Mult/Mp ratio versus tst for square columns not filled

(S-d-4) and filled with concrete (S-d-22).
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Failure modes

Three different failure modes are observed from the stress dis-

tributions plotted on the deformed shapes. First, failure occurs
at the column steel walls that are un-stiffened for both not
filled and filled with concrete columns, due to high distortion

of the un-stiffened tube, which is obvious in Fig. 18. Second,
failure is at the stiffener for connections with stiffener widths
50 and 75 mm as well as with stiffeners 100 · 15 or 100 · 10,
which occurs by the stress path around the steel tubes that
are not filled or filled with concrete, as shown in Fig. 19. Third,

failure occurs at beam compression flange for connections with
stiffener 100 · 20 and columns not filled or filled with concrete.
The concrete filling almost has no effect on changing the loca-

tion of the failure modes; however, it reduces significantly the
deformations of the column wall and the stiffeners. Generally,
failure modes on both column walls and on stiffeners should

be avoided to move the plastic hinging zone away from the col-
umn and obtain ductile connections.

The inward deformations of the column steel wall at the
beam compression flange zone is up to 5.7 and 1.5 mm for



Fig. 31 Mult/Mp ratio versus tst for square columns not filled

(S-f-6) and filled with concrete (S-f-24).

Fig. 32 Mult/Mp ratio versus tst for square columns not filled

(S-a-7) and filled with concrete (S-a-25).

Fig. 30 Mult/Mp ratio versus tst for square columns not filled

(S-e-5) and filled with concrete (S-e-23).

Fig. 33 Mult/Mp ratio versus tst for square columns not filled

(S-b-8) and filled with concrete (S-b-26).

Fig. 34 Mult/Mp ratio versus tst for square columns not filled

(S-c-9) and filled with concrete (S-c-27).

Fig. 35 Mult/Mp ratio versus tst for square columns not filled

(S-d-10) and filled with concrete (S-d-28).
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columns that are not filled and filled with concrete, respec-

tively, which is attributed to the column cross section dimen-
sions. Presence of the stiffener reduces these deformations to
2.7 and 1.6 mm for stiffener widths 50 and 100 mm, respec-

tively. When the columns are stiffened and filled with concrete,
these deformations reduce to 1.6 mm and 1.1 mm. The total
rotation of the connection is calculated as the beam tip dis-

placement divided by half of the beam depth. The un-stiffened
columns show rotation ±0.028 rad and ±0.0075 rad for col-
umns not filled and filled with concrete, respectively. When
the columns are stiffened and not filled with concrete, the rota-
tions are ±0.014 rad and ±0.008 rad for stiffener widths 50
and 100 mm, respectively. The rotation of the connection is re-

duced when the column is filled with concrete by 73% for un-
stiffened columns, 40% and 31% for columns with stiffener
widths 50 and 100 mm, respectively.

Effect of stiffener dimensions

The presence of stiffeners around the column increases the ulti-
mate moment of the connection. This increase (which is up to



Fig. 36 Mult/Mp ratio versus tst for square columns not filled

(S-e-11) and filled with concrete (S-e-29).

Fig. 37 Mult/Mp ratio versus tst for square columns not filled

(S-f-12) and filled with concrete (S-f-30).

Fig. 38 Mult/Mp ratio versus tst for square columns not filled

(S-a-13) and filled with concrete (S-a-31).

Fig. 39 Mult/Mp ratio versus tst for square columns not filled

(S-b-14) and filled with concrete (S-b-32).

Fig. 40 Mult/Mp ratio versus tst for square columns not filled

(S-c-15) and filled with concrete (S-c-33).

Fig. 41 Mult/Mp ratio versus tst for square columns not filled

(S-d-16) and filled with concrete (S-d-34).
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3.47 times for columns S-a compared to the un-stiffened con-
nections) is directly proportional to the stiffener dimensions,

as shown in Figs. 20–25. With respect to different column cross
sections, and using maximum stiffener dimensions 100 · 20,
the ultimate moment of the connections increases by about

3.14 times for columns S-b and S-f, and by about 1.68 times
for columns S-c, S-d, and S-e compared to the un-stiffened
connection. The influence of each stiffener dimension is stud-

ied separately. For example, with compact columns S-a, by
increasing the stiffener width from 50 to 75 mm, the ultimate
moment of the connection increases by up to 19% and this in-
crease is up to 37% with stiffener width 100 mm. Meanwhile,
for non-compact columns S-c, this increase is up to 19% and
47% when increasing stiffener width from 50 to 75 mm and
from 50 to 100 mm, respectively. Finally, for slender columns

S-f, the increase is up to 31% and 64%. Moreover, changing
stiffener thickness from 10 to 15 mm increases the ultimate
moment of the connection by up to 27% while this increase

is up to 58% by changing stiffener thickness from 10 to
20 mm. It can be noticed that the results are based upon both
column cross section compactness and stiffener dimensions
and the maximum advantages occur with slender columns
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and with stiffener width 100 mm. Also, the figures show that
all the ultimate moment ratios (Mult/Mp) are less than one
which indicates that the beam is stronger than the stiffener.

This is one of the research objectives to cause failure in the
connection and demonstrate the effect of stiffener dimensions.
Extension to the obtained results is proposed in the future

work by increasing stiffener thickness till reaching the plastic
moment of the beam.

Effect of filling the column with concrete

Although the effect of filling the column with concrete is not a
new parameter to be investigated, it is adopted only to demon-

strate the comparison between both cases and show the value
of concrete filling in increasing the ultimate moment of the
connection and decreasing the column local buckling. Presence
of concrete inside un-stiffened square columns increases the

ultimate moment of the connections by about 33% for col-
umns S-a and S-b, as well as by about 10% for columns S-c,
S-d, S-e and S-f compared to those not filled with concrete.

The results in Table 7 show that the ultimate moment of the
connections depends upon the cross section of column, where
the local buckling is delayed by the presence of concrete.

Effects of using both stiffeners and filling the column with

concrete

This section combines the effect of using both stiffeners and

filling the column with concrete, as shown in Figs. 26–43.
Fig. 42 Mult/Mp ratio versus tst for square columns not filled

(S-e-17) and filled with concrete (S-e-35).

Fig. 43 Mult/Mp ratio versus tst for square columns not filled

(S-f-18) and filled with concrete (S-f-36).
The maximum increase in the ultimate moment of the connec-
tions occurs for columns S-a filled with concrete and stiffened
with stiffener width 100 mm which is about 3.89 times com-

pared to un-stiffened columns not filled with concrete, as noted
in Table 7. However, with respect to other column cross sec-
tions, this increase is 3.55 times for columns S-b, 3.25 times

for columns S-f, and is about 1.8 times for columns S-c, S-d,
and S-e. Also, with respect to stiffener dimensions, by increas-
ing stiffener width from 50 to 75 mm, the ultimate moment of

the connections increases by up to only 16% and this increase
is up to 45% with stiffener width 100 mm for both compact
columns S-d and non-compact columns S-e. Meanwhile, this
increase is up to 30% and 65% for slender columns S-f. More-

over, changing stiffener thickness from 10 to 15 mm increases
the ultimate moment of the connection by up to 26% while this
increase is up to 50% by changing stiffener thickness from 10

to 20 mm. So, the most effective results in increasing the ulti-
mate moment of the connections with respect to changing stiff-
ener dimensions and filling the column with concrete occur

with slender columns S-f.
Conclusions

Five experimental tests were carried out and loaded monoton-
ically. The test parameters are column stiffener dimensions and
filling the steel tube column with concrete. Analytical study

was performed using ANSYS program to predict the ultimate
moment of connections between steel I-beams and square tube
columns with stiffening plates around the columns. A paramet-
ric study was conducted on different column cross sections and

stiffener dimensions as well as filling the tube column with con-
crete. The following conclusions are drawn based on the exper-
imental and analytical studies:

1. Three failure modes are observed in the connections; steel
column wall failure for un-stiffened columns, as well as

stiffener or beam compression flange failure for stiffened
columns. The ductility of the connection is bigger for tubes
not filling with concrete and for the cases of reduced stiff-

ener thicknesses, but the ultimate moment is reduced.
2. The shape of the stiffener affects the stress distribution

through the connection but does not almost affect the ulti-
mate moment of the connections. Also, sharp corners are

not recommended for the stiffeners due to the stress and
strain concentrations at these points.

3. The horizontal displacement of the column steel walls is

decreased considerably by filling the column with concrete
as the local buckling is shifted toward the stiffener zone
and accordingly, the strains at the beam flanges decrease.

4. Increasing stiffener dimensions improves the ultimate
moment of the connection by up to 65% and redistributes
the stresses in the stiffener.

5. Presence of stiffeners around the column perimeter increases

the ultimate moment of the connection by up to 3.5 and 3.9
times compared to un-stiffened columns for columns that
are not filled and filled with concrete, respectively.

6. Filling the columns with concrete may increase the ultimate
moment of the connection by up to 33% and 22% for un-
stiffened and stiffened columns respectively compared to

columns not filled with concrete, depending upon the col-
umn cross section dimensions.
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7. Filling the columns with concrete decreases the rotation of

the connection by 73% for un-stiffened columns, 40% and
31% for columns stiffened with stiffener widths 50 and
100 mm, respectively.

8. The increase in the ultimate moment of the connections is
based upon both column cross sections’ compactness and
stiffener dimensions and the maximum advantages occur
with slender columns.
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