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Abstract

In this paper, various shadowing properties are considered for a positively expansive map on a
compact metrizable space. We show that the Lipschitz shadowing propertylithié shadowing
property and the strong shadowing property are all equivalent to the (usual) shadowing property for a
positively expansive map. Furthermore, for a positively expansive open map, the average shadowing
property is shown.
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Introduction

Let X be a compact metrizable space, and febe a continuous map of onto
itself. Fix any metricd for X (throughout this paper, this term means tlids a metric
compatible with the topology oX). As usual, a sequenge; }7°, of points in X is called
a §-pseudo-orbit (§ > 0) of f if d(f(x;),xi+1) < for all i > 0. We say thatf has the
(usual)shadowing property if for every e > 0, there is5 > 0 such that for every-pseudo-
orbit {x;}7°,, there existy € X satisfyingd (f*(y), x;) < ¢ for all i > 0. This property is
independent of a metric fox.

We say thatf is positively expansiveif there exist a metrid for X and a constant > 0

such thatd (i (x), fi(y)) <c (x,y € X) for all i > 0 impliesx = y. Such a number
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is called anexpansive constant. This property (although nat) is also independent of a
metric. It is easy to see that every one-sided shift map and every expanding differentiable
map on aC* closed manifold are positively expansive (see [7,13,20,21]).

These properties are very often appearing in several branches of the theory of dynamical
systems, and especially, they are usually playing an important role in the investigation of
the stability theory and the ergodic theory (see [5,6,8,12,15,16,21]).

We say thatf has thelipschitz shadowing property if there are a metrid for X and
positive constants, eo such that for any & & < o and anye-pseudo-orbifx;}7°, of f,
there existy € X such that/(f(y), x;) < Le forall i > 0 (see [11,12]).

The so-called limit shadowing property is introduced and studied in [12]. We say that
has thdimit shadowing property if there is a metria/ for X with the following property:
for any sequencéx;}° of points in X, if d(f(x;),xi+1) — 0 asi — oo, then there
existsy € X satisfyingd(fi(y),x;) — 0 asi — oo. Since there is an example of the
system possessing the limit shadowing property but not possessing the shadowing property
(see [12, pp. 65-66]), the property is not equivalent to the shadowing property in general.

We say thatf has thes-limit shadowing property if there is a metricd for X with
the following property: for every > 0, there is§ > 0 such that for everg-pseudo-orbit
{xi}72, of f,there existy € X satisfyingd (f'(y), x;) < ¢ forall i > 0, and, if in addition,
d(f(x;), xi+1) — 0 asi — oo, thend(f!(y), x;) — 0 asi — oco. Thes-limit shadowing
property is treated in [1], and it is proved therein that every expansive homeomorphism on
a compact metric space having the shadowing property possessefirtieshadowing
property. In this paper, we show a similar result for a positively expansive open map.

Clearly, both the Lipschitz and thelimit shadowing properties are stronger than the
shadowing property by definition.

We say thatf has thestrong shadowing property if there is a metria/ for X with the
following property: for everye > 0, there is§ > 0 such that if a sequende;}°, C X
satisfies the inequality

o
Zd(f(x,-), Xi+1) <3,
i=0
then there is a point € X satisfying

e .
Yo d(f . x) <e
i=0
In [9] the above pseudo-orbit, which is called-atrong-pseudo-orbit of £, is considered
in the investigation of the ergodic theory of dynamical systems (see also [12, p. 70]).
As in the usual shadowing property, both the (usual) limit addnit shadowing
properties are independent of a metric for Actually, suppose thab is another metric
for X. Then it is easy to see thatdf( f (x;), x;+1) —0 (respectivelyD(f' (y), x;j) — 0)
asi — oo, thenD( f (x;), x;+1) — O (respectively!(f*(y), x;) — 0) asi — oo. However,
both the Lipschitz shadowing property and the strong shadowing property depend on the
metric.
In this paper, we show that most of the above various shadowing properties are mutually
equivalent for positively expansive maps. More precisely, the following is proved.
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Theorem 1. Let f be a positively expansive map on a compact metrizable space X. Then
the following conditions are mutually equivalent:

(1) f isanopen map,

(2) f hasthe shadowing property,

(3) thereisa metric such that f hasthe Lipschitz shadowing property,
(4) thereisa metric such that f hasthe s-limit shadowing property,
(5) thereisa metric such that f hasthe strong shadowing property,

An interesting example of a positively expansive mapX¥owhich is not an open map
can be found in [14].

In [3-5], the average shadowing property is defined and discussed in the context of
random dynamical systems for piecew@& differentiable maps. Lef : (X, d) — (X, d)
be a continuous map. Fér> 0, a sequencéx;}7°, of points inX is called as-average-

pseudo-orbit of f if there is a numbeN = N(§) > 0 such that foralk > N andk > 0,

n—1

Zd(f(Xi+k),Xi+k+1) <3$.

i=0

1
n

The notion of average-pseudo-orbits is a certain generalization of the notion of pseudo-
orbits and is arising naturally in the realizations of independent Gaussian random
perturbations with zero mean etc (see [3,4] and [5, p. 368]).

We say thatf has theaverage shadowing property if there is a metriel for X with the
following property: for every > 0, there is§ > 0 such that every-average-pseudo-orbit
{xi}72, is e-shadowed in average by some poirt X; that is,

n—1
lim Sup% Zd(fi(y),xi) <e.
i=0

n—00

This property also depends on a metric for

It is known that every Axiom A diffeomorphism restricted to the basic set has the
average shadowing property (see [3,5]). To my best knowledge, however, it is unknown
whether an expanding differentiable map ol€® closed manifold admits the average
shadowing property. In this paper, we give an affirmative answer for the problem.

Recall that a continuous map on X is said to betopologically transitive if there
is a dense orbit; that isX = {f"(x): n >0} for somex € X (see [8,15,21]). The
average shadowing property is closely related to the topological transitivity for a positively
expansive open map. Actually, the following is proved.

Theorem 2. Let f: X — X be a positively expansive open map on a compact metrizable
space. Then the following conditions are equivalent:

(1) f hasthe average shadowing property with respect to some metric,
(2) f istopologically transitive.
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Let f:X — X be a positively expansive open map. Xf is connected, thery is
topologically transitive (more precisely, is topologically mixing, see [15,17]). The next
corollary quickly follows from Theorem 2.

Corollary. Let f: X — X be a positively expansive open map on a compact metrizable
space. If X isconnected, then f has the average shadowing property with respect to some
metric.

Let f:X — X be a continuous map on a compact metrizable space. We say that
expands small distances if there exist a metrie/ for X and constant§y > 0 andi > 1
such that O< d(x, y) < 8o (x, y € X) impliesd(f (x), f(y)) > Ad(x, y). If, in addition, f
is open, then we call such*Ruelleexpanding”. This terminology is equivalent to Ruelle’s
definition of expanding maps (see [15, p. 143]). Of course, every expanding differentiable
map on aC* closed manifold is Ruelle expanding.

Itis easy to see that if expands small distances as above, tfiénpositively expansive
with an expansive constad$/2. Hence, by the corollary, every expanding differentiable
map on aC* closed manifold has the average shadowing property.

Remark 1. In [19], the average shadowing property is shown for an expansive homeomor-
phism having the shadowing property on a compact metrizable space (with respect to some
metric). As a corollary, it was proved therein thafifs Ruelle expanding, then the inverse

limit system f has the average shadowing property under the conditiorytisakipschitz

(see [19, p. 241)). In this paper, we have “dropped” the Lipschitz assumption and proven
the average shadowing property for

Here we say thaf : (X, d) — (X, d) is Lipschitz if there exists a constari > 0 such
thatd(f(x), f(y)) < Kd(x,y) forall x, y € X.

Clearly, f has the usual (respectively the limit, thdimit) shadowing property if and
only if f" has the usual (respectively the limit, thdimit) shadowing property for all
n > 0. Onthe other hand, itis easy to see thgt ifas the Lipschitz (respectively the strong,
the average) shadowing property, then so dfe&: > 0), respectively. Conversely, if is
Lipschitz with constanK (we may suppose tha& > 1) and /" (n > 0) has the Lipschitz
(respectively the strong, the average) shadowing property, then sofdaespectively.
Indeed, for any integer > 0;

o if Y 00d(f(xi), xit1) <8, thend o2 d(f"(x;), Xnti+1) < K"718,
o if Y 00d(f(xi), xit1) <8 andd 2od(fM (), xni) <&, then

o0
Sd(f () <@+ K+ K2+ + K" e+ 0.
i=0

Hence, by Lemma 1(ii) (see the next section), we have the following.

Remark 2. For a positively expansive open mgpon a compact metrizable spacg,
has the Lipschitz (respectively the strong, the average) shadowing property with respect
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to some metric if and only iff” has the Lipschitz (respectively the strong, the average)
shadowing property with respect to some metric fonaH 0.

1. Proof of Theorem 1

First of all in this section, we construct a special mebifor X. The nextlemma, which
is proved by following [13, Proof of Proposition], not only performs its duty in the proof
of Theorem 1 but also plays an essential role in the proof of Theorem 2.

Lemma 1 (cf. [19]). Let f:(X,d) — (X, d) be positively expansive. Then there exists a
new metric D for X such that

() f expandssmall distances,
(i) f isLipschitz.

Proof. Letc > 0 be an expansive constant and define a nested sequence of open symmetric
neighborhoods of the diagona, (in X x X), as follows. Setp = X x X, and forn > 1,
let

Va={0G,»)eX xX:d(f x), f/(y)) <cfor0O<i <n—1}.

Thens2 g Va = A andg(V,) = V,—1Ng(Vy1) for n > 1 (see [13, Construction Lemma]).
Hereg=fx f: X x X —> X x X.
SinceVs is a neighborhood oft, there exist$ > 0 such that

Ns(A) = {(x, yeXxX:dx,y) < 8} Cc V1.

Since X is compact ancﬂ,‘j"zo Vi = A, there isN > 1 such thatV1, y C Ns/3(4A). Then
Viyn o Vipn o Vipn C V1. Define a new sequen¢®,}>° , by Uo = Vo, Uy = Vit (-1)N
forn > 1. By [13, Metric Lemma], there is a metricfor X such that

Us C{x,y) eX x X: p(x,y) <1/2"} CUy—1 forn>1.

Let L = max{1, diam,(X)} and putk ¥ = 2°L, where diam(X) =supp(x,y): x,y €
X}. If p(x, y) >1/25 then

p(FN), YD) K L<K2PL-p(x, ) <KV p(x, ). 1)

Suppose that & p(x, y) < 1/2°. Then there exista > 3 such that(x, y) € U411 \
Uny2. Since (x,y) ¢ Uyi2, We seep(x,y) > 1/2"*3. On the other hand, since
(x,y) € Upy1 = Vignn, We haved(fi(x), fi(y)) < ¢ for all 0 <i < nN, and so
dCfIN @), FLUN () < e forall 0<i < (n — DN Hence(fV (x), (1)) € Un.
Thus

3

1 2
p(fN(x),fN(y))<2—,,=2,,+3 <KVp(x,y). )

Therefore, by (1) and 2p(fN (x), f¥N () < KVp(x,y) forallx,y € X.
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Now, by [13, Proof of Theorem 1],

p(r3N ), 3N () > 20(x,y) 10 < p(x,y) <1/2°
Define a metrig’ for X by

N-1
1 . .
Py =3 p(f'(). f1() forallx,yeX.
i=0
Then, it is easy to see that

o (f(x), f() < Kp'(x,y) forallx,yeX

sincep(fFN(x), F¥N() < KNp(x,y) forallx,y € X.
Takev > 0 such thato(x, y) < v (x,y € X) implies p(f (x), fi()) <
0<i<3N.If p(x,y) <v (x,y € X), then

19

PN, ) = 2(‘; = (N (1), £ (1))
-1
> Y 2ol @, )
B i=0 k! ’
= 2p'(x.y)

by (3). Note thap’(x, y) > p(x,y) forall x, y € X.

3

4

1/25 for all

We are in a position to construct a metdic for X what we want. Put3V = 2 and

define
V-1 4 _ ‘
Dx.y)= ) 70 (F1@). f1() forallx,yeX.
i=0
Then, it is easy to see that for all y € X,

e D(f(x), f(¥) < KD(x,y),
e AD(x,y) < D(f(x), f(y)) if 0 <D(x,y) <v.

Indeed, by (4)

3N-1 1 ' .
> 7P (@) F ()
i=0

3N— 1

K Z —p (F1 0, £ )

D(f(x), f(»)

N

= KD(x,y).

Since,D(x, y) < v implies p’(x, y) < v (recall thatD(x, y) > p’(x, y) by construction),

we see
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i .

> P (F @) £ (F )

i=0

vt 1 . . 2

> 5 (F 0. 1) + g (e )
i=1

= AD(x,y)

D(f(x), f(»)

\%

by the choice of. The lemma is proved. O
The next lemma is essentially the same as [7, Lemma 1].

Lemma 2. Suppose that f:(X,d) — (X, d) expands small distances; that is, there are
constantsdp > Oand A > 1suchthatd(f(x), f(y)) > Ad(x, y) whenever 0 < d(x, y) < éo
(x, y € X). Then the followings are equivalent:

(i) f isanopen map,
(i) thereexists 0 < 81 < 8p/2 suchthat if d(f(x), y) < Aé1 (x,y € X), then

Bs,(x) N fH(y) # 0.

Proof. To see (ii)= (i), let 0 < §1 < 8o/2 be as in (ii). Then, it can be easily checked that
for everyy € X with d(f(x),y) < Aé1, there is just one poing(y) in Bs, (x) satisfying
f(g(y)=y. Since, the mag:{y € X: d(f(x),y) < Ad1} — X is continuous (see [15,
p. 144)), f is a local homeomorphism.

We can prove the converse £} (ii) following the proof of [7, Lemma 1], and so the
lemma is proved. O

Suppose thatf: (X,d) — (X,d) expands small distances. ff satisfies the above
property (i), then it is easy to see that for alk®s < 81 andx, y € X,

d(f(x),y) <8 implies Bs;.(x)N f~(y) = {single poinj. (5)

This assertion will be used several times in the proofs of theorems.

The proof of Theorem 1 is divided into Propositions 1, 2 and 3. In the following three
propositions, letf : X — X be a positively expansive map on a compact metrizable space
X, and letd be the metric obtained by Lemma 1(i); that fsexpands small distances with
constant$g > 0 andi > 1 (with respect tai).

The first proposition is well-known (cf. [15,17]) and can be proved by using Bowen’s
method (see [6,12]). In this paper, we shall give a proof for completeness.

Proposition 1 (cf. [19]). Under the above assumption, the following conditions are
mutually equivalent:

() f:(X,d)— (X,d)isan open map,
(i) f:(X,d)— (X,d) hasthe shadowing property,
(i) f:(X,d) — (X, d) hasthe Lipschitz shadowing property.
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Proof. We show that iff is an open map, theyi has the Lipschitz shadowing property.
LetL =21/(A —1) =232 o2 % > 1,and fix any O< & < 81/L.

Now, let {x;}7°, be givene-pseudo-orbit off ; that is,d (f (x;), xi+1) < & foralli > 0.
Pick anyi > 1, and put

j—1
rj=Y a7F forj>1
k=0

for simplicity. Sinced(f (x;), xi+1) < &, by (5), there existsl.(i)1 € Bg /3 (x;—1) such that
FoY) =x;. Thus

d(f(xi2), 7)) <d(f (xie2) xi—1) +d(xi-1. ") < hze < Le.

Hence, there existﬁl("_)2 € B e/5.(xi—2) such that]‘(y.(i)z) = yl.(i)l by (5), and so

i—

d(f(xi-3), y\",) <d(f (xi-3), xi—2) +d(xi—2,y\",) < hze < Le.
By (5), there existsryl.("_)3 € Bjge/n(xi—3) such thatf (yl.(i)3) = yl.(i)z. Thusd( f (x;—3), yl.(i_)z)
< Mg < Le. ) ) )
Repeating the process, we can fin{’ € By,./.(x0) such thatf(yS’) = yi”. By
construction,f"(yé’)) = y,i’) for all 0 < k < i. Since X is compact, if we lety;, =

lim; o0 y,il), then it is easy to see th#t (yo) = yx andyy € By (xx) forall k > 0. Thusf
has the Lipschitz shadowing property.

To get the conclusion of this proposition, it is enough to show thaf ihas the
shadowing property, thefi is an open map. Faly, since f has the shadowing property,
there exists G< § < 8p/2 such that evergi-pseudo-orbit off is §p-shadowed by some
point.

Now, letd(f(x),y) <8 (x,y € X), and define &xi-pseudo-orbitx;}>°, of f by
xo=x andx; = fi=1(y) fori > 1. Then, there existse X such that/(f'(z), x;) < 8o for
all i > 0. By construction, it is easy to see that1d(f(z), y) <d(f'(z), fi~1(y)) <o
for all i > 0. Thereforef(z) = y is concluded. Sincé(f(x), y) < 81 andd(z, x) < do,
we haved(z, x) < § because

rd(x,2) <d(f(x), f(2)) =d(f(x),y) <8h.
HenceBs(x) N f~1(y) # ¥, and thusf is open by Lemma 2. O

Main thing to prove in this section is the next two propositions.

Proposition 2 (cf. [1, p. 226]).Let f:(X,d) — (X, d) be as before. If f isopen, then f
has the s-limit shadowing property.

Proof. The conclusion is obtained by modifying the technique displayed in [12, p. 67].
Let f be an open map. Then, by Propositionflhas the Lipschitz shadowing property.
Leteg andL > 0 be two constants as in the definition of the Lipschitz shadowing property

of f.
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Now, fix any O< e < eo/L, and let{x;}7°, be an givene-pseudo-orbit off. Then,
there existsy € X such thatd(f(y), x;) < Le for all i > 0. If we assume further that
d(f(xi),xi+1) — 0 asi — oo, then, for any O< § < ¢ there existsls > 0 such that
d(f(xi),xi+1) < & for all i > Is. Thus {x; ;‘i,s is a §-pseudo-orbit. Sincef has the
Lipschitz shadowing property, we can fingle X such that

d(fi—la (y,;),xi) < Ls§ foralli>Is. (6)

On the other hand, sine& fi(y), x;) < Le for all i >0, we see

d(f7R (), 7% s) = d(f ). 5 (s)
< d(fi (), xi)+d(xi, f0 ()
< L(e+6) <do

foralli > Is. Sincef expands small distances, we obtaity s (y), ys) < A~/ +15q for all
i > I5, and sof s (y) = ys. Therefore

d(f v, xi) =d(F B (W), xi) =d (£ (vs), xi) < L8
for all i > Iy by (6). Sinces is arbitraryd(f(y), x;) — 0 asi — co. O

Proposition 3. Let f:(X,d) — (X, d) be as before. Then, f has the strong shadowing
property if and only if f isan open map.

Proof. Fordp, since f has the strong shadowing property, there existséO< §9/2 such
thatif a sequencex; }7°, C X satisfies the inequality 72, d(f (xi), xi+1) < A8, thenthere
exists a poiny € X with Y22, d(f (), xi) < do.

Now, let d(f(x),y) < ér (x,y € X), and define ai-strong-pseudo-orbitx;}7
of f by xo=x and x; = fi=Y(y) for i > 1. Then, there exists € X such that
Y 20d(fi(2), xi) < o, and sad (! (z), x;) < 8o for all i > 0. By construction, it is easy
to see that'~1d(f(2),y) <d(f'(z), fI~1(y)) < 8o for all i > 0. Thereforef (z) = y.
Sinced(f(x), y) < dAr andd(z, x) < 8o, we havel(z, x) < § because

rd(x,z) <d(f(x), f(2))=d(f(x),y) <8A.

HenceBs(x) N f~1(y) # ¥ so thatf is open by Lemma 2.

To prove the converse, suppose thatis an open map. LelL = 20»/(A — 1) =
23 ¥ or%>1,andfix any O< e < 81/L.

Now, let {x;}7°, be anye-strong-pseudo-orbit of ; that iS, Y od(f(xi), Xi41) <&.
Denote the distancé(f(x;—1), x;) by ¢;, and pick anyi > 1. Then, 0< ¢; < ¢ for all
i > 1. To simplify notation, put

j-1
rj=Y_a7F forj>1
k=0
and set
j-1

=Y eI for1<j<i— 1.
k=0
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Then, u1 = ¢;. Sinced(f(xi—1),x;) = ¢;, there eX|stSy(’) € B, /5.(xi—1) such that
o) = xi by (5). Thus

d(f(xi—2), xi—1) +d(xi—1, y\",)
M2 < Le.

d(f(xi2). v <
<

Since there exists", € B,/ (x;—2) such thatf (y",) = y; by (5) (recallLe < 81),

d(f(xi-3), y2,) < d(f(xi-3), xi—2) +d(xi—2,y",)
< u3 < Le.

By (5), there exists. s € B,,/1 (xi—3) such thatf (y"y) = y”,. Thusd (f (x;—3), yli)z) <
4 < Le. Repeating the process, we can fug()d € By, /1 (xo) such thatf(y(’) ). By
construction,f*(y’) =y for all 0 < k <i. Thus

i-1
> d( d(y, ) < Z“J ZA g < 28J<_8
k=0

SinceX is compact, we can sef = Ilm,_>oo y ). Thus, it is easy to see th#f (yg) =
forall k andZ,zod(f (yo),xj) < Le/2<Le. O

2. Proof of Theorem 2

In this section, letf be a positively expansive map on a compact metrizable sgace
By Lemma 1, there exist constarks §o > 0 andx > 1 such that for any, y € X,

(2.1) O<d(x,y) <doimpliesrd(x,y) <d(f(x), f()),
(2.2) d(f(x), fF(¥) < Kd(x,y)

with respect to some metritfor X.
We may suppose tha > 1 > 1. Hereafter, we fix both the above metric and the
constants, and assume further tlias an open map. Then, by (5)

(2.3) for every O< § < do, if d(f(x),y) <§, then
Bs;i(x) N f(y) = {single poin}.

Let {x_;}7°y C X be abackward orbit of f; thatis, f(x_;) =x_;41 for all i >
Denote byX ; the set of all backward orbits of, and letf : (X ¢, d) — (X ¢, d) be the
inverse limit system off. Hered is the metric onX ; (see [15, pp. 143-147] for the
definition and properties).

Before starting the proof, we collect some well-known dynamical properties of a
positively expansive open map with an expansive constartet £2(f) be the non-
wandering set off. Then it is easy to see that
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(2.4) the set of periodic point®,(f), of f is dense in2(f)

(cf. [2]), and from this, we see

(2.5) f(82(f) =82(f).

Fore > 0, define thdocal stable set of x € X, W] (x), by
Wi(x)= {y €eX: d(f"(x), f"(y)) <e¢foralln> 0}

as usual. Remark that i < ¢, thenW; (x) = {x} for all x € X. Thus, by following the
proof of [2, Theorem 2] or [18, Theorem 2] we have

(2.6) 2(f) is decomposed into a finite disjoint union of closgdnvariant set§A;}¢_;
thatis,2(f) = A1U---U A such thatf| 4 ; is topologically transitive for X j < ¢,

Such a set\; is called abasic set (cf. [6,8]).
(2.7) There is a Markov partition of ; with arbitrarily small diameter with respect 6

(see [8,10] and [15, p. 146] for the definition and its proof).
Under the above notation and facts, we prove the following two lemmas.

Lemma 3. If we assume further that f is topologically transitive, then there exists a
constant B > 1 such that for each pair ({x—;}7°,, y) € Xy x X, there exists a backward
orbit r({x_i}2g, y) = {z-i}72y € X s satisfying

) z0=y, |
(i) d(x—i,z—;) < BA"'d(xg,y) foralli > 0.

Proof. Letdo > 0 andi > 1 be as above, and lefx—;}7°, v) € Xy x X be given.

Case 1. d(xg,y) < ép. Sincef(x—_1) =xoandd(f(x—-1),y) < &g, by (2.3), there exists
z—1 € X such thatd(x_1,z-1) < do/A and f(z—1) = y. Especially,Ad(x_1,z-1) <
d(f(x_1), f(z_1)) =d(x0, y). Sincedp/1 < §p and f(x_»2) = x_1, by (2.3), there exists
z_2 € X such that(x_2, z_2) < 80/A2, f(z—2) = z—1 andid(x_2, z—2) < d(x_1,2_1).

Repeating the process, we can find € X such thatd(x_;, z_;) < 8o/A!, f(z_i) =
z—;j+1 and

d(x_i,z—i) <A 7'd(xq,y) foralli>1.
Letzo=y and set ({x_;}2, ¥) = {z-i}72p-
Case 2. d(xo,y) > 80. Let K be asin (2.2), and let @ ¢ = ¢(8p) < o be the number
as in the definition of the shadowing property ff Denote byR a Markov partition

{R1,..., Ry} on Xy with maxg; <, diamg(R;) < ¢ (see (2.7)). Letd be am x m-
transition matrix of the Markov partition induced by the inverse limit systgnof f.
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Then, sincef is topologically transitive (see [15, p. 145]), there is an integes 0 such
that the matrix4"° is strictly positive (see [8]). Therefore

S R(f70((x-i1720))) N R({y-i)7Z0) # 9.

Here{y_i}72p € Xy (yo=y) andR({x_;}{2,) is an element ofR containing{x_;}7°.

Thus we can pickw € X such that the sequence

o Xome2. Xomgt w, fw), o, 07 w), v, ().

is ane-pseudo-orbit off. Using the shadowing property we can fifild ;}7°, € X ¢ such
thatzo =y and

d(X_ng—i>2—ng—i) <80 foralli >0,
d(f™= I (w), 7z—j) <éo forall0< j<no.

Putr({x—i}2g, ¥) = {z-i}72,- Then, by (2.1)
d(X_ng—1-is Zong—1—i) < A" d(X_pg—1, Z—ng—1) <A ""80

forall i > 0. Thus

d(x—i,z—i) = d(f" T ng—1-0), f Hzong-1-1))
< K’10+1d(x—110—1—i , Z—no—l—i)
< Kn0+1)\._i80
< K" d(xo, y).

Finally, we setB = K"0+1, The proof of the lemma is completen

Lemma 4. Let 2(f) = i_; A; be as in (2.6). Then w(x) N A; =@ for any x €
Bsy(Aj)\ 2(f). Here w(x) isthe o-limit set of x.

Proof. Let 3o > 0 andi > 1 be as in(2.1). Suppose that there ise Bs,(A;) \ £2(f)
satisfyingw(x) N A; # @. Fix 0 < ¢ < §o/2 such thatB, (x) N 2(f) =@, and choose a
backward orbi{y_;}°, C A; with yo = y. By (2.3), we can constru¢t_;}7°, € X y such
that

xo=x and d(x_;,y—i) < A" d (xo, yo) foralli>0.

Sincew(x) N A; # ¥, we may assume that’ (x) converges to some pointe A; asn —

0o. Let 0< § = 3(¢) < do be the number as in the definition of the shadowing property.
Pick two integersl, N > 0 such thatd(x_;, y_;) < 8/2 andd(f" (x),z) < 8/2. Since
fia; is topologically transitive, we can find € A; and M > 0 such thatl(z, w) < §/2

andd (fM(w), y_;) <8/2. Thus

{...,x,f(x),...,fN_l(x),w,f(w),...,fM_l(w),x_I,x_1+1,...,x_l,x,...}

is a cyclicé-pseudo-orbit off . Sincef is positively expansive, there exists a periodic point
FNTMHL(p)y = p e B.(x) N R2(f). This is a contradiction. O
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Proof of Theorem 2. Let f:X — X be an open map which expands small distances

(with the constantgg and 1) with respect to the metrid. Recall that suchf has the

Lipschitz shadowing property with constamstsand L (see Proposition 1). By Lemma 3,

if f is topologically transitive, then the average shadowing property will be proved by

following [3, pp. 375-377, Proof of Theorem 4] (see also [5, Proof of Theorem 6.3.1]).
Indeed, letB > 1 be as in Lemma 3, and fix any © ¢ < ¢g small enough. Let

{xi}72y C X be ane-average-pseudo-orbit of. Then there exist&V = N(e) > 0 such

that for alln > N andk > 0,

n—1

Zd(f(xi+k)» Xitk+1) < €.

i=0

1
n
Now, define a sequence of segments of the aljopMe® , as follows. Pick 1< n’ < N
such that
n'—1 n'—2

1 1
Z d(f(xi),xit+1) <e and T Z d(f(xi), xis1) > &. (7)
—0

/
n
i i=0

1

Thend(f(xn/—l)a xy) <e. For, ifd(f(xn/—l)a xXy) 2 €, then by (7)

n'—1
n'e> Y d(f(xi).xip1) = (0 — De+e.
i=0
This is a contradiction.

Seti1 =n’ — 1, and letm1 > 0 be the largest number such tltf (x;), x;11) < & for
alli;1 <i <ip+my— 1. Then, we put; = i1 +m1 + 1, and defineny > 0 as the largest
number such that( f (x;), xj+1) < ¢ forall io <i <i» +m2 — 1. Repeat the process, and
denote thexth (n > 1) segment

{Xiy s Xip41, Xip42s -« > Xipmy—1)

of {x;}2 by x,,. Sincef has the Lipschitz shadowing property, fior there exists a point
y™ e X such that

d(fi(y(”)),xin+i) < Le (8)

forall 0<i <m, — 1 andn > 1. Finally, letA, =d(f™ (y™), y®tD) foralln > 1.

Sincei; = n’ — 1 < 00, to get the conclusion, it is enough to construct a shadowing orbit
(in average) which shadows a sequence of the above segmgiifs,. Let us construct
the average shadowing orbit inductively.

At the first step, fix any backward orbit—;}°°, € X  of y® with zo = y». By Lem-
ma 3, for

(=)o U {7/ (D)2 vP) e Xy x X,
there existyw_;}°, € X s such thatwg = y'® and

d(fj(w—ml), fj (y(l))) < BA—’n1+jd(f’"l(y(l))’ y(2)) (9)
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for 0 < j <m1— 1. For convenience, we set = w_,,,. Then, the orbi f/ (x(l))}y‘igmz_l
approximates the first two segmentsandx.
In the second step, by Lemma 3 for

(-1 UL GO 59) e X x X,

there existgv_;}°, € X s such thato = y® and

d(fj(v—ml—mz), fj (x(l))) < B)\—ml—mZ‘f‘jd(fml‘f‘mZ (x(l)), y(3))
< Bk_ml_”’2+jd(fm2 (y(2))’ y(3)) (10)
for0< j <my+ma—1. 1fwe setx® =v_,,_,,, then the orbi(ff(x(2))}7i§”’2+”‘3_1
approximates the first three segmenisx2 andxs. In thenth step of the procedure, we
can construct the initial point" whose orbit approximates the fisst- 1 segments from

x1t0x,41.
SetLo=0andL, = }_ym;, and let

n Lp-1

S, = Z Z d(fj(x(n)), fj—kal(y(k)))'

k=1j=L;_1
Then, by (9) and (10) it is not hard to show that
Sp < BL(LH+AT AT T L AT T T2 A
(LAl QT T2 L QT LT 2T ) A g
4+ 4 (14+27"2) A+ A

Hereg = B/(1— 1/4). To simplify notation, puty, = A ~"+1 < =1 for n > 1. Then we
have

Sp < Bl(A+ o120z ap_1+ 0203 0y_1 4+ @20, -1) Ay
+ -+ (14 araz03 + a2z + a3) Ag
+ 1+ ooz +a2)Az+ (L+a1) A2+ Ag). (11)
To estimate the right-hand side of (11), put
On=14ap+apay1+ - +apoy_1--apj+---.
Then
On <L+A7T4a 24 pa kg
< A/(1=1) < oo.

Notice that this estimates does not depend on the indExXhe segment. Therefore
n
Su < B(AL101+ A2Q2+ -+ An Q) < Bg Y A;.
j=1

Hereg =X1/(1—A).
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SinceA; <d(f(xi),xi+1) +2Lefor Lj_1 <i < L;j — 1 (see (8)), we have

L,-1
Se<Bq Y (d(f(xi), xit1) + 2Le).
i=0
Hence
L,,—l

L,—-1
l n
- Z d (n) ) < ’Bq(L_ Z d(f(xi),xi+l) —|—2L£>.
" =0

By the deflnltlon of thes-average-pseudo-orbit, farlarge enough, we can rewrite the last
inequality as follows:

L,—1
x > d(f (x™).xi) < Bg(1+2L)e.
Ln i=0

If we sety = lim,_.o x™, then, by the construction df”}> , , it is not hard to show
that the orbit ofy shadowgx;}7°, in average.

To show the converse, suppogehas the average shadowing property. Sigcés
positively expansive (with constant- 0) and open, there exists a decompositidqf) =
A1U AU ---U Ay by (2.6).

Claim. Under the above notations, we have £ = 1.

If this claim is true, thenX = £2(f) so thatf is topologically transitive. To show
the equality, assuming that there exist& £2(f), we shall lead a contradiction. Take
0 < ¢ <c¢/2 such thatB,(x) N 2(f) =@, and let§ = §(¢) > 0 be the number as in the
definition of the shadowing property gf. Pick any backward orbifx_;}°, € X y with
xo=x. Thenw(x) Ua({x_;}2,) C 2(f). Here

a({x—i}i2) = {y € X: there exists, > 0 such thak_;, — y asn — oo}.

As in the proof of Lemma 4, we can construct a cydipseudo-orbit fromx to x
because2(f) = A1 and f: A1 — A1 is topologically transitive. Hence, by the positive
expansiveness of, there existp € P(f) N B:(x). Thisis a contradiction, and Theorem 2
is proved.

To prove the claim, assuming that> 2, we lead a contradiction (a similar argument
has already used in [19] to prove an analogous result for expansive homeomorphisms with
the shadowing property). For simplicity, suppdse 2 (the other case is treated similarly).
Takee > 0 small enough and fix integetg, n2 > 5 such that

(n1—De <d(Uy, A2) <ni1e and (n2 — e <d(A1, A2) < nge.

HereU: is a compact neighborhood dfy andd(A, B) = inf{d(a,b): a € A, b € B} for
A, B C X. Since f has the average shadowing property, there is0= §(¢) < ¢ such
that everys-average-pseudo-orHit; }7° is e-shadowed in average by some pointin
Finally, let us fixnz > 3 such that

(n3 —1)é <d(A1, A2) <n3é.
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Take x € A1, y € Az with d(x,y) = d(A1, A2). Since 2(f) = P(f), there are
pe AN P(f)andg € A2 N P(f) such that

max{d(x, p),d(y,q),d(f (x), f(p)).d(f ), f(@)} <3

Let ¢1,¢, > 0 be the (minimum) periods op, g respectively; that isf‘1(p) = p,
f%(q) =gq.Fix £3 > 0 such that, ¢3 > n3 for i = 1, 2, and denote a cyclic sequence

{3 £@) 2@ -, 12572 G) x, £ (), F2(p), ..

£S5y, f(g) .. )

(composed of two pointéx, y} and two periodic orbits) byz;}7°, (zo = y). Then, |t is

easy to see that this istaaverage-pseudo-orbit. Indeed, for every- 2616262 andk >
we have

m—1

— Zd f@itn)s zivk+1) <.
i=0
PICk w € X such thate-shadows(z;}:°, in average. Ifw € Az, then fi(w) € A for all
> 0. Hence, for a sufficiently large > 3¢1¢,¢2, we have

—Zd H(w), z, @>8.

This is a contradiction. _
If w¢ Ag, then, by Lemma 4, there exists a numbgr> 0 satisfying f* (w) € U; for
alli >m’. Thus

m—1 m'—1 e —1
1 i 1 . s
E;:Od(f W), zi) = ;(;_Od(f (w), zi) + ; d(f +(w),zm,+,.)>

> (n1—1e/3>¢

if we takem (> m') large enough. This is also a contradictiom
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