The travelling preacher, projection, and a lower bound for the stability number of a graph ${ }^{\text {x }}$

Kathie Cameron ${ }^{\text {a,* }}$, Jack Edmonds ${ }^{\text {b }}$
a Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5
${ }^{\mathrm{b}}$ EP Institute, Kitchener, Ontario, Canada N2M 2M6

Received 9 November 2005; accepted 27 August 2007
Available online 29 October 2007
In loving memory of George Dantzig

Abstract

The coflow min-max equality is given a travelling preacher interpretation, and is applied to give a lower bound on the maximum size of a set of vertices, no two of which are joined by an edge. (c) 2007 Elsevier B.V. All rights reserved.

Keywords: Network flow; Circulation; Projection of a polyhedron; Gallai's conjecture; Stable set; Total dual integrality; Travelling salesman cost allocation game

1. Coflow and the travelling preacher

An interpretation and an application prompt us to recall, and hopefully promote, an older combinatorial min-max equality called the Coflow Theorem.

Let G be a digraph. For each edge e of G, let d_{e} be a non-negative integer. The capacity $d(C)$ of a dicircuit C means the sum of the d_{e} 's of the edges in C. An instance of the Coflow Theorem (1982) [2,3] says:

Theorem 1. The maximum cardinality of a subset S of the vertices of G such that each dicircuit C of G contains at most $d(C)$ members of S equals the minimum of the sum of the capacities of any subset \mathcal{H} of dicircuits of G plus the number of vertices of G which are not in a dicircuit of \mathcal{H}.

The Coflow Theorem in greater generality says:
Theorem 2. For any digraph $G=(V, E)$ and any numbers $(d, a, b)=\left(d_{e}, a_{v}, b_{v}: v \in V, e \in E\right)$ (where a_{v} may be ∞ and b_{v} may be $\left.-\infty\right)$, the following system in variables $x=\left(x_{v}: v \in V\right)$ is TDI:

[^0](1.1) $\forall x \in V, b_{v} \leq x_{v} \leq a_{v}$;
(1.2) \forall dicircuit C in G,
$x(C \cap V) \equiv \sum\left\{x_{v}: v \in(C \cap V)\right\} \leq d(C \cap E) \equiv \sum\left\{d_{e}: e \in(C \cap E)\right\}$.
TDI (totally dual integral) means that whether or not (d, a, b) is integer-valued, if ($w_{v}: v \in V$) is integer-valued, then the linear programming dual of the LP
(1.0) maximize $\{w x: x$ satisfies (1.1)-(1.2) $\}$
has an integer-valued optimum solution provided it has an optimum solution. This implies that if (d, a, b) is integervalued, then the LP (1.0) has an integer-valued optimum solution provided it has an optimum solution. See [10,11]. (Of course, the primal optimum is equal to the dual optimum, and this is the more general coflow min-max equality.)

We learned from discussions that Sándor Fekete and Bill Pulleyblank posed the following memorable word problem (see [5]):

A travelling preacher wishes to charge x_{v} to the churches, $v \in V$, which he serves, in order to maximize his income $w x=\sum\left\{w_{v} x_{v}: v \in V\right\}$, where x is subject to $b \leq x \leq a$ depending on the amount of \sin and holiness at the various churches, and also subject to $x(C \cap V) \leq d(C \cap E)$ for every dicircuit C in digraph $G=(V, E)$.

The reason for the latter constraint is that, for every dicircuit $C, d(C \cap E)$ is the most any preacher can charge the churches in C without the churches in C arranging to hire a different preacher. This is related to n-church game theory. See [5,4,7].

One way to find the maximum $w x$ subject to (1.1) and (1.2) would be to check the feasibility of any given x by applying an algorithm which determines if there is a dicircuit C such that $d(C \cap E)-x(C \cap V)$ is negative. This is easy. And use that together with the "optimization = separation" approach provided by the ellipsoid method. This is polytime but not so easy. See [8]. Fekete and Pulleyblank [5] use "optimization = separation" in the same way for an undirected variant of the problem.

A much more efficient approach to maximizing $w x$ is the way we prove Theorem 2. Briefly, by a slight massaging, we get the problem into the form:
(2.0) maximize $w x$ subject to
(2.1) $x \geq \underline{0}$;
(2.2) \forall dicircuit C,
$x(C \cap E) \equiv \sum\left\{x_{e}: e \in(C \cap E)\right\} \leq d(C \cap E) \equiv \sum\left\{d_{e}: e \in(C \cap E)\right\}$
using a slightly different G and d. The x of (1.1)-(1.2) is part of the x of (2.1)-(2.2), although it is indexed by new edges rather than vertices.

The dual of this LP has a variable $y_{C} \geq 0$ for each dicircuit C. However, we can represent a circulation in G, given as a flow, y_{C}, around dicircuits, as flows in edges, and vice versa. We thus get a Hoffman circulation problem [9]. The LP dual of that circulation problem has, besides the variables x_{e} of (2.1)-(2.2), an additional new variable, say η_{v}, for each vertex $v \in V$. The dual circulation problem is:
(3.0) maximize $\sum\left\{w_{e} x_{e}: e \in E\right\}$ subject to
(3.1) $\forall e \in E, x_{e}-\eta_{t(e)}+\eta_{h(e)} \leq d_{e}$;
(3.2) $\forall e \in E, x_{e} \geq 0$.

For each dicircuit C, by adding up the inequalities (3.1) for $e \in C$, we get $x(C \cap E) \leq d(C \cap E)$. We can solve the Hoffman circulation problem and its dual by standard methods to get an optimum (x, η). We can forget the values of the variables η_{v}; that is, these are projected away, to get an optimum solution of (2.0). For further details, see [3].

This was originally discovered in the first author's Ph.D. work [2], as a response to the challenge by her advisor, the second author, to find interesting instances of solving a combinatorial optimization problem by projecting away "don't care" variables of another combinatorial optimization problem.

Perhaps the first application of projection to solving a combinatorial optimization problem was treating a capacitated b-matching problem with parity constraints (for example, the "Chinese Postman Problem") as a projection of a b-matching polytope with loops at vertices of the graph and each edge of the graph replaced by three edges in series. See [11]; in particular, pages 600-605.

2. A lower bound on the stability number of a graph

A stable set in a graph or digraph is a set of vertices, no two of which are joined by an edge. The maximum size of a stable set in a graph or digraph G is called the stability number of G and is denoted $\alpha(G)$. Recently, Bessy and Thomassé [1] proved the following theorem, conjectured by Gallai [6] in 1963. A digraph is called strongly connected if each edge and each vertex is in a dicircuit.

Theorem 3. For any strongly connected digraph $G, \alpha(G)$ is greater than or equal to the minimum number of dicircuits which together cover all the vertices.

Note that Theorem 3 provides a lower bound on the stability number of an undirected graph by considering any orientation.

A feedback set in a digraph G is a subset F of its edges such that $G-F$ has no dicircuits. A feedback set F is called coherent if every edge of G is in some dicircuit which contains at most one member of F.

Bessy and Thomassé [1] proved the following wonderful lemma.
Theorem 4. Every strongly connected digraph has a coherent feedback set.
Applying Theorem 1 to a strongly connected digraph G with a coherent feedback set F and setting $d_{e}=1$ for each e in F and letting the other d_{e} 's be 0 , yields Theorem 5 below.

Theorem 5. Let G be a strongly connected digraph and F a coherent feedback set in G. The maximum size of a set of vertices of G which intersects each dicircuit at most $|C \cap F|$ times equals the minimum of $\sum\{|C \cap F|: C \in \mathcal{H}\}$ over sets \mathcal{H} of dicircuits of G which cover all the vertices.

Note that since G is strongly connected, and F is a coherent feedback set, a set S of vertices of G which intersects each dicircuit of C at most $|C \cap F|$ times is a stable set. Also, for any dicircuit $C,|C \cap F| \geq 1$. Thus Theorem 5 immediately yields Theorem 3.

For related ideas, see [12].

References

[1] Stéphane Bessy, Stéphan Thomassé, Spanning a strong digraph by α circuits: A proof of Gallai’s conjecture, Combinatorica (in press).
[2] Kathie Cameron, Polyhedral and Algorithmic Ramifications of Antichains, Ph.D. Thesis, University of Waterloo, 1982.
[3] Kathie Cameron, Jack Edmonds, Coflow polyhedra, Discrete Math. 101 (1992) 1-21.
[4] Ulrich Faigle, Sándor P. Fekete, Winfried Hochstättler, Walter Kern, On approximately fair cost allocation in Euclidean TSP games, OR Spektrum 20 (1998) 29-37.
[5] Sándor P. Fekete, William R. Pulleyblank, A note on the traveling preacher problem, Report No. 98.331, Angewandte Mathematik und Informatik, Universität zu Köln, 1998.
[6] Tibor Gallai, Problem 15, in: M. Fiedler (Ed.), Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), p. 161.
[7] Daniel Granot, Gur Huberman, Minimum cost spanning tree games, Math. Program. 21 (1981) 1-18.
[8] Martin Grötschel, László Lovász, Alexander Schrijver, Geometric Algorithms and Combinatorial Optimization, second ed., Springer-Verlag, Berlin, 1993.
[9] A.J. Hoffman, Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, in: Combinatorial Analysis, Proceedings of Symposia in Applied Mathematics, vol. X, Amer. Math. Soc., 1960, pp. 113-127.
[10] Bernhard Korte, Jens Vygen, Combinatorial Optimization: Theory and Algorithms, third ed., Springer-Verlag, Berlin, 2005.
[11] Alexander Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag, Berlin, 2003.
[12] András Sebő, Minmax relations for cyclically ordered digraphs, J. Combin. Theory Ser. B 97 (2007) 518-552.

[^0]: ${ }^{\approx}$ This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Research Grants Program of Wilfrid Laurier University.

 * Corresponding author.

 E-mail addresses: kcameron@wlu.ca (K. Cameron), jackedmonds@rogers.com (J. Edmonds).

