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Study  region:  Lake  Buchanan,  a  major  reservoir  for the  City  of  Austin  area,  the  Texas  Hydro-
logic Region  12,  USA.

Numerical  climate  models  are  increasingly  being  used  by climate  scientists  to inform
water  management.  However,  successful  transitions  from  climate  models  (O(10–100  km))
to water  resources  studies  (O(100  m–1 km))  still  need  improved  data  structures  and  mod-
eling  strategies  to resolve  spatial  scale  mismatch.  In this  study,  we  introduce  a mechanistic
lake-level  modeling  framework  that  consists  of a state-of-the-art  land  surface  model  –
Noah-MP,  a vector-based  river  routing  scheme  – RAPID,  and  a  lake  mass-balance  model.  By
conducting  a case  study  for Lake  Buchanan,  we  demonstrate  the  capability  of  the  framework
in predicting  lake levels  at seasonal  lead  times.  The  experiments  take  into  account  differ-
ent runoff  resolutions,  model  initialization  months,  and  multiple  lead  times.  Uncertainty
analyses  and  sensitivity  tests  are  also  conducted  to guide  future  research.
New hydrological  insights:  Different  from  traditional  grid-based  solutions,  the  framework  is
directly  coupled  on  the  vector-based  NHDPlus  dataset,  which  defines  accurate  hydrologic
features  such  as  rivers,  dams,  lakes  and  reservoirs.  The  resulting  hybrid  framework  there-
fore allows  for  more  flexibility  in resolving  “scaling-issues”  between  large-scale  climate
models  and fine-scale  applications.  The  presented  hindcast  results  also  provide  insight  into
the influences  of  baseline  LSM  resolutions,  initialization  months,  and  lead  times,  which
would  ultimately  help  improve  lake-level  forecast  skills.
© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC

BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

. Introduction

Lakes and man-made reservoirs are important freshwater suppliers for domestic use, irrigation, livestock, and fishing
Sawunyama et al., 2006; Ç imen and Kisi, 2009; Khatibi et al., 2014). Additionally, they are highly visible landscape features

hat affect aquatic ecosystems (Bednarek, 2001) and regional climates (Brekke et al., 2009). Seasonal outlooks of lake levels
nd reservoir storages could offer great socio-economic benefits as they determine “trigger points” (i.e., the designated
oints when specific actions are required) in real decision-making. If provided with reasonable accuracy, seasonal lake level
redictions can guide and benefit water resources planning and management such as dam operations, water allocations,
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hydropower plans, and recreational activities. Consequently, development and evaluation of methodologies that better
monitor and forecast lake-level variations continue to draw interest from both research community and operational agencies.

Currently, documented methodologies to model lake-level and reservoir storage variations can be categorized into three
groups. The first group entails using statistical approaches to mimic  fluctuating behaviors of lake inflows or direct lake levels
based on historical time series. These approaches include, but not limited to multiple linear regression, stochastic modeling,
autoregressive moving average, and artificial neural network (Faber and Stedinger, 2001; Khan and Coulibaly, 2006; Ç imen
and Kisi, 2009; Coulibaly, 2010; Khatibi et al., 2014) in various application settings. Second, space-based approaches take
advantage of remote sensing and geographic information system (GIS) techniques (Sawunyama et al., 2006; Zhang et al.,
2011; Gao et al., 2012) to derive relationships between remotely retrieved lake altimetry and surface area with lake levels and
reservoir storages. These methodologies show great promise in providing monitoring capabilities especially for large lakes
and reservoirs in data-sparse regions. The third group, which includes our framework, entails process-based approaches that
utilize climate forecasts and physically-based, spatially-distributed hydrologic models (McGuire et al., 2006; Wilby, 2010),
which is the focus of this study.

While each of these methodologies has advantages and limitations, we  focus on developing and evaluating the climate
and hydrologic model-based approaches due to the following considerations. First, these process-based approaches are
mechanistic in nature, and hence do not require assumptions regarding hydrologic persistence or stationarity (Milly et al.,
2008) that are utilized in statistical models. In addition, these modeling frameworks may  facilitate follow-up studies on long-
term projections of climatic impacts on water resources (e.g., Hamlet and Lettenmaier, 1999; Christensen et al., 2004; Yao
et al., 2009; Haddeland et al., 2013) and seasonal forecasts of water supplies (e.g., Wood et al., 2002; Wood and Lettenmaier,
2006).

Despite several existing studies on process-based modeling frameworks, it is still challenging for water practitioners to
use coarse-resolution gridded hydroclimate data for water resources studies (Kundzewicz and Stakhiv, 2010; Wilby, 2010)
due to the lack of novel modeling strategies and data structures in combining large-scale models with fine-scale applications.
To address this issue, Wood et al. (2011) proposed a “hyperresolution” modeling strategy and recommended the use of the
high-resolution HydroSHEDS dataset (including vector-based river networks and drainage directions). Lehner and Grill
(2013) used the HydroSHEDS dataset in their hydrologic model, and argued that the shift from grids to vectors would
benefit “hyperresolution” modeling. Conceptually, the “object-oriented” organizations of data structures in a vectorized
environment make the linkage among objects easier to handle than in a gridded environment. As more accurate GIS-based
characterizations of hydrologic features become available, there is a growing need to consolidate them with grid-based
climate and hydrologic models, and examine advantages and limitations of such hybrid frameworks. These GIS datasets
include, but are not limited to lakes and reservoirs (Lehner and Döll, 2004), dams (Lehner et al., 2011), as well as river
networks such as the HydroSHEDS (Lehner et al., 2006) and the National Hydrograph Dataset Plus (NHDPlus) (McKay et al.,
2012).

The purpose of this study is thus to demonstrate an application of a hybrid modeling framework that supports both raster
and vector data structures, and examine its applicability in predicting lake level changes. The Routing Application for Parallel
computatIon of Discharge (RAPID) model is used because it simulates the river flows on the NHDPlus river network (vector-
or reach-based) while being compatible with large-scale land surface models (LSMs). David et al. (2013) demonstrated that
RAPID, coupled with four LSMs in the North American Data Assimilation System (NLDAS), is capable of well-simulating
streamflow over the Texas Hydrologic Region 12. RAPID can also be coupled with catchment-based, rather than grid-based
LSMs. In this study, the Noah LSM with multiple-parameterization options (Noah-MP) is used to provide runoff to feed
RAPID. In the following sections, we first introduce the study area (Section 2), and then describe the modeling framework,
implementation and datasets used (Section 3). Section 4 presents the results and conclusions. Finally, discussions on the
modeling capabilities and limitations are provided.

2. Study area

The Texas Highland Lakes are a chain of seven man-made fresh water reservoirs located on the Colorado River Basin
(CRB), the second largest basin in the Texas Hydrologic Region 12 (Region 12), draining an area of 102,172 km2 to the Gulf of
Mexico (Fig. 1). The six upper lakes, namely, Lake Buchanan, Inks Lake, Lake LBJ, Marble Falls, Lake Travis, and Lake Austin,
were formed after dam constructions in the 1930s and 1940s. The Lower Colorado River Authority (LCRA) manages the
six upper lakes to provide freshwater supply, flood control, irrigation, electricity, and recreational services around the City
of Austin area, benefitting more than 1 million people. With a contributing area of 14,631 km2, nearly 1/9 of the CRB, Lake
Buchanan has the biggest surface area of around 90 km2 and a maximum depth of around 40 m.  Its storage capacity is around
1.08 km3.

The Highland Lakes area features a semi-humid climate with annual rainfall ranging from 800 to 1000 mm.  During the
past 50 years, the region has experienced major droughts in 1950s, 1964, 1984, 2000, 2006, and 2011. As a result of low
precipitation and high evaporation rates, the lake levels of Lake Buchanan have fallen below 301 meters above mean sea

level, which is around 6 m below its long-term average. The extreme drought during 2011 has caused the lake level to drop
dramatically, and even until late 2014 the reservoir remains less than 40% full, thereby largely impacting the agricultural
uses and recreational activities of this region. The reservoir storage only recovered to ∼70% full after successive rainfall
during an anomalously wet season from March to May  in 2015. Fig. 2(a) exhibits the long-term mean seasonal variations of
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Fig. 1. Geographic location of Lake Buchanan and the six Highland Lakes in the lower Colorado River Basin, Texas, USA.

Fig. 2. (a) Seasonal variations of the Lake Buchanan water levels (long-term average using monthly data from 1979 to 2012); (b) Boxplot of the historical
monthly mean lake levels of the six upper lakes.
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Fig. 3. Schematic diagram of the mechanistic modeling framework: four mass balance components are denoted in blue; supporting datasets are denoted
in  grey.
Fig. 4. Lake surface area–lake level relationships for Lake Buchanan and Inks Lake.

the Lake Buchanan levels (unit: meters above mean sea level). On average, the lake levels peak around May  to June after a
wet season in spring and then drop quickly during the ensuing dry hot summer; after another rainfall peak in the autumn,
the lake levels slowly recover. The boxplot in Fig. 2(b) summarizes the historical lake level variations of the six upper lakes.
Lake Buchanan and Lake Travis, two major reservoirs of the Highland Lakes, are more influenced by climatic conditions (e.g.,
precipitation and surface air temperature) while the other four are highly human-regulated (Fig. 3).

3. Data and model implementation

3.1. The modeling framework

In this study, lake-level changes are computed using the modeling framework shown in the schematic diagram above.
The lake level–surface area relationship is predefined to convert the volumetric inflows and outflows to the correspondent
lake-level changes in length. The groundwater–lake interaction is not explicitly considered because it is an elusive factor
(Winter, 1981), which is beyond the scope of this study.

At each monthly time step t, the mass-balance model takes Eq. (1) to compute the lake level changes �L(t). Then hindcast
is computed at the next time step t + 1 based on Eq. (2):

�L(t) = 3600 × 24 × 30 × [fin(t) − fout(t)]
A(t − 1)

+ 0.001 × [P(t) − E(t)] (1)

L(t + 1) = L(t) + �L(t) (2)

where the four mass-balance components are fin(t), the inflow rate from the main stream and tributaries as simulated
by RAPID (in m3/s); fout(t), the outflow rate (in m3/s); P(t), the direct precipitation the lake receives, and E(t), the direct
lake evaporation as calculated by Noah-MP (monthly total, in mm).  A(t) is the lake surface area (in m2). The coeffi-
cients in Eq. (1) are used to uniform units. Through the linear fitting of historical data, a prior knowledge on the lake
bathymetry is gained. Fig. 4 shows the lake surface area A(t) as a function of lake level L(t). Lake Buchanan has a more regular
bathymetry than Inks Lake as the scattered dots are more evenly distributed across the full range. The derived relationship
A(t) = 4.403 × 106L(t) − 1.278 × 109 (coefficient of determination R2 = 0.995) is used to update the Lake Buchanan surface area
at each time step of the computation.
The experiments are driven by the 1-hourly North American Land Data Assimilation System Phase 2 (NLDAS-2) forcing,
of which the precipitation field is a multi-source dataset that are topographically bias-adjusted for the continental U.S.
(CONUS) at 0.125◦ spatial resolution (Cosgrove et al., 2003). Therefore NLDAS-2 is generally considered as an optimal input
for hydrological applications
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.2. Model implementation

.2.1. Reservoir inflows: the RAPID model
RAPID is a vector-based river routing model that uses a matrix-based Muskingum algorithm to solve the routing. It differs

rom traditional routing models in that it simulates the horizontal river transport on a reach-by-reach rather than grid-by-
rid basis, and maintaining its compatibility with grid-based climate and hydrologic models. Essentially, RAPID takes the
urface and subsurface runoff as calculated by LSMs or hydrologic models, and then based on the coupling algorithm as will
e described in Eq. (3), it can “pour” the water generated on land surface grids into the vector channels of the NHDPlus
David et al., 2009, 2011, 2013a,b; Tavakoly et al., 2012) or the HydroSHEDS (David et al., 2015).

In this study, two runoff datasets that differ in spatial resolutions are used to feed the RAPID river flow simulations
RAPID v1.2.0, Zenodo, DOI:10.5281/zenodo.27242) and provide reservoir inflows with the aim of examining the lake level

odeling sensitivity to the LSM resolutions—one is a Noah-MP 12.5-km runoff dataset simulated by this study, and the other
s a Noah-MP 4.5-km runoff dataset as developed by David et al. (2013). Both experiments are driven by the same NLDAS-2
orcing but at different resolutions (i.e., original resolution at 12.5-km and interpolated forcing at 4.5-km resolution) and are
ompleted from 2000 to 2007 for the entire Region 12. In total, two regional-scale streamflow simulations for the 68,143 river
eaches in Texas are generated. Among them, 773 river reaches have direct USGS gauge stations, while 23,953 river reaches
re headwater streams (i.e., 1st order streams according to the Strahler ordering system) that are almost all ungauged. Our
nalyses mainly focus on the streamflow simulations at the inlets of several major reservoirs in Texas for the purpose of
eservoir water level modeling.

In the modeling framework, the “shift from grid to vector environment”, which determines where river reaches get water
rom surrounding land surface grids, is achieved using the so-called “coupling algorithm” between LSM grids and vector river
eaches with the aid of a set of catchment shapefiles provided by NHDPlus. More discussions about the coupling algorithm
an be found in David et al., (2013). In this study, the coupling is achieved using the procedures described below. Each river
each i is associated with one local contributing catchment CCi (area ranging from several to tens of square kilometers in our
omain) in NHDPlus. The lateral inflow Ii that river reach i gets from surrounding LSMs grids is then determined by finding
he runoff value where the centroid of CCi lies, and the area of CCi, which is ACCi, Ii is therefore determined as:

Ii = (Rs,i + Rb,i) × ACC i (3)

here Rs,i and Rb,i denote surface and subsurface runoff (baseflow), respectively. Because of the coupling algorithm for-
ulation, the two RAPID simulations not only differ in their runoff generation processes, which are functions of the soil,

egetation, and land use parameters as defined by the underlying LSM resolutions; additionally, they differ in locations
here the vector river reaches get water from LSM grid cells.

.2.2. Lake evaporation and precipitation: the Noah-MP LSM
The community Noah LSM with multi-parameterization options (Noah-MP) was originally developed as the land sur-

ace component for the next-generation operational weather and climate forecasts. Its offline simulations have also been
ncreasingly used to support various hydrological applications (e.g., Niu et al., 2011; Yang et al., 2011; Cai et al., 2014). Sev-
ral hydrological enhancements were added to the multiple schemes of Noah-MP, such as an unconfined aquifer interacting
ith soil (Niu et al., 2007) and the landscape freeze/thaw properties (Shi et al., 2013), which improved the hydrological
rocesses in the current LSMs. In this study, a simple TOPMODEL-based scheme in Noah-MP (Niu et al., 2005) is chosen for
unoff parameterization, and the runoff is manually calibrated using three most sensitive factors as suggested by Cai et al.
2014) The model configured at 12.5-km resolution is used to estimate evaporation and precipitation over the lake area. In
oah-MP, Lake Buchanan is characterized as “water” according to the USGS land use land cover classification (value = 16),
nd the surrounding areas are “cropland/grassland mosaic” (value=5). The Penman-Monteith equation is solved to estimate
vaporation over the water bodies, while precipitation is from the multi-source NLDAS-2 fields.

.2.3. Reservoir outflows: a multiple linear regression scheme
A multiple linear regression scheme is used to estimate the reservoir outflow based on the inflow rate and water demand.

hus the outflow rate for month t can be written as:

fout,t = a × fin,t + b × D + c (4)

where fin, t is the estimated reservoir inflow rate, D is the water demand, and a, b, c are three empirical coefficients. For
ulti-purpose reservoirs like Lake Buchanan, water demand in the actual water management consists of the amount used

or hydropower generation, and the amount diverted or withdrawn to supply water for domestic, industrial and agricultural
ses. While the former part is more positively correlated with inflow rates, the latter part is harder to characterize as it

nvolves specific operating rules for different reservoirs and different climate scenarios such as droughts and floods. To
implify characterizations for water demand, the average percentage water demand for each month is empirically defined,

ccounting for the highest water demand in summer (JJA, assuming 60% of annual total water demand) due to the high
eeds for electricity and domestic uses, moderate water demand in spring and autumn (MAM and SON, each for 15%) due to
gricultural uses, and low water demand in winter (DJF, 10%). Note that the seasonal variations of percentage water demand
re derived by examining dam turbine release data (proxy for hydroelectricity demand) and dam diversion data (proxy for
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Fig. 5. NHDPlus river network as RAPID model baselines: 14 inflows are marked in red.

domestic, industrial and agricultural demand). Assumptions are made that the demand is mainly season-dependent. Demand
is therefore defined as 0.033, 0.033, 0.05, 0.05, 0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, and 0.033 from January to December to
represent the percentage water demand for each month. Multiple linear regression is then run based on Demand and the
estimated monthly mean inflow rates (m3/s) as calculated by R1 as it provides more accurate estimates of inflows, with a,
b, c determined as 0.7831, 128.94, and −12.03, respectively. The coefficient of determination (R2) is 0.65 for the regression,
which is statistically significant (p � 0.5) for both inflow fin, t and D. The derived equation is then used to model reservoir
outflows based on inflows simulated by R1 and R2. In cases where the estimated outflow is predicted to be less than zero
because of low inflow rates, outflow is determined as 50% of inflow (Wu and Chen, 2012) assuming half of the inflow will still
be released in low flow period. This provides an estimated outflow for an active reservoir whose storage is beyond the dead
storage. Based on this methodology, reservoir outflow is estimated during the lake level hindcast stage (Sections 4.1 and
4.2) and the results are compared with true historical release data (Section 4.1). The true dam release is obtained from LCRA
from 2000 to 2007, which consists of gate release for flood control purposes, turbine release for hydropower generation,
and the diversions for water supply.

4. Results and conclusions

4.1. Sources of uncertainties and modeling results

Fig. 5 shows the vectorized environment at the inlets of Lake Buchanan and a visual comparison between the NHDPlus
and the HydroSHEDS river network. NHDPlus has higher accuracy and a better representation of hydrologic features than
HydroSHEDS does. Digitalization of NHDPlus includes high-quality datasets such as aerial photography and paper maps
provided by USGS NHD efforts (but only for the U.S.), while HydroSHEDS is a global-scale dataset derived from different
resolution Shuttle Radar Topography Mission (SRTM) DEMs. NHDPlus keeps all headwater river reaches, while only river
reaches that have a 25 km2 upstream drainage area or more are retained in HydroSHEDS. Based on the NHDPlus river IDs
(COMID in its attribute table), 14 connecting river reaches (marked in red) were selected to calculate the Lake Buchanan
inflows.

Table 1 summarizes the RAPID performance in simulating reservoir inflows for Lake Buchanan and other major reservoirs
in Texas. The performance is measured using R2, Root Mean Square Error (RMSE, Eq. (4)), and normalized RMSE (NRMSE,
Eq. (5)) to reflect timing errors, magnitude errors, and magnitude errors as referenced to mean annual streamflow. As large
rivers tend to have larger RMSE than small streams, therefore mean annual streamflow values are used to normalize RMSE
to provide a more objective assessments on the magnitude errors at different geographical locations. The two  RAPID runs
are denoted as R1 (coupled with 4.5-km gridded runoff) and R2 (coupled with 12.5-km gridded runoff), respectively.
RMSE =

√
�n

i=1

(
Qobs,i − Qsim,i

)2

n
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Table 1
Statistics of RAPID streamflow simulations upstream of several major reservoirs in Texas (eight years from 2000 to 2007, 96 months).

Station name Downstream reservoir USGS gauge ID RAPID river ID Lat (N) Lon (W)  R2 RMSE (m3/s) NRMSE

1 Colr Rv Nr San Saba Lake Buchanan 08147000 5756726 31◦13′ 98◦33′ 0.68(R1) 0.32(R2) 19.04(R1) 37.76(R2) 1.09(R1) 2.16(R2)
2  Llano Rv at Llano Lake Buchanan 08151500 5771725 30◦45′ 98◦40′ 0.52(R1) 0.61(R2) 17.21(R1) 16.25(R2) 1.35(R1) 1.28(R2)
3  Buchanan Inflows Lake Buchanan \ 14 inflow reaches \ \ 0.65(R1) 0.27(R2) 19.39(R1) 39.40(R2) 0.98(R1) 1.99(R2)
4  Neuces Rv nr Three Rivers Corpus Christi Lake 08210000 3168766 28◦25′ 98◦10′ 0.66(R1) 0.68(R2) 43.65(R1) 70.80(R2) 1.57(R1) 2.54(R2)
5  Guadalupe Rv nr Spring Branch Canyon Lake 08167500 3589120 29◦51′ 98◦23′ 0.88(R1) 0.86(R2) 12.19(R1) 18.50(R2) 0.63(R1) 0.96(R2)
6  Trinity Rv nr Crockett Livingston Lake 08065350 1484774 31◦20′ 95◦39′ 0.91(R1) 0.67(R2) 58.24(R1) 124.25(R2) 0.34(R1) 0.73(R2)
7  Sabine Rv nr Beckville Toledo Bend Reservoir 08022040 5278868 31◦58′ 94◦00′ 0.79(R1) 0.70(R2) 40.04(R1) 53.49(R2) 0.72(R1) 0.84(R2)
8  Chambers Ck nr Rice Richland-Chambers Reservoir 08064100 1446962 32◦11′ 96◦31′ 0.46(R1) 0.36(R2) 13.84(R1) 15.11(R2) 1.29(R1) 1.41(R2)
9  Angelina Rv nr Alt Sam Rayburn Reservoir 08036500 1150499 31◦40′ 94◦57′ 0.82(R1) 0.72(R2) 16.26(R1) 22.22(R2) 0.57(R1) 0.78(R2)
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Fig. 6. (a) Hydrograph of Lake Buchanan inflows (one main stream and 13 headwater tributaries); (b) time series of tributary contributions.

NRMSE = RMSE/Qobs (5)

In general, RAPID simulations exhibit reasonably good skill scores for the USGS stations upstream of several major
reservoirs. Specifically, the station above Lake Livingston (8.167.500) shows an R2 skill score of ∼0.9 for R1 and ∼0.7 for
R2, and the station above Canyon Lake (8.065.350) shows skills of ∼0.9 for both R1 and R2. These two lakes play major roles
in the water resource management for the city of Houston and the city of San Antonio, the fourth and seventh most populous
cities in the U.S., respectively. The good simulation skills at the inlets of these major reservoirs in Texas show promise for
expanding the applications to other regions. For two gauges right upstream of Lake Buchanan, the RAPID runs display skills
of ∼0.6. To evaluate the 14 direct Lake Buchanan inflows simulated by RAPID, we reversed the lake mass-balance model
to infer the total inflows based on observed precipitation, evaporation, and actual dam releases (referred to as “OBS back
calculation”) as there are no direct gauge observations available at the lake inlets. Although the “observed” streamflow at
the Lake Buchanan inlet is also subjected to errors due to uncertainties associated with the input data for the reversed mass-
balance model, the estimate is considered as a reference to compare with model results. R1 shows a skill of 0.65 (higher than
R2) in simulating direct lake inflows presumably because the land surface characterizations and the resulting parameters
are better represented at finer LSM resolutions.

The hydrograph in Fig. 6a shows the river flow variations that contribute to Lake Buchanan are captured generally well
by the RAPID simulations for the two types of runoff datasets, but R2 tends to over-estimate river flows during normal days.
River flow simulations for the 13 headwater tributaries are also shown in Fig. 6b. It is noticed that the tributary contributions
for Lake Buchanan are relatively small throughout the study time span, sometimes even smaller than the errors associated
with the main stream simulations. However, the tributary contributions can be a large mass-balance component for certain
regions that experience extreme flooding, in which case the present modeling framework could potentially add accuracy

to the lake level modeling. However, the skills for the headwater tributary simulations still remain unclear due to limited
gauge observations.

The reservoir outflows for R1 and R2 based on the multiple linear regression using the mean monthly percentage water
demand and reservoir inflows are compared with the LCRA observed total dam releases (Fig. 7). The general release patterns
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ig. 7. (a) Time series comparison and (b) scatter plot between observed outflow and simulated outflow for R1 and R2 based on the multiple linear
egression scheme.

re captured well by both simulations but R2 has a lower correlation coefficient (CC) because its inflows are subjected to
ore biases and timing problems. Both R1 and R2 capture the high outflows well, but the simulations for low outflows are
ore problematic as the high water demand, even during low flow days, is not sufficiently represented in the regression

cheme.
The Noah-MP 12.5-km lake ET estimates are compared with two other observation-based data

ources: (1) Texas Water Development Board (TWDB) lake evaporation estimate over 1◦ quadrangles
http://www.twdb.texas.gov/surfacewater/conditions/evaporation/), and (2) AVHRR remotely sensed 8-km ET prod-
ct (Long et al., 2014). MODIS ET is generally considered as a better ET estimate from remote sensing techniques but since it
oes not address ET over water bodies, it is not used here. Compared with the two  datasets, the Noah-MP lake ET estimate

s biased high, with main differences lying in warm seasons when the total monthly ET is higher than 150 mm.  This is
onsistent with Long et al.’s (2014) thorough comparison using a variety of LSM ET estimates and remotely sensed products.
t is worth noting that the TWDB ET estimate originates from 76 pan evaporation stations, which has been carefully
nterpolated and multiplied by monthly pan-to-lake coefficients. However, the product is very likely to underestimate
egional high ET values as it only stands for the 1◦ quadrangle averages. For the AVHRR ET, it uses the Penman-Monteith

quation to estimate ET as Noah-MP does, but the driving surface meteorology is different. It uses the NCEP/NCAR reanalysis
Long et al., 2011), which was suggested as the worst-performing reanalysis for surface air temperature in a multi-reanalysis
omparison study (Decker et al., 2012), while Noah-MP in this study was driven by a higher-resolution and higher-accuracy

http://www.twdb.texas.gov/surfacewater/conditions/evaporation/


670 P. Lin et al. / Journal of Hydrology: Regional Studies 4 (2015) 661–674

Fig. 8. Noah-MP lake ET estimate as compared with two other observational datasets.
Fig. 9. Lake level predictions based on the proposed framework (black dots denote the time points when the mass-balance model is initialized).

NLDAS-2 forcing. Therefore, although the Noah-MP ET differs from the two  observation datasets, it is still considered as a
good estimate of ET for lake surfaces in the absence of better ET estimates such as from flux tower measurements for this
region (Fig. 8).

Fig. 9 presents the time series of lake-level predictions assuming a six-month lead time. The computation starts with the
observed lake level in December 1999, which is 307.21 meters above mean sea level; every six months, Eq. (2) is initiated
using the observed lake levels obtained from gauged data. Within the six months interval, lake-level variations are predicted
by the proposed modeling framework, which mainly reflects the cumulative errors in simulating the four mass balance
components (more discussions in Section 4.3).

Generally, the lake levels are well reproduced, especially for years from 2001 to 2005 when the lake level variations are
small. The lake level recoveries following two major droughts in 2000 and 2006 are very well-predicted by both simulations;
by contrast, the water level drop caused by droughts is harder to capture. In another suite of lake-level prediction experiments
using observed outflows (not shown), the water level drop in the 2000 drought is much better-captured than experiments
using estimated outflow as shown here. This means the outflow under-estimation is mainly causing the problem in drought
years. Both R1 and R2 have better performances in capturing the water level drop in 2000 than in 2006. Starting from 2005,
the water level has several over-predictions. In particular, the over-prediction starting from December 2004 and December
2005 may  be related to the under-predicted reservoir outflows, as the regression scheme for outflow estimation assumes low
outflow rates during low inflow period as well as during winter to spring seasons, but the observed outflows suggest high
values during these two periods. As for the over-prediction starting from June 2006, the outflow is well predicted but due to
the over-prediction in inflow, the lake level is over-predicted. In general, R1 has better performances than R2 presumably
because its inflow and outflow are better simulated than R2 (R2 tends to have an over-estimation of reservoir inflows). But
there are situations when R2 out-performs R1 because the amount of outflows that is missing in the regression scheme can

be cancelled out by the over-predicted outflows for R2. More discussions are provided below.
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ig. 10. Skill dependence of lake-level predictions at different lead times up to six months: model is initialized in (a) December (b) March (c) June (d)
eptember of each year.

.2. Skill dependence on multiple lead times

Fig. 10 shows the skill dependence of the lake-level predictions at multiple lead times and different initialization months.
or all experiments a, b, c and d, the lake-level predictions are run to a maximum lead time of six months, but they are
nitialized in December, March, June, and September of each year, respectively.

Overall, the RMSEs of lake-level predictions grow with lead times. R2 is generally subject to more errors (ranging from
.1 to 0.6 m)  than R1 as R1 better estimates the inflow and the consequent outflow. However, R2 has a smaller RMSE than
1 during summer (JJA), which can be possibly ascribed to problems with the outflow regression scheme—during drought
ummers in JJA the actual dam releases are still high as determined by the river authority operations, but the regression
cheme is under-predicting. Thus, the lake level is over-predicted. In this case, the over-estimated inflow in R2 would result
n high outflow values that could compensate the missing amount of outflow from the regression scheme. It can be also
oncluded from Fig. 10 that for all lead times and for all initialization months, R1 has a mean RMSE of 0.99 m (on average
.5 m RMSE for the first two lead months), indicating the effectiveness of R1 in lake-level predictions. For R2, the RMSEs
re on average 0.1 m larger than that of R1. The hindcasts that are initiated in September are subjected to larger errors for
oth R1 and R2 (Fig. 10d), but those initiated in December, March and June have greater skills (Figs. 10a–c). In general, the
eservoir inflow simulations are more sensitive to the LSM grid resolutions (reflected by differences between R1 and R2)
han lake level predictions are, as the outflow errors may  cancel out inflow errors in the computation based on mass balance.
he Noah-MP/RAPID framework is able to provide a vectorized environment to compute lake level changes at fine scales,
owever, the skills are functions of initialization months, expected lead times, the LSM resolution and its coupling to the
iver reaches.

.3. Sensitivity analysis

To better understand attribution of model uncertainties, we  first present the four water budget components as contribu-
ions to lake level changes in length (m). The inflow in Fig. 11 is calculated using R1. The annual water budgets are averaged
ifferentiating normal years and dry years of our study span.

For a freshwater reservoir like Lake Buchanan that has a surface area of around 90 km2 and is under a semi-humid climate,
he lake inflow and outflow are the two most influential factors driving the lake level variations, followed by evaporation
oss over the lake area. The influence of evaporation becomes larger in dry years, taking up about 50–100% of the influences
rought by inflows and outflows alone, but the inflow and outflow variations still dominate the water level changes. For

his type of small- to medium-sized lakes, direct rainfall falling on the lake only takes up a small proportion of water level
hanges. On the other hand, rainfall that spreads over the large upstream contributing basin areas has a big influence on the
ake inflows, causing lake level changes up to 1.8 m.
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Fig. 11. Seasonal variations of four lake mass-balance components for Lake Buchanan: (left) normal year average from 2001 to 2005, and 2007; (right) dry
year  average in 2000 and 2006.

Table 2
Sensitivity analyses of the lake-level predictions (model is initialized each December and ran to a maximum of six-month lead).

Exp. No. Input description RMSE (m)

Lead 1–Jan Lead 2–Feb Lead 3–Mar Lead 4–Apr Lead 5–May Lead 6–Jun

CTL in, out, E, P by R1 0.23 0.46 0.71 0.83 0.99 1.26
Exp.  1 CTL, observed out 0.29 0.35 0.92 1.21 1.46 0.73
Exp.  2 CTL, mean monthly in 0.30 0.61 1.16 1.43 2.12 3.71
Exp.  3 CTL, mean monthly out 0.32 0.59 1.17 1.59 1.79 1.88
Exp.  4 CTL, mean monthly E 0.22 0.45 0.71 0.83 1.00 1.30

Exp.  5 CTL, mean monthly P 0.22 0.45 0.69 0.83 1.04 1.38

Below, we show some sensitivity analyses of the lake-level predictions by changing the lake model inputs. For simplicity,
only R1 that is initialized in each December and at a maximum lead time of six months was  conducted and evaluated in terms
of RMSE. The control run (CTL) is the same as R1 in Experiment (a) (Fig. 10). Exp. 1 is the same as CTL except that the outflow
is substituted by observed outflow values. For Exps. 2–5, the lake inflow (in), outflow (out), evaporation (E) and precipitation
(P) are substituted by the 8-year averaged monthly in, out, E and P based on the best available data (i.e., R1 estimated inflow,
LCRA outflow, TWDB ET and precipitation), respectively. In an actual lake level forecast case where the downscaled and
bias-corrected atmospheric forcing in a forecast mode is used and certain assumptions on the lake outflows are made, it
is very likely that only a rough seasonal variation (mean annual cycle) of these mass-balance components are captured.
Therefore, it is helpful to estimate the prediction uncertainties one would expect to get if the predictions are only as good as
the mean annual cycle of the in, out, E, and P. Table 2 summarizes the RMSEs for these tests. The RMSE increments between
Exps. 2–5 and CTL reflect the error increases brought by the skill decreases of in, out, E, and P predictions, respectively.

As expected, the RMSE increments to CTL are largest to lowest for Exps. 2–5, which is consistent with Fig. 11 that
predictions for inflow and outflow dominate the errors in lake level predictions, while the influences of predictions for E
and P are small. If only a mean annual cycle of the four mass-balance component is captured in a real forecast, the overall
influences are very limited within the first two lead months (nearly no RMSE increment in the first two  columns). However
for longer lead months, the errors start to accumulate and influence the lake level predictions. For Exp. 2 (monthly mean in),
the RMSEs grow from 0.4 m to 2 m larger than CTL starting from the third to sixth lead months. For Exp. 3 (monthly mean out),
the RMSEs only grow from 0.4 m to 0.7 m larger than CTL even for the longer lead months, which are more acceptable. For
Exp. 4 and Exp. 5, ∼0.1 m or less error is accumulated across all lead times, which means the influences of E and P are limited
throughout. Additionally, for most lead times, Exp. 1 (using observed outflow) has larger RMSEs than CTL. This indicates that
using estimated outflow helps reduce lake level prediction errors, as the errors in modeled inflow and outflow tend to cancel
out. Overall, to get acceptable lake-level predictions at desired lead times, getting good predictions of the lake inflow and
outflow is the top consideration. Our modeling framework shows consistently good predictions for both R1 and R2 up to 2-
to 3-month lead times (within 0.5 m),  but after 3-month lead times the reliability of using the framework depends largely
on the prediction skills of reservoir inflows and outflows. For modeling Lake Buchanan water levels, a simulation of inflow
(R2 = 0.65) and outflow (R2 = 0.67) could result in 0.22–1.26 m mean RMSE for lake level predictions up to 6-lead months
starting from December. Future work is expected to improve the overall lake level predictions including the Noah-MP/RAPID

model developments/calibrations and improved outflow estimation schemes.
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. Summary and discussions

This study focuses on development and evaluation of a mechanistic modeling framework to model lake-level changes,
hich innovatively combines a land surface model (Noah-MP), a large-scale river routing model (RAPID) and a lake mass-

alance model. By conducting a case study in Lake Buchanan, a medium-sized reservoir that serves the hydroelectricity and
reshwater supplies for the City of Austin, Texas, we  show that the presented hybrid modeling framework, which supports
oth grid and vector data structures can facilitate fine-scale water management applications. The modeling capabilities and
ources of uncertainties are also assessed based on the experimental runs over the historical period from 2000 to 2007.

The proposed modeling framework offers the following advantages. The overall package is capable of predicting the
ake level variations of Lake Buchanan with reasonable accuracy. Noah-MP is a grid-based land surface model originally
esigned for global-scale weather and climate forecast studies, while the NHDPlus is a vector-based dataset that describes
igh-resolution and accurate hydrologic features (i.e., river network, connectivity, catchment, lakes, reservoirs, and dams) on
he land surface of CONUS. Through the coupling of Noah-MP with RAPID on the NHDPlus dataset, the resulting package can
imulate streamflow at regional to continental scales, meanwhile providing the reservoir inflows and other mass-balance
omponent that are needed for lake-level modeling at fine scales. This framework can potentially serve as a useful tool for
ocal water resource and lake management by providing a means to resolving aforementioned scaling issues.

The study is subject to the following limitations. (i) Only lumped parameter calibration is conducted for the entire Texas
egion. Further spatially-distributed parameter calibration would result in better accuracy in reservoir inflow simulations,
nd consequently better lake-level modeling. (ii) Model physics and the grid to vector coupling algorithm introduced in
his study should be further improved towards the goal of decision-making processes. By examining two  experiments that
ave different LSM spatial resolutions, we briefly mentioned that the RAPID streamflow simulations could be improved by
ner representations of land surface characteristics, or possibly be degraded by the location shifts due to the grid to vector
oupling process. It is suggested for Station 08151500 and 08210000 (see Table 1), the finer resolution run (R1) has an
nexpected lower R2 than the coarser-resolution run (R2). Further study is warranted to identify the skill dependence on
SM resolutions in the presented hybrid modeling framework and to improve the coupling algorithm. (iii) Groundwater-
ake interactions are not considered in this study due to the simplified groundwater characterization in the current version
f Noah-MP, and the poorly understood processes for groundwater-lake interactions at local scales. This component could
otentially be large for certain regions, in which cases a more complicated groundwater model must be represented to more
ccurately model lake levels.
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