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INTRODUCTION 

This paper is concerned with the problem of determining those integral 
domains D which have the property that finitely generated projective modules 
over D[X, ,..., X,] are extended from D. As Quillen and Suslin have shown, 
Dedekind domains have this property. In fact, Lequain and Simis show in [IO] 
that any Priifer domain has the property. For geometric purposes this beautiful 
result is no improvement on Quillen-Suslin because a Noetherian Prtifer domain 
is a Dedekind domain. On the other hand, we shall show in this paper that the 
techniques of Lequain-Simis can be applied in the one-dimensional case to 
obtain geometric results. 

Obviously, a first step in attacking the general problem would be to determine 
those domains D such that rank one projectives over D[X, ,..., X,] are extended 
-that is, those domains D such that Pit(D) = Pic(D[X, ,..., X,l). This problem 
was effectively treated by Traverso [14] for the case of a Noetherian domain 
having affine normalization. A clever argument of Gilmer and Heitmann reduces 
the general case to the case handled by Traverso and so we are able in Theorem 1 
to give a characterization of those domains D such that Pic(D)=Pic(D[Xr,..., X,l) 
for any positive integer 71. In fact, our characterization of Traverso’s seminormality 
is an internal one which arose in the 1962 paper of Bass [2]. Precisely, Pit(D) = 
Pic(D[X, ,..., X,l) if and only if whenever 01 belongs to the quotient field of D 
with c?, 01~ E D, then 01 E D. We then prove our main result, Theorem 2, which 
says that if D has Prtifer normalization plus the property that Spec(D,) is finite 
for each prime ideal P of D, then finitely generated projective (D[X, ,..., X,1)- 
modules are extended if and only if D is seminormal. This completely solves 
the problem for one-dimensional Noetherian domains and so for coordinate 
rings of irreducible algebraic curves. For completeness, we prove again a result 
of Salmon [13] characterizing the irreducible seminormal affine plane curves, 
thereby enabling us to illustrate our results for the well known curves y2 = x3 
andy2 = x2 + ~3. 

Throughout this paper D will denote the integral closure of the integral 
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domain D. If D is a subring of a ring R, integral over D, :D will indicate the 
seminormalization of D in R. Recall from [14] that tD is the largest subring 
of R which contains D and has the property that for each prime ideal P of D, i) 
there is a unique prime ideal +P of tD lying over P, and (ii) the canonical 
homomorphism of residue class fields h(P) -+ h(+P) is an isomorphism. D is 
said to be seminormal if D = ;D. 

We shall have occasion to use the statement “Pit(D) = Pic(D[X,,..., X,J)“. 
By this we mean that the natural monomorphism Pit(D) + Pic(D[X,,..., X,]) 
is an isomorphism, i.e. that rank one projective D[X, ,..., X,1-modules are 
extended from D. 

MAIN RESULTS 

Bass presented in [2, Prop. 2.1(6)] an argument of Schanuel which we now 
give in a slightly modified form. The argument will show that if D is an integral 
domain with quotient field K and.ol E K is an element such that CL # D, but CY~, 
01~ E D, then there is a projective rank one module over the polynomial ring 
D[X] which is not extended. In fact, consider the fractional ideals I = (01~, 
1 + ax) and J = (a”, 1 - (YX) of D[X’j. Then11 = (01~~ a2 + asX, 012 - (Y~X, 
1 - cr2Xa) C D[X]. N ow X4a4 + (1 + a12X2)(l - or2X2) = 1, so 1J = D[x] 
and I and J are invertible, with J = 1-l. We claim that l’is not extended from D. 
For suppose it were. By localizing D at a prime ideal P such that 01$ D, , we 
may assume that D is quasi-local. Then I would be principal, say I = (f), 
for somefE1. SinceIK[X] = K[q,f~ K. Thenf--folX =f(l-ax) E D[X], 
so f E D. This gives I = (f) C D[q, contradicting 016 D. 

We say that a domain with quotient field K is (2, 3)-closed if every element 
a! E K such that 012, 01~ E D is an element of D. The argument of Schanuel above, 
then, shows that the property of being (2, 3)-closed is a necessary condition 
for a domain D to have the property that rank one D[Xl-projectives are extended. 
What seems astonishing to us is that, although weaker than normality, it is also 
sufficient. 

THEOREM 1. Let D be an integral domain with {X,}zI a family of indeter- 
minates over D. The following conditions are equivalent: 

(1) Pit(D) = Pic(D[X, ,..., X,]) for each positive integer n. 

(2) Pit(D) = Pic(D[X,]). 

(3) D is seminormal. 

(4) For each 01 E D\D, the conductor of D in D[ar] is a radical ideal of D[a]. 

(5) D is (2, 3)-closed. 

Ideas for the proof come from a number of sources, among them Bass [2], 
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Gilmer-Heitmann [7], Hamann [g], and Traverso [14]. In particular, the proof 
that condition (4) implies condition (1) is due to Gilmer and Heitmann and 
appears in article [7]. 

Proof. (1) 3 (2). Clear. 

(2) =z (5). Th’ f 11 is o ows from Schanuel’s argument given above. 

(5) =- (4). Suppose (4) does not hold. Then there is an element OL E D such 
that the conductor C of D in D[or] is not a radical ideal in D[a!]. Then l/C g D, 
since C is the largest common ideal of D and D[ti]. Choose /3 E @\D. Say 
p” E C. Since C is an ideal of D[a], p” E C for all m > n. Let n,, be the least 
integer such that /P E D for all m 3 n,, . Then n, > 1 and y = ,&o-r $ D. 
But y2, y3 E D, contradicting (5). 

(4) 3 (3). From the characterization of seminormalization given in the 
introduction, it follows that for D _C R CD, fD = R n LD. (Thus D is semi- 
normal if and only if D is seminormal in D[a] for every a! E D.) Now suppose D 
is not seminormal and let a E iD\D. Let R = D[a]. Then 20 = R, so for each 
prime ideal P of D there is a unique prime ideal Q of R lying over P and further- 
more, the map k(P) --f k(Q) is an isomorphism. We claim that in this situation, 
the conductor C of D in R is not a radical ideal of R, contradicting (4). For 
C # 0 since R is a finite D-module, and C # D since R # D. Let P be a prime 
ideal of D minimal with respect to containing C, and let Q be the prime ideal 
of R lying over P. Then CD, is the conductor of D, in R, and since CD, # Dp , 
D, # R, . Using the Cohen-Seidenberg theorems we see that Rp = Ro . 
If C is a radical ideal of R, then it is one in D, whence CD, = PDp . But QR, is 
the only prime of R, containing PDp , so CD, = QR, . Thus k(P) = DJPD, , 
while k(Q) = R,/PD, . From the fact that k(P) -+ K(Q) is an isomorphism we 
deduce that D, = R, , which is false. 

(3) + (5). Let 01 be an element of the quotient field of D such that cy2, 01~ ED. 
Since D is seminormal, D is seminormal in D[or], i.e. DrAD = D. By [14, Lemma 
1.31, the conductor C of D in D[u] is a radical ideal of D[i]. Clearly a E C c D. 

An interesting consequence of Theorem 1 is that if D is seminormal, so is 
D[X,]. This is a K-theoretic result which we shall use in the proof of Theorem 2. 
We shall also need the following lemma: 

LEMMA 1. Let D be an integral domain. 

(a) If D is seminormal, then D, is seminormal for any multiplicatively closed 
subset S of D. 

(b) If D, is seminormalfor each maximal ideal A’ of D, then D is seminormal. 

Proof. Both assertions can be easily verified using condition (5) of Theorem 1. 
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THEOREM 2. Let D be an integral domain with {Xi}im_, a family of indeter- 
minates over D. Suppose that the following two conditions hold: 

(i) D is a Prtifm domain, and 

(ii) Spec(D,) f; t tf is a ni e se or each prime ideal P of D. 
Then $niteb generated projective D[X, , . . . , X,1-modules are extended for each 
positive integer n if and on& if D is seminormal. 

Proof. (+): This implication is obvious from Theorem 1. 

(G): We shall use the Lequain-Simis induction theorem [lo, Theorem A]. 
Thus, let V be the class of integral domains satisfying (i), (ii), and (iii), where 
(iii) is the condition that the domain D is seminormal. We have four properties 
of the class % to verify: 

(c.0) Each non-maximal prime of any domain in V has finite height. 
This property is clear by (ii), 

(c.1) If D E %?, then D, E V for each prime ideal P of D. Condition (ii) 
obviously holds in Dp and condition (iii) holds by Lemma 1. As for condition 
(i), if S = D\P, it is well known that Ds = (F). Thus (x) is a Prtifer domain. 

(c.3) If D E %? and D is quasi-local, then every finitely generated projective 
module over D[X,] is free. To see this, by condition (ii), Spec D is a finite set. 
Thus, by [lo, Lemma l] and [l, Ch.IV, Cor. 2.71, every finitely generated 
projective module over D[X,] is the direct sum of a free D[X,]-module plus 
an ideal of D[X,]. Since D is seminormal and quasi-local, the ideal is principal 
by Theorem 1. 

(c.2) If D E GF?, then (DIXI])p[xl~ E V for each prime ideal P of D. Here 
is where the work comes in. If D is seminormal, then D[X,] is seminormal and 
hence (DIXI])p[xI~ is seminormal by Lemma 1. This disposes of condition (iii). 

To verify condition (i) for (DIX,])P~x,l , we must show that ((DIX,Jp[xl~) is 

a Priifer domain. Let S = D[X,]\P[XJ. Then (DIXI]p[xl~) = (D[XJs = 
D[X& . If Q is a prime ideal of D[Xi] with Q n S = O, then Q n D[X,] C 
P[X,]. By the Cohen-Seidenberg theorems applied to the integral extension 
D[X,] _C D[Xr], there is a prime ideal Q’ of D[X,] such that Q’ 1 Q and Q’ n 
D[X,] = P[X,]. Th us every maximal ideal of D[X& is of the form Qs , where 
Q n WJ = PKI. 

Now suppose Q n D[X,] = P[X,] and let Q,, = Q n D. Then Q0 n D = P, 
so QJX,] n D[X,] = P[XJ. Since Q,[X,] CQ, we must have Q = Q,,[X,]. 
It follows that every maximal ideal of D[X& is of the form QJX,], , where Q,, 
is a prime ideal of D and Q0 n D = P. We now see that the localization of 
D[X& at a maximal ideal QOIXJs is DIX,]oOl,ll which is a valuation ring, 
since D is a Prtifer domain [6, Prop. 18.71. This shows that (DIXI]p[xl~) is a 
Priifer domain. 
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To verify condition (ii) for DIXJpIxI~ , we must show that it has finitely 
many prime ideals. In order to make the argument easier to follow, we isolate 
three more or less general facts about domains whose integral closure is a 
Priifer domain: 

CLAIM 1. Suppose R is a domain with R a Priifer domain, and let P be a 
prime ideal of R. Then RIP is a PrGfer domain. 

Proof of Claim 1. Let Q be a prime ideal of w lying over P. Then R/Q is 
integral over RIP and is a Priifer domain. Let L be the quotient field of RIP. 

- 
Since fFIQ is integrally closed and integral over RIP, R/P = L n (E/Q). As a/Q 

-- 
is integral over R/P, R/P is a Priifer domain by [6, Theorem 22.41. 

CLAIM 2. Let R be a domain with i? a Prtifu domain, and let P be a prime 
ideal of R. Then for each valuation overring V of R, there is at most one prime 
ideal of V lying over P. 

Proof of Claim 2. Let Qr s Qa be p rime ideals of V lying over P. Since 
i? C V and R is a Priifer domain, V = &, for some prime ideal Q of a. Thus 
Qr n iT c Qa n R. But then we contradict the Cohen-Seidenberg theorems 
upon contracting to R. 

CLAIM 3. Let R be a domain with R a Prtifer domain, and let P be a prime 
ideal of R. If Q is a non-zero prime ideal of R[X,] with Q C P[X,], then Q n R # 0. 

Proof of Claim 3. We proceed exactly as in the proof of (6) 3 (3) in [6, 
Theorem 19.151, using claim 2 and omitting the assumption that R is integrally 
closed. Thus, assume there is a non-zero prime ideal Q of R[X,] with Q C P[X,] 
and such that Q n R = 0. Then R is a subring of the domain R[XJQ = R[x], 
where x denotes the image of Xi modulo Q. Since Q # 0, x is algebraic over R. 

Let M be any of the prime ideals of R[X,] properly containing P[X,] such 
that M n R = P. Set PO = P[X,]/Q and M, = M/Q. Then P, and M, are 
distinct prime ideals of R[x] lying over P such that P,, C M,, . There is a valuation 
overring W of R[x] containing prime ideals PI and MI lying over P, and M, , 
respectively. Let K be the quotient field of R, and let V = K n W. Then V is a 
valuation overring of R and since R[x] is algebraic over R, PI n K and MI n K 
are distinct prime ideals of V [6, Theorem 19.161. But PI n K and MI n K 
both contract to P in R, contradicting claim 2. 

Now let Q be a prime ideal of D[X,] such that Q C P[X,]. Let Q,, = Q n D. 
Set R = D/Q,, , P’ = P/Q, , and Q’ = Q/Qa[Xr]. By claim 1, R is a Priifer 
domain. Now Q’ is a prime ideal of R[X,] such that Q’ C P’[X,]. Since Q’ n R=O, 
it follows from claim 3 that Q’ = 0, and hence that Q = QJX,]. Thus every 
prime ideal of DIXJp[xl~ is the extension of a prime ideal of D, , and therefore 
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DIXJPIx,I has a finite number of prime ideals. This completes the proof of 
Theorem 2. 

Remark 1. It would be nice to remove hypotheses (i) and (ii) from Theorem 
2, but an examination of the proof shows that a key feature is the interplay 
between (i) and (ii) in order to verify the hypotheses of Theorem A of [IO]. 
A thorough inspection of the proof of Theorem 2 shows that our assumption 
(ii) really emanates from [l, Ch.IV. Cor. 2.71. Thus, one might omit (ii) if one 
could prove an analogue of [I, Ch.IV, C or. 2.71 free of dimension restrictions. 
On the other hand, (ii) could be replaced by the assumption that D is finite 
dimensional if it were true that whenever R is a finite dimensional quasi-local 
domain whose integral closure is a Priifer domain, Spec R is finite. That this 
need not be the case was shown to us by W. Heinzer. To wit, let K be an alge- 
braically closed field with X and Y indeterminates. Let Ir be a discrete rank two 
valuation domain of the form K + N on X(X, Y). Denote by L the algebraic 
closure of X(X, Y) and by D* the integral closure of V in L. If &’ is the inter- 
section of the maximal ideals of D*, then D = K + JZ is the desired example. 
The reader desiring further details should consult [9, p. 61. 

Remark 2. By means of Theorem 2 we can construct for each positive 
integer m a non-normal domain D, of dimension m such that finitely generated 
&[X, >..., X,1-modules are extended for each positive integer n. In fact, we can 

arrange to have (DJ not finitely generated over D,,, . Specifically, let L be a 
field containing a subfield K over which L is infinite algebraic and choose an 
m-dimensional valuation ring of the form L + M. That D, = K + A’ is the 
desired example follows from Theorem 2 and the second part of Proposition 1 
proved in the sequel. 

Obviously, hypothesis (ii) of Theorem 2 holds when the domain is one- 
dimensional. In fact, if D is a one-dimensional Noetherian domain, D satisfies 
hypotheses (i) and (ii). This makes the following theorem immediate: 

THEOREM 3. Let D be a one-dimensional domain. If D is a Prufer domain, 
then finitely generated projectiwe D[X, ,..., X&modules are extended for any 
positive integer n if and only if D is seminormal. In particular, if D is Noetherian, 
then finitely generated projective D[X, ,..., X&modules are extended for any 
positive integer n if and only if D is seminormal. 

The two main results of [5] were Theorems 4.7 and 5.4. It is clear from 
Theorem 1 and Endo’s Theorem 4.1 that seminormality and Endo’s weak 
normality coincide. Consequently, Theorem 3 extends Endo’s results to poly- 
nomial rings in an arbitrary number of variables over any one-dimensional 
Noetherian domain. 

A natural way in which one-dimensional Noetherian domains arise is as the 
coordinate rings of irreducible affine curves. We now address ourselves to 
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determining those plane curves whose coordinate rings are seminormal. Toward 
this end we prove a result which will give a condition for a one-dimensional 
quasilocal domain to be seminormal. 

PROPOSITION 1. Let (D, A) be a quasi-local domain with C the conductor 
of D in D. Then 

(1) If D is seminormal, then C is a radical ideal of D. Furthermore, if D 
is one-dimensional, then C = 0 or C = A. 

(2) If A is a radical ideal of D, then D is seminormal. 

Proof. (1) If D is seminormal, then C is a radical ideal of D by [14, Lemma 
1.31. If moreover, D is one-dimensional with C # 0 and if A!’ is a maximal 
ideal of D, then A’ 2 A 3 C. Thus, since C is a radical ideal of D and since D 
is one-dimensional, C = n{A’ 1 A!’ is a maximal ideal of D}. It follows that 
C=CnD=(n@IA’maximalinD}nD=A. 

(2) Suppose that Az’ is a radical ideal of D and let a E D with a2, 013 E D. 
If ti2 $ A, then 01 = a-2o1a E D. If a2 E A, then since A is a radical ideal of D, 
ffEA_CD. 

COROLLARY 1. If (D, A) is one-dimensional quasi-local domain with D a 
finite D-module, then D is seminormal if and only sf A! is a radical ideal of D. 

Remark 3. Let L be a field algebraic over a proper subfield K and let t be 
transcendental over L. If V is a one-dimensional valuation domain of the form 
L(t) + A!, then the domain R = L + A is a one-dimensional quasi-local 
integrally closed domain which is not a valuation domain. Moreover, R is the 
integral closure of the domain D = K + J% and by Corollary 1, D is seminormal. 
Thus, even in the one-dimensional case, seminormality does not imply Priifer 
normalization. Note that our results do not apply to the domain D. 

We come now to the promised characterization of “seminormal” plane curves. 

PROPOSITION 2. (cf. Salmon [13]). Th e coordinate ring of an irreducible 
afine plane curve over an algebraically closed field K is seminormal if and only rf 
each of its singularities is an ordinary double point. 

Proof. We sketch a proof shown to us by Bill Heinzer. If the curve has a 
singularity, we can take it to be at the origin. 

Thus, let D be the local ring of an ordinary n-fold point at the origin, say 
D = ([X, Y])cx,Y,/(f ), where f has leading form nr=r(X - a,Y) with the a,‘s 
distinct. Then in K[[X, Y]], the completion of (K[X, Y])(,,r) , f factors as a 
product of n distinct power series each of order one. Thus, D has n distinct 
maximal ideals ~?r ,..., J?~ [ll, p, 1391. Moreover, the conductor C factors 
as C = 2F-l 1.. A?,“-‘. To see this, note that since the conductor lifts to the 
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completion, it suffices to prove it in K[[X, Y]]/(f). But this is a subring 
of a direct sum of tl copies of K[[T]] for an indeterminate T. Hence, by 
Corollary 1, D is seminormal if and only if n = 2, that is if and only if the 
origin is an ordinary double point. 

If the origin is a non-ordinary singular point ,then D has the form 
(K[X, Y])(,,,J(f) where f has leading form n,r”_i(X - aiY)ed and ei > 1 for 
somei. An argument similar to the one above shows that the conductor of D 
in D is not a radical ideal of D and so D is not seminormal. 

This completes the proof. 
We remark that Bombieri [3] has proved in more or less the same fashion the 

general case of Proposition 2. More precisely, he has shown that an algebraic 
curve is seminormal if and only if its singularities are multiple points of multi- 
plicity n with distinct tangents and tangent space of dimension n. Nevertheless, 
since our subsequent applications will be to affine plane curves, we felt that a 
proof in that case should be included for completeness. For a more compre- 
hensive discussion of the results of Bombieri and Salmon, see E. Davis’ paper 

[41* 
The following theorem is a geometric corollary to the above work. By assuming 

Bombieri’s result, we can give the theorem its full strength. 

THEOREM 4. Let C be an irreducible afine curve over an algebraically closed 
field K. Vector bundles over C x AO; are extended from vector bundles over C for 
any positive integer n if and only if every singularity of C is an ordinary multiple 
point at which the tangent space has dimension equal to the mult$licity. 

Theorem 4 renders a wealth of examples available to us. We focus on two. 
The curve y2 = x3 has a cusp at the origin and no other singularities, It is thus 
the simplest example of a non-seminormal plane curve. This undoubtedly 
accounts for its recurrence when an example of a projective D[X$module not 
extended from D has been sought. The curve y2 = x2 + x3 has an ordinary 
double point at the origin as its only singularity. Its coordinate ring is therefore 
an example of a non-normal noetherian domain D for which finitely generated 
D[X, ,..., X,1-modules are extended. 
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