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Abstract 

Possible definitions of the long range dependence (LRD) of a stationary point process are 
discussed. Examples from the standard queueing literature are considered and shown to be 
amenable to yielding processes with long range count dependence. In particular the effect of 
the single-server queueing operator, whereby one point process is transformed into another via 
the mechanism of a simple queue, is examined for possible long range dependence of both the 
counting and interval properties of the output process. For an infinite server queue, the output 
is long range count dependent if and only if the input is long range count dependent, q 1997 
Elsevier Science B.V. 

1. Introduction 

L o n g  r a n g e  d e p e n d e n c e  (LRD) of a s t a t ionary  s tochast ic  process IX,,: 

n 0, + 1 . . . .  ] is usual ly  defined in terms of its second order  proper t ies  (Beran, 1994, 

Ch. 1): assuming  that  X ,  has finite second moment ,  ~X,,~ is said to be L R D  if the 

var iance  of the sample  mean  of n consecut ive observa t ions  grows more  slowly 

a sympto t i ca l ly  than  a sequence of independen t  ident ical ly  d i s t r ibu ted  (i.i.d.) observa-  

tions, i.e. if 

v r . . . .  X i )  a t L i =  1 
lim - ~,. (1.1) 

n ~ * I 1  

A sufficient cond i t ion  for (1.1) is that  l i m , ~ .  3~i" t cov(Xo,  Xi) = /_. 

Chang ing  the process  to a s t a t iona ry  po in t  process  N( . ) ,  and  first cons ider ing  for 

s implici ty a s t a t iona ry  po in t  process  on the real line, there is an immedia t e  ana logue  of 

(1.1) ava i lab le  if we descr ibe  the process  in terms of the s t a t ionary  sequence { Y,,~ of 

intervals  between poin ts  of a rea l iza t ion  descr ibed via its Pa lm dis t r ibnt ions .  
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Definition 1 (Long range interval dependence). A stationary point process N(. ) on the 
real line exhibits long range interval dependence (LRiD) when the stationary sequence 
of intervals {Y.} determined by its Palm measure is LRD in the sense that 

v a r ( ~ -  1Yi) 
lim sup - ~ .  (1.2) 

n ~ z o  n 

Within the context of 's tandard'  queueing models with a renewal arrival process 
and i.i.d, service times, we show in Section 2 that when the input process is renewal 
and therefore definitely not LRiD, we cannot induce LRiD into the output process via 
any sequence of independent service times. 

Stationary point processes are more often described via their counting properties, 
with N(A) = number  of points in the Borel set A. If we were to attempt to mimic (1.1) 
or (1.2) we should look at introducing a skeleton process like {N(nh,(n + 1)h]: 
n = 0, 1, ... } for some h > 0, i.e. the number  of points in the half-open intervals 
(nh, nh + hi, and thence at the limit behaviour of (var N(0, nh])/n. Such limit behav- 
iour is the same as that of V(x)/x where V ( x ) =  varN(0 ,x ]  denotes the variance 
function; this also points to a multi-dimensional extension as at Definition 2' later. 

Definition 2 (Long range count dependence). A second order stationary point process 
N(- )  exhibits long range count dependence (LRcD) when its variance function 
V(x) =- var N(0, x] has 

v(x) 
lira sup = ~.  (1.3) 

x ~ s c  X 

We note that a renewal process, which can never be LRiD, can exhibit long range 
count dependence (e.g. Solo, 1995, or Section 4 below). We should not be surprised at 
this statement: it is simply another manifestation of the fact that count and interval 
properties of point processes are not identical, even though the probability distribu- 
tions of stationary point processes with finite intensity are in one-one correspondence 
with the probabili ty distributions of stationary processes { Y,} whose members are 
non-negative and have finite first moment  (e.g. Section 12.3 of Daley and Vere-Jones, 
1988). 

Three illustrations of LRD properties of point processes shown in this paper  
concern the single-server queueing operator which is regarded as transforming one 
stationary point process, namely the arrival process of a queueing system, into 
another  stationary point process, the output or departure process. We consider stable 
GI /GI /1  queues, i.e. arrivals occur at the epochs of a stationary renewal process with 
generic lifetime or inter-arrival time r.v. T and i.i.d, service times with generic r.v.S. 
We have already referred to work in Section 2 where we show that the renewal 
property of the inter-arrival times, which means that the input process cannot be 
LRiD, essentially precludes its introduction into the output process, in the sense that if 
the generic member  D of the stationary inter-departure interval sequence {D,} has 
finite variance, then the sum ~ =  1 C o v ( D 0 ,  Di) converges to a finite limit as n --, oo. We 
show in Section 5 that if the input process is LRcD then the output process may also 
be LRcD, and in Section 6 that when the input process is Poisson (and certainly not 
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LRcD), the output  process can be L R c D  if the sequence of service times, regarded as 
the lifetime r.v.s of a s tat ionary renewal process, would constitute a L R c D  point 

process. 

Finally, in Section 7, we consider the infinite server queue with mean service times 

with finite first moment .  For  such a system, we show that the output  is LRcD if and 
only if the input is LRcD.  This system can be viewed as subjecting each point of 

a point  process to independent  translations, in which context there is the well known 
result (Doob,  1953, p. 405) that when the initial point process is a s tat ionary Poisson 

process, so too is the randomly  translated set of  points. 

Remark 1.1. Here is one way of extending the concept  of long range count  depend- 

ence to a point process in d-dimensional euclidean space [Ra. Call the sequence ~ A,,} of 

Borel subsets of [R '~ a convex  averaging sequence if(i) each .4,, is convex: (ii) A,, _<_ A,,+ 1 
for n -- 1,2 . . . .  ; and (iii) r(A,)  ~ ~c, as n --+ ~-~, where rIA) - sup ~r: A contains a ball of 

radius r} (Daley and Vere-Jones, 1988, Definition 10.2.1). 

Definition 2' (Long range count  dependence). The stat ionary point process N(-)  in ~'~ 

with finite second momen t  exhibits long range count  dependence when for any convex 
aweraging sequence {A,), 

var N ( A , )  
l imsup - -  - ~ ,  11.4) 

. . . .  ~ (A . )  

w h e r e / ( A )  is the Lebesgue measure of the Borel set A. 

Remark 1.2. The underlying mot ivat ion for these definitions of long range depend- 

ence stems from second order  properties over a large range of indices. But when we 

consider the notion of possible dependence of points of a point  process at large 

distances apart,  we could as easily regard the proximity of points of a process to some 

lattice, as incorporat ing dependence between the locations of points at large distances 
apart,  in the other  direction, a point  process of controlled variability, meaning, one for 

which for example vat  N(0, x] is uniformly bounded  in x, may  well be one for which 

dependence exists between the occurrence or not of points at large separation. 

2. Second moment properties of inter-departure intervals of GI/GI/I 

This section refines and complements  some work in Daley (1968), referred to as 
D68, from which results are quoted freely. The essential conclusion to be drawn from 
our  discussion is that  when the arrival process of  a single-server queue is renewal (and 

hence, cannot  be LRiD), and the service times are i.i.d., the departure  process similarly 

cannot  be LRiD. 
Start by recalling that  the independent  pair {S,} and {T,} (n = 0, _+ 1, _+ 2 . . . .  t of 

doubly  infinite sequences of i.i.d, non-negat ive r.v.s for which the generic members  
S and T satisfy ES < E T  < oo, define a s tat ionary waiting time sequence [ W,, ~, whose 
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members have the representation 

W . = s u p  S. i -  T . - i  , (2.1) 
j ~ > O  i 

for which EWn < ~ if and only if ES 2 < ~ .  Further,  a s tat ionary sequence {D,} of 

inter-departure intervals is defined by 

D, = 77, + W,+ I + Sn+ l --  W .  --  Sn = Sn+ 1 ~- (T ,  -- S, - W,,)+, (2.2) 

where the terms S, + 1 and (T ,  - S, - W,)+ are independent.  Denote  generic members  
of the s tat ionary waiting time and inter-departure processes by W and D, respectively. 

It is immediately evident that  the condi t ion ES < E T  < oc ensures that ED = ET,  

and that the produc t  moments  E(DoD,) < oc for n = 1,2 . . . .  because 

DoD, = [Sl + (To - Wo - So)+] [S ,+ l  -}- (T ,  - W ,  - S,)+] 

~ ( S I  ~- To)(S ,+I  + T,) ,  (2.3) 

which has finite expectation. Further,  ED 2 < oo if and only if both E S  2 and E T  2 are 

finite, and then by (2.2), 

v a r O  = v a t s  + var (T - S - W ) + .  (2.4) 

In D68, under  the stronger condit ion that ES 3 < 3c we showed that the result at 

(2.5) holds. 

Theorem 1 (cf. Theorem 2 of  D68). In a stationary GI/G1/1 queue with ES < E T  < oo, 

coy(Do, D,) is well-defined and finite, while y a r D  < ~ i f  and only i f  both E S  2 and E T  2 

are finite,  in which case the stationary inter-departure time sequence {D,} has 

J 
lim ~ cov(Do, Dj) = ½[var T - v a r D ] .  (2.5) 

n ~ o c ,  j =  1 

Irrespective o f  the f in i teness  or not o f  E T  2, 

J 
lira ~ cov(Do, Dj) = E W ( E T  - ES) - varS.  (2.6) 

n ~ ~ j _ 1 

Proof. The finiteness properties of cov(Do, D,) and var D follow from (2.2)-(2.4) and 
the remarks there. 

Assume for the momen t  that both  ES 2 < ~ and E T  2 < .~. Recall from the known 
relation for the mean waiting time (e.g. Eq. (2.2b) of  Daley et al., 1992) that 

var(To -- Wo -- So)+ = va rS  + var T - 2 E W ( E T  - ES), so by (2.4) the right hand  
sides of  (2.5) and (2.6) are equal. 

To prove (2.6) under  the weaker conditions, first replace the queueing system as 

described by one with the same inter-arrival time sequence but t runcated service time 
sequence {S~} -= {min(S,, K)} for some (large) finite positive K, called the K-system 
for short; denote the waiting times and inter-departure times of  the K-system by { W if} 
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and {Dr}. We now show that equat ion (11) of D68, namely that 

• cov(Do,Dfl = l [ v a r  T -- var D0] + covlTo.  W,,+ 1) 
j 1 

÷ C o v ( W  0 ÷ So ,  W n - -  W n + l )  

= E W ( E T  - ES) - va rS  + cov(To.  W n ÷  1 ) 

+ cov(Wo ~ So, W. -- W,,+ 1). (2.7t 

holds under the weaker conditions. 

First observe that the K-system r.v.s converge weakly to the r.v.s of the original 
system as K--+ ~c. Next, the covariance terms cov(D~,D~) converge because the 
products  K DoD,  are bounded  by r.v.s with finite expectations much as at (2.3). The 
terms E W  ~ and var S K converge by bounded  convergence, and bounded  convergence 

also ensures that cov(To,  W~) converges. Finally. since ]W,,.L - W,,I 

[max(&, T. .  - ~4~,,)1 ~< S,, + T., 

K K K K K I(W~ + S o ) ( W .  - W.+l ) l  <<. ( W ~  ÷ So)(S.  + Tff),  (2.8) 

so bounded  convergence also implies that the last term of (2.7) for tile K-system 
converges. Thus, (2.7) holds under the weaker condit ion that ES 2 < :~c. 

A similar t runcat ion argument  applied to the T,, shows that (2.7) also holds under 
the weaker condi t ion that  E T  2 need not be finite (but, of course, ES < E T  < -/ and 
ES 2 < 7J). 

To demonst ra te  the convergence of lhe sum on the left-hand side of (2.6). it suffices 

to show that the covariance terms on the r ight-hand side of (2.7) converge to zero as 

n-+ ~.. Recall that  the transient waiting time sequence defined by arbitrary initial 

condit ions and thereafter by the recurrence relation W , . I =  (W,, + S,, T,,)~ is 

a Markov  chain that converges weakly to a unique weak limit when ES < E T  < ~. 

Then the term E(ToW,)  converges to ET  E W  by bounded convergence as in D68. The 

last term at (2.7) equals 

- -  E [ ( W  O ~- S o ) ( W n +  1 - -  W n )  ] = - -  E[(14f  0 q- S o ) m a x ( S , , -  T, , ,  W,,)] .  {2.9) 

Recall that with U~ = S~ - Ti. W.  is expressible as 

W,, -max(O,U._ l ,U , ,  l + U . - 2  . . . . .  U,, 1@ "'" + U I , U  n l + - - .  ÷ V  I ~1~ U¢)@I4"o). 

(2.1()I 

Let S' - T '  ~ U' =~ U. be independent  of all of the sequence {U~} and W,,. Then from 

IW,,- W,+l l  ~< S, + T,, 

IE[(Wo +So) (W,+I  W,)]I -<. EE(Wo + So)(S, + 7",)] = E[(W,, + S,,)(S' + T')]. 

Using the i.i.d, proper ty  of the {U~ I (in fact, we are using the exchangeability 
property of the sequence rather than the full i.i.d, property), W, is expressible as 
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max(0, UI,  Ux + U2 . . . . .  U~ + -.. + U,), and thus the right hand  side of (2.9) equals 

- E[ (Wo + So) max(U' ,  - max(0, U1, U1 + Uz, . . . ,  U 1  ~- . . .  + Un-1, 

UI + "'" + V n - 1  + Vo  + Wo)). (2.11) 

The ergodicity of  an i.i.d, sequence like {Ui} with E U i < 0  implies that 
U1 + --- + U, ~ - oo a.s. as n ~ oo, so the inner max imum term at (2.11) converges 

~> oyez= 1U~ = say, this limit r.v. being independent  of  W0, So and pointwise to supj J W '  

U'. Then by bounded  convergence we have 

- E[-(Wo + So)max(U' ,  - W,)] ~ - E[ (Wo + So)max(U' ,  - W ' ) ]  

= - E[-(Wo + So)(max(U'  + W' ,  0) - W ' ) ]  

= -- E[ (Wo + So)](E(U'  + W ' ) +  - E W ' ) ]  = 0. (2.12) 

(2.6) is proved under  the weaker conditions. 

Remark  2.1. The proof  and result at (2.6) appear  to tie the convergence of  the infinite 

sum of covariances there to the finiteness of  EW, equivalently, ES 2, though  we have 

not  demonst ra ted  whether this is a necessary condition: this is a pointed comment  
because the finite sums in (2.5) and (2.6) do not  require the finiteness of E S  2. What  we 

can show is that  with E T  2 finite but ES 2 = oo, the r ight-hand side of(2.6) equals - oo; 

i f E T  2 = ~ a s  well we have not  been able to determine whether this last statement still 

holds. 

Remark  2.2. If the mean  waiting time is finite, the infinite sum of the covariances of  

interdeparture intervals is finite, even if the intervals have infinite variance. Thus, the 
ou tpu t  process of a s ta t ionary GI / GI / 1  queue with E S  2 and E T  2 both  finite, can never 

be LRiD. 

Remark  2.3. For  a single-server queue with s tat ionary inter-arrival sequence {T,}, 
not  necessarily a renewal process, and i.i.d, service times {S,}, with 0 < ES < E T  < oo, 

Eqs. (2.1) and (2.2) cont inue to define s tat ionary waiting time and inter-departure time 

sequences. Indeed, (2.2) extends to 

T o +  "'" -}- T n - I  + Wn-}- S n =  Wo-}- So + Do + "'" + Dn 1. (2.13) 

When 

E T  2 < oo, E S  z < oo and E W  2 < or, (2.14) 

the s tat ionary sequence {D,} has finite second moment ,  and by taking second 
moments  in (2.13) and using the Ca uc hy -Sc hwarz  inequality, it is not  difficult to prove 
that {D,} is LRiD if and only if {T,} is LRiD. In other  words, the output  of  
a s tat ionary G/GI /1  queue satisfying the condit ions (2.14) is LRiD if and only if the 
arrival process is LRiD. 
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3. Stationary point processes: the variance function and establishing LRcD 

We turn now to quest ions of LRcD.  We start  by recalling that  the covar iance 
density function e( ' ) ,  when it exists, is related to the variance function V(- ) via 

f -~x( x V ( x ) = m x  + - lu l )e(u)du (x >~O), (3.1~ 

where m = EN(O, 1] >~ 2 and 2 is the intensity of N( .  ) (e.g. Section 10.4 of Daley and 
Vere-Jones,  1988). In the examples  we consider here, N ( . )  is always orderly so in - ,;. 

When  c ( ' )  exists, (3.1) implies that  c(x) = ½V"(x) for x > 0. 
For  the examples  of long range count  dependence that  we give, wc use the 

Laplace Stieltjes t ransform (L-ST) v( ' )  of V( .  ) defined by 

I[ v(s) = e ~-~dV(x) (Re(s) > 0); t3.2t 
) 

v(s) is well-defined on R e ( s ) >  0 because V(x) is of bounded  var ia t ion on finite 
intervals and at mos t  O(x  2) for large x. It is a s tandard  Abelian proper ty  of L-STs that  

for any 7 ~> 0 and any constant  C, 

limsupls'v(s) - C] <~ lim sup V ~ )  F(I  + ? ) -  C , {3.3) 
slO x ~  ~c X; 

where F denotes  the g a m m a  function (e.g. Widder,  1946, p. 181). Consequent ly ,  

V(x) 
limsuplsv(s)[ = oc implies lim sup ~ = -  = ~7,, {3.4) 

slO x~</  X 

i.e. the point  process with var iance function V is LRcD.  
We shall typically use distr ibution functions (d.f.s) that  have regularly varying tails 

(see Section 4 and the Appendix),  and deduce that  v(s) ~ As-"(s],O) for some positive 
A and 1 < c < 2. If we also knew that  V(x) is ul t imately mono ton ic  then we should be 
able to use the s t ronger  result of K a r a m a t a ' s  Tauber ian  Theo rem (e.g. Bingham et al., 
1987, Theorems  1.7.1 and 1.7.6) to conclude essentially that  V(x) ~ A'x"(x --+ f~t. 

V(x) has the spectral  representa t ion 

(sin½~°x)2 F.(&o), t~ s) 
vI:,) = L \ ) .... 

where Fu(') is the Bartlett spectrum, a non-negat ive  symmetr ic  measure  that  is finite 
on bounded  sets but  not  totally finite. For  a Poisson process at rate 2, Fu equals 2/2r~ 
times Lebesgue measure,  while for a determinist ic point  process with inter-point  
distance equal  to 1/2, FB has mass  22 at each of the points 2rc).j (,j = ± 1, + 2 . . . .  t. 
Eq. (3.5) implies that  the L-ST v(sl satisfies 

f f '  ~ 4FB(&o) 2ru(dcv) _ 2s 2 F B ( [ 0 } ) +  . (3.6) 
v(s) = e-~: 'dV(x)  = JR $2 q- (02 ~ - - ~  

JO + S" q-  (.,)- 
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Example  (Cox process). The variance function V(" ) of  a doubly  stochastic Poisson or 
Cox process driven by a second-order  s ta t ionary  process or r a n d o m  measure  with 
mean  m and variance function VD('), is given by 

V(x)  = VD(x) + mx (3.7) 

(see e.g. Exercise 11.2.2 of  Daley and Vere-Jones,  1988), so it is L R c D  if and only if 
lira supx .  ~ VD(x)/x = ~ ,  i.e. if and only if the driving process is LRD.  

Note: The spectral  measures  G of Daley (1971) and FB ----- F in equat ion  (11.2.3) of 
Daley and Vere-Jones (1988) are related by G({0}) = FB({0}), G(A) = 2F~(A) for Borel 
A c (0, ~). 

4. A renewal process can be L R c D  

In this section we consider a renewal process for which the d.f. F( .  ) of the lifetime 
r.v.s has finite mean/~ = 1/2 and a regularly varying tail of order - c where 1 < c < 2, i.e. 

1 -- F(x) = x-CL(x)  (x > 0), (4.1) 

where L(x)  is a function slowly varying at infinity (SV function); see the Appendix.  
Renewal theorems for F ( ' ) ,  1 < c < 2 were obta ined  by Teugels (1968) who also 
examined the infinite mean  case 0 < c ~ 1 but this will not be considered here. 
Teugels showed that  the renewal function satisfies 

x 2 - c L ( x  ) 
H(x)  -- x/l~ ~/22(  c _ 1)(2 -- c) (x ~ ) ,  (4.2) 

so by (4.4) and Propos i t ion  1.5.8 of B ingham et al. (1987), the var iance function 
satisfies 

2x 3-~L(x) 
V(x)  ~/~3( 3 _ c)(2 - c)(c - 1) (x --, oc). (4.3) 

Thus,  l i m x ~  V(x) /x  = oc, as required for L R c D  at (1.3). References to and applica-  
t ions of  Teugels '  results are also in Bingham et al. (1987) (see Section 8.6 and references 
therein) and in Solo (1995) who considered the par t icular  case 

1 -  F ( x ) ~ d C x - "  (x ~oo)  

for some c in 1 < c < 2; he showed by differentiation of (4.2) that  the covar iance 
density satisfies 

c(x) ~ dCx 1 -c/[it3(c - 1)3, 

as is consistent with (4.3). O u r  Theo rem 2 below restates Teugels '  result (4.3) but  gives 
ano ther  p roof  using the LS-T and (3.4) instead, because we want  the intermediate  
result at (4.7) for use in Sections 5 and 6. 
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Theorem 2. A s ta t ionary  renewal  proeess fl)r which the I{]~'time d f  F has a re,qularly 

varying tail as at (4. l ) , for  some 1 < c < 2, is L R c D .  

Proof. Let V denote the variance function of a s tat ionary renewal process whose 
lifetime d,f. F has mean 1/5. and F(0 +)  = 0. Then 

x 

V(x) = ,;.x + 2 [H(x) - ,;.x] dx. (4.41 

where H is the zero-deleted renewal function, and the L-ST t: of V is given b~. 

½(st:(s) ).) _ q~(s) ;. (4.5) 
1 - ( p ( s )  s '  

where {p(.) is the L-ST of F. For  a d.f. F satisfying (4.1), Lemma A.I shows that its 

L-ST {p is expressible 

O(s) = 1 - s / ; ' .  + A c s " L ( l / s ) [ l  + o(1)] (s,LO), (4.6t 

where A~. = F(2 - c)/(e - 1); substitution in (4.3) gives 

1 - s/), + A,,s 'L(1, 's) ), 
½ts~:{s)- ;.) = 

s/)~ -- d,:s"L(1/s) s 

- / L [ 1  - s/,:, + o(s)](1 + ).A~.s c ~L(1/'s)[1 + o(1)]) - 1] 
S 

= [),A,.s c 1L(l.,,s)[1 + o(1)]].  
S 

Thus st:(s) = O(s" -2L(1 / s ) )  (s+O), so Isv(s)l ~ ,~ as s i0 ,  which suffices by (3.4) to prove 

the theorem. 

Remark  4.1. We note for later use that the essence of this proof  is the demonst ra t ion 

thal 

sq~(s)/,;. 1 = ) A c s ~ - ~ L ( l / s ) [ l  + o(1)] (s,L0). (4.7) 
1 - ~p(s )  

We could have deduced this via properties of the L-ST of the SV property' at (4.3t. 

5. The output of GI/M/1 can be LRcD 

Theorem 3. I f  the renewal  input process  o f  a s ta t ionary  G I / M / I  queue has generic 

inter-arrival  t ime T f o r  which 

P r ~ T  > x l  = x - ' L ( x )  (x > 0 )  15.1) 

f o r  some c in 1 < e < 2 and L(" ) a S V  junc t ion ,  then the output  process  o f  the queue is 

L R c D .  
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Proof.  Daley  (1976) showed that  the variance function V ( ' )  of the output  count ing 
process of  a GI /M/1  queue has L-ST v(s) = J'o e sxdV(x) given by 

½ s ( s v ( s )  - ;0  = 2~(`5  - p )  + 
2/~2(1 -- `5)[1 -- w(s)] [kt`5(1 -- ~(s)) -- sa(s)] 

I s  + ~ (1  - w ( s ) ) ]  I s  - ~ ( 1  - `5)] (1 - :~(s)) 

(5.2) 

(l -- `5)E1 - w(s)] [ s~(s) 
= 2/~(`5 - p) + 2/~ 2 [s +/~(1 - w(s))] [s - /~(1  - `5)] /uS I - c~(s)]' 

where c~(s) is the L-ST of the interarr ival  times, ,5 is the root  in (0, 1) of`5 = ~(#[1 - `5]), 
/t is the service rate and  w(s) is the solution of the equat ion  

(5.3) w ( s )  = ~ ( s  + u [ 1  - w ( s ) ] )  

satisfying w(s) ---, ̀ 5(s$0). This function w(s) is the par t icular  case `5(s, 1) of  the general 
solution z = `5(s, w) of the equat ion  z = w~(s + /~[1  - z]) as in Takacs  (1962, p. 113). 
According to Takacs '  L e m m a  1 there, w(s) is the unique root  satisfying ]w(s)l < 1 for 
Re(s) >~ 0 because the queue G I / M / 1  is assumed to be stable. A power  series solution 
in terms of s is possible (because ~( .)  is analytic within the r ight-half  plane), so w'(0 + )  
certainly exists, with 

~ ' ( ~ , U  - `53) 

1 + . ¢ ( , [ I  - @ '  
(5.4) w'(O + ) = a'(/~[1 -- `5])(1 - /~w' (O +))  = 

subject of course to 1 ~ - / ~ e ' ( / t  [1 - `5]), which holds because otherwise the solution 
is not  unique. 

Refer to (5.2), and  consider  first the term 

(1 - `5) [1  - w ( s ) ]  
(5 .5 )  

(s + ~ [ 1  - w ( s ) ] ) ( s  - ~ [ 1  - 6 ] )  

F o r  s --* 0 this converges  to - l/]l 2. In more  detail, because all terms have Tay lo r  
series expansions  a round  s = 0, the expression equals - / ~  2(1 + Cs + o(s))  for some 
finite constant  C. When  the inter-arr ival  t ime d.f. satisfies (5.1) and has mean  1/2, it 
follows that  its L-ST ~(s) has an expansion as at (4.6), so we can use (4.7) and deduce 
that  the term [ - . .  ] at (5.2) is given by 

lift sc~(s) - #6 --  2(1 + 2Acs c- 1L(1/s)[1 + o(1)]). (5.6) 
1 - -  ~ ( s )  

Combin ing  these results for the componen t s  of  (5.2) gives 

½ s ( s v ( s )  - ;o) = 2 ~ ( ~  - p )  

-- 2(1 + Cs + o(s))[/~6 - 2(1 + 2Acs c- 1L(1/s)[1 + o(1)])] 

= 23AcsC- 'L (1 / s ) [1  + o(1)] (s,~O). 
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Thus. 

sv(s) = 2fi3A, s ~ 2L(1/'s)[1 + o(1)] (s,L0). (5.7) 

Letting s --, 0 and invoking (3.4), completes  the p roof  of Theorem 3. 

6. T h e  o u t p u t  o f  M / G / 1  c a n  be L R c D  

T h e o r e m  4. I r a  s ta t ionary  M / G / I  queue has generic serz~ice time S jm" which 

Pr~S > x" I = x 'L ( x )  (x > 0) (6.1) 

for  some c in 1 < c < 2 and L(" ) a S V  junct ion ,  then the output  process ~?[the queue is 
L R c D .  

R e m a r k  6.1. T h r o u g h o u t  this section L denotes  the same SV function. 

Proof.  Daley (1976) showed that  the var iance function V(.)  of the output  count ing 
process of a M/G/1  queue has L-ST z' given by 

2s[~(s) I sH(w(s)) 1 ~s{s;~(s}- ;~) = - ,i ~ + f ~ / ~ }  1 - s + :~(1 w{s})  ' ~ . 2 )  

where [J(s) is the L-ST of the service times, )~ is the arrival rate, w(s) is now the solution 
of the equat ion 

w(s) = [J(s + 211 - w(s)]) (6.3} 

satisfying w ( s ) ~  1 (s ~ 0 )  and H( - )  is the probabi l i ty  generat ing function for the 
s ta t ionary  distr ibution of the embedded  M a r k o v  chain of the queue length just :lftcr 
a departure ,  so 

(1 - p)(1  - z)l~(,~[1 - z ] )  ~0~/S(:.~) 
H(z) = - (Izl < 1) (6,4) 

(e.g. Takacs ,  1962, Eq. (67) p. 72), where 7Zo -- 1 - p, ~ - 1 - z and p :../ll, with 11~ 
the mean  service time. 

F r o m  (6.1) and L e m m a  A.1 the L-ST [3(s) has the expansion 

[3(s) = 1 + as + A,s"L(1 /s )[1  + o(1)], (6.5) 

where a = - l i l t  and A,, as before. Appeal ing to (4.7) with [4 in place of q), the factor 
outside [ . - .  ] in (6.2) becomes  

:~s/S(s) 
-- ,2/t(1 + / tA, . s" - lL{1/s ) [1  + o(1)]). (6.6) 

1 - 1 3 ( s )  



276 D.J. Daley, R. Vesilo/Stochastic Processes and their Applications 70 (1997) 265 282 

W r i t e  the  t e rm  ins ide  [ . . .  ] in (6.2) as 

1 sn(w(s)) _ s : [  ], 
s + 211 - w(s)] 1 (6.7) s + £ Lfl(K) - 1 + 

where  n o w  ~ = 1 - w(s). L e m m a  A.2 shows  t ha t  the  func t ion  w( . )  de f ined  imp l i c i t l y  at  

(6.3) via  the  func t ion  f i(s) which  has  the  e x p a n s i o n  at  (6.5), has  the  e x p a n s i o n  

w(s)  = 1 + A s  + B A ~ s C L ( l / s ) [ 1  + o(1)]  = 1 + A s  + B ' s " L ( 1 / s ) [ l  + o(1)] ,  (6.8) 

w h e r e A =  1 / ( 2 - p ) = ( - 1 / / 0 / ( 1 - p ) ,  B = ( 1 - p ) - C  1 a n d B ' = B A ~ , s o  

= 1 - w(s)  = - s ( A  + B ' s " - l L ( l / s ) [ l  + o(1)])  

= IAls(1  - ( B ' / I A ] ) s  ~ 1 L ( 1 / s ) [ 1  + o(1)]).  (6.9) 

Us ing  (6.9) in the  i t e rm o u t s i d e  [ . . .  ] in the  r i g h t - h a n d  s ide  of  (6.7) gives 

s 1 

s + ) f  1 - -  2 A  - 2 B ' s  c -  1 L ( I / s )  [1 + o(1)])  

1 + 2B'(1 - hA) is c- ~L(1/s) [1 + o(1)]  

1 - 2A 

= (1 --  p)(1 + 2B'(1 --  p ) s C - ~ L ( 1 / s ) [ l  + o(1)]),  (6.10) 

s ince  1 - 2A = 1 + (2//0/(1 - p) = l/(1 --  p). N e x t  use the  e x p a n s i o n  of  [3 at  (6.5) in 

the  t e rm  [ . . .  ] a t  (6.7) to give 

fi(2~) - 1 + ~ ~ + a K  + ( K ) % L ( 1 / 2 ~ ) [ 1  + o(1) ]  

~o//(K) 
1 + 2a + ).A~(2() c-  ~L(1/().()) [1 + o(1)3 

_ 7to [1 - 2Ac(1  + 2a) 1 ( 2 0 C - I L ( 1 / ( 2 0 ) [ 1  + o(1)33 
1 + 2 a  

2Ac(2() c -  XL(l/(2~)) [1 + o(1)]  
= 1 --  , (6.11) 

1 - p  

s ince 1 + ha = 1 - p -- ~Zo. Because  L is a SV func t ion  a n d  2 ( / s - - - , 2 [ A ]  = p/ (1  - p)  

for  s,L0, (6.11) gives 

rc0~fl(K) 
- 1 -  

2 A c ( 2 l A l s )  c 1 L ( 1 / s ) [ 1  + o(1)]  

f l ( K ) -  1 + ~ I - p 

2A,#- ~s"- ~L(Us) I-1 + o ( i ) ]  
= 1 - -  ( 6 . 1 2 )  

( 1  - p)c 
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Substituting (6.10) and (6.12) in (6.7) gives 

srI(w(s)) l -  
s + ;~[1 - w(s)] 

- l  - ( l - p ) ( 1  + 2 B ' ( 1 - p ) s "  IL(1/s)[1  + o ( 1 ) ] )  

× ( l  . . . . .  2A"P"-'s"-iL(l/s)[l+°(1)]) 
(1 Pt" 

( )~AcpC 1 ) 
= p + \ ( ~ - - p ~ - ~  (1--p)22B ' s" 'L(1/s)[l +o(1)] 

( l - -p ' - l )2A, ,s"  ~L(1/s)[1 +o(1)] 
- P (1 -- p)" 1 16.13) 

Combining (6.13) with (6.6) as in (6.2), gives 

½s(sr(s) - 2) 

__ __ ) 2  __ 2tt(l + ItAcs" tL(l/s)[1 + o(1)]) 

I (1--p" l)/.A,,s" 1L(I/s)[I +o(l)] 1 

[ (1 1 - / ) c  1~ 
=~.2IRA c 1 p)~_ljs" IL(1/'s)[I +o(I)]. (6.14) 

Consequently, since the multiplier on the right-hand side here 
zero, so(s)= O(s"-2L(1/s))as in 
proved. 

i S  n o n -  

Section 5, and Is(~,(s/I--, ~ as s~0. Theorem 4 is 

7. Output of  G/GI/  

Recall that the point process occurring as the output of an infinite server queue is 
the same as occurs when the points of the input process are subject to independent 
translation, the translations being the service times. Suppose given an orderly station- 
ary point process with finite variance function V, Bartlett spectrum Fu and intensity ,;.. 
and let each point be subject to independent translation with a common distribution 
that has a finite first moment. Let S denote a generic translation r.v., with 
E(e i''s) = fi(o)). Then from Daley (1971) (or, exercise 11.2.4 of Daley and Vere-Jones, 
1988), the translated point process has variance function V1 say with Bartlett spec- 
trum Fm say given by 

Ful(d(o) = lfl(¢o)12FB(d(o) q- 0./2re)(1 --][~((o)12)d(o. (7.1) 
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Then from the spectral representation at (3.5) we have 

= V(x) + ix. 

This proves the sufficiency part of the next result. 

(7.3) 

Theorem 5. Let the orderly stationary point process N withfinite variancefunction and 
Bartlett spectrum r, be the input process of a G/GI/ co queue with generic service time 

S that hasjnitejirst moment, and let N1 denote the output process. Then N, is LRcD if 

and only if N is LRcD. 

Proof. If r,((O}) > 0 then TBI({O}) > 0 also, and both N and N, are certainly LRcD. 

Assume below that r,({O}) = 0. Then it follows from (7.2) that 

for any positive finite 6. Here the integral on (6, co) is dominated by 

8p 
j 

w r,(dw) 

6 0.12 ’ 

which is finite for such 6 and independent of x. Consequently, 

lim sup 
Vl (XI 
~ = 03 

X 
if and only if 

x-cc 
lim sup - 

1 j’(sirrr) 

X--cr x () 18(412rB(d4 = ~0. 

(7.5) 

Also, applying a similar decomposition to (34, 

V(x) 
lim sup __ = 

x-u3 X 
cc if and only if lim sup - 

1 j’(sirrfx) 

x+m x (J 
T,(do) = co. (7.6) 

Now 1 /I(w is continuous in w, and equal to 1 at w = 0, so we can choose 6 such that 

I,~(o)/~ > f for 101 < 6. Then for such 6, 

Appealing to (7.5) and (7.6) proves the converse of the theorem. 

Remark 7.1. The same technique of proof extends to a cluster point process N(. ) (or, 

random measure) with cluster centre process N,( .) and independent clusters ni( .) (e.g. 
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Section 8.2 of Daley and Vere-Jones, 1988), so 

N ( A )  = ~ ni(A - t~), (7.7) 
'~t,', E N~I-I 

ancl shows that, when E[(n(N)) 2] < oo, N ( '  ) is  L R c D  if and only if N~I. ) is  LRcD. 

Appendix A. Some results involving slowly varying functions 

In this appendix we record two results that  involve s lowly  carying ( S V ) j i m c t i o n s ;  

strictly speaking, we use the term SV function to mean a function L(x )  that is slowly 

varying at infinity: 

lim L ( t x ) / L ( x )  = 1 (every finite t > 0). (A.I) 

Then a function f (x )  is regularly varying of order  c if./(x) = x"L(x)  for some SV 
function L. 

The force of the first lemma is that  the Laplace Stieltjes t ransform of a d.f with 

regularly varying tail of order  - c has a power series expansion involving moments  of 

integer order  smaller than c and a remainder term that involves a SV function. 

Lemma A.I. Suppose the d f  F on (0, '~t has mean 1/)~ and that 

1 F(x)  = x - ~ L ( x ) ,  (A.2) 

where I < c < 2 and L is a S V  funct ion.  Then  the L - S T  q~ o f F  has the expansi(m 

f f  s ~p(s) = e ~dF(x )  = 1 - = + A,.sCL(1/s)[1 + o(1)] (s,L0), (A.3) 
A 

where A,. = F(2 - c)/(c - 1). 

Proof.  Using dF(x) = - d [ 1  - F(x)] and integrating by parts twice gives 

q~(s)= 1 - s  [ 1 - F ( x ) ] d x + s  2 e - ~  [ 1 - F ( u ) ] d u  dx  (Re(s)>O).  

(A.41 

f v  [ ' ~  l, ic l ) L l ( l ,  ) V I"-I~LIv) 
[1 -- F ( u ) ] d u  = x " L l x ) d x  - ~ " " ~  ~ ( v-- '  ~.t. J y c - - 1  c - - 1  " 

We use some s tandard  properties of  SV functions to deduce the behaviour  of the last 

term: specifically, we refer to Proposi t ions  1.5.10 and 1.5.8, and Theorem 1.7.1 of 
Bingham et al. (1987). When  1 - F satisfies (A.2), Proposi t ion 1.5.10 implies thal 
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Then Propos i t ion  1.5.8 implies that  

ul(x) =- foy ~c-a)Li(y)dy X2 CLl(X} xZ-CL(x) 
2 - c  ( 2 - c ) ( c -  1) 

Finally, K a r a m a t a ' s  Tauber ian  Theo rem (Theorem 1.7.1) implies that  

f o r e  sXdUl(X) ~ = AcS (s+O), 
(2-C)L(1/s)F(3 s c) 

(2-C~L(1/s) 
(2 - c)(c - 1) 

so subst i tut ion in (A.4) gives for the last term 

s 2 e ~x [ l - f ( u ) ] d u  d x = A c s C L ( l / s ) [ 1  + o ( 1 ) ]  (s+O), 
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as asserted in (A.2). 
The  other  result we need is similarly a SV function analogue of a result known 

under  more  stringent condit ions f rom work  of Takacs  (e.g. Takacs ,  1962, p. 47 and 
p. 113). 

L e m m a  A.2 (Implicit  function of a SV function). Suppose that the function f (x), defined 

for  x >~ O, has the expansion 

f ( x )  = 1 + ax + x"L(1/x)  (x],O), (A.5) 

where 1 < c < 2 and L(" ) is a slowly t, arying function, l f  ).a ¢ - I then any solution 

z = z(x) o f  the equation 

z = f ( x  + 211 - z]) (A.6) 

satisfying 

z(x) ~ 1 = f ( 0 )  (x,~0), (A.7) 

is o f  the form, for  all sufficiently small x > O, 

z = 1 + A x  + BxCL(1/x)[1 + o(1)] (x,L0), (A.8) 

where A = a/(l + 2a) and B = 1/(1 + 2a) C+1. 

Proof.  Suppose  that  z - z(x) satisfies (A.6) and (A.7). Set Z = z - 1, and consider first 
the case that  a > 0. Then, provided that  x > 2Z, 

Z = z -  l = f ( x -  2 Z ) -  l = ( x -  2Z)a + ( x -  2 Z ) ~ L ( ~ ) , ~  (A.9) 

where c and L ( ' )  are as in (A.5). Thus,  

provided x ~ )~Z (x,L0, x :~ 0), (A.10) 

(X ~ o0). 



D.,]. Dahg', R. Vesilo/Stochastic Processes and their Applications 70 (1997) 265 2~¢2 2Nl 

we can  d iv ide  by x 2 Z  an d  wri te  

. \  - -  , ; . Z  
- a + (x - 2Z)  c - t L  = a + o(1) 

Hence  

(x$O). 

x 1 - - = 2 + - -  
Z a + o(1) '  

i.e. s ince ,(a ¢ - 1, 

Z - (1 + o(1)) = Ax(1 + o(1)). ( A . I I  
l + ).a 

Such a func t ion  satisfies c o n d i t i o n  (A.10), because  if for any  x g- 0 we have x ) ,Z ,  

then z - f ( 0 )  = 1, i.e. Z = 0 = x, c o n t r a d i c t i n g  x 4- 0. 

The  case a < 0 yields Z < 0 a n d  v > ) .Z  holds  a f o r t i o r i ,  a n d  (A.11) holds  also. 

Rewri te  (A.9) as 

( ' )  (1 + 2 a ) Z  = a x  + ( x  --).Z)"L _\, ~ ) ~  . (A.12) 

Using (A.11) in the last term here yields 

( x - 2 Z ) ' = x ' ( 1 - X A [ 1  + o ( 1 ) ] ) '  x q l  - 2 A ) ' ( I  + o ( 1 ) ) -  
X c 

(I + 2a)' 
(1 ~ o ( l l )  

and  

( , ) (  1 ) 
L ~ = L  ( 1 - - 2 A ) [ I  + - o ( l ) ] x  = L ( l x l ( 1  + o ( 1 ) )  C,,L0), 

because  L { )  is s lowly varying .  C o m b i n i n g  this with (A.121 yields (A.8) as asserted. 
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