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For each positive integer n 3 1, let Z; be the direct product of n copies of Zlr i.e., 
Z;= {(alla*, . . . . a,)la,=O or 1 for all i= 1,2, . . . . n} and let {v},,, be a random 
walk on Z; such that P{ IV;;= A} =2-” for all A’s in Z; and P{ W;,, = 

(a,, a3, . . . . a,, 011 W; = (al, a2. . . . . a,)} = P{W;+, = (4, a3,..., a,, 111 W; = 
(a,, a2. . . . . a,)] = f  for all j= 0, 1, 2, . . . . and all (a,, al, . . . . a,)‘s in Z;. For each 
positive integer n > 1, let C. denote the covering time taken by the random walk 
WY on Z; to cover Z;, i.e., to visit every element of Z;. In this paper, we prove that, 
among other results, P{except finitely many n, ~2” ln(2”) < C, < d2” ln(2”)) = 1 if 
c<l<d. K:? 1988 Academic Press, Inc. 

For each positive integer n 2 1, let Z; be the direct product of n copies of 
Z2, i.e., Z;={(a,,a, ,..., a,)(ai=O or 1 for all i= 1,2, . . ..n> and let 
{IV;>,,, be a random walk on Z; such that P( W;t = A > = 2-” for all A’s 
in Z; and P( WY+, = (a,, a3, . . . . a,,, O)l WY = (a,, a,, . . . . a,)} = I’( W;+ 1 = 
(a2, a3, . . . . a,, 1 )I WY = (a,, a,, . . . . a,,) } = 4 for all j = 0, 1, 2, . . . and all 
(al, a2, . . . . a,,)% in Z;. For each positive integer n B 1, let C, denote the 
covering time taken by the random walk WY on Z; to cover Z;, i.e., to visit 
every element of Z;. In this paper, we prove that, among other results, 
P{except finitely many n, ~2” ln(2”) < C, -=z d2” ln(2”)) = 1 if c < 1 cd. 

In [2], Matthews studied a different random walk on Z;. His random 
walk can be described as follows: Let p,, be a probability measure on Z;, 
for each positive integer n 3 1, that puts mass pn on (0, 0, . . . . 0) and mass 
(1 -p,)/n on each of (1, 0, . . . . 0), (0, 1, 0, . . . . 0), . . . . (0, 0, . . . . 0, 1, 0), and 
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(0, 0, . . . . 0, 1). For each step the random walk on Z; corresponding to ,u, 
does not move with probability pn, otherwise it changes exactly one coor- 
dinate, with each coordinate equally likely to be changed. He proved that 
P{(C,-2”In(2”+‘)) 2-“6x) -+exp(-e-“) for all x if sup, p,,< 1. Our 
result is similar to his. However, his technique does not seem applicable to 
the random walk w; in this paper. A completely different method is used to 
obtain our results. 

For ease of presentation, we introduce the following fair coin tossing 
process {X,},, I as follows: (Xm)m3 I is a sequence of independent and 
identically distributed random variables such that P(X, =O) = 
P(X, = 1) = f. For each positive integer n 2 1, let 7’,, denote the first 
occurrence time such that (X,, X1, . . . . X,) contains all A’s in Z;, i.e., T, = 
inf{k [ each A in Z; appears in (X,, X,, . . . . X,) at least once}, = 00 if no 
such k exists. It is easy to see that C, = T,, - n for all n > 1. Now we start 
with the following notation and definitions. 

For each element A = (a,, a,, . . . . a,) in Z;, the positive integer i 
(1 <i<n) is called a period of A if (a,, a,, . . . . ~,-~)=(a,+,, ai+2, . . . . a,). 
Let rA denote the minimal period of A which is defined by zA = 
minti) 1 <i<n and i is a period of A}. 

LEMMA 1. For any two elements A and B in Z;t und any positiue integer 
m, P{(X,, x2, . . . . X,,,) contains A} 6 P{ (X,, X,, . . . . X,n) contains B) g 
t, < sfj. 

Proof See page 186 of [ 11. 

LEMMA 2. For any element A in Z; and 7A 2 k, then { 1 - n2-k}(n + 1) 
x2-“6P{(X,,X, )...) X,) contains A} <(n + 1) 2-“. 

Proof For each integer i = 1, 2, . . . . n + 1, let Ej = {(Xi, Xi+, , . . . . 
Xi+,,- ,) = A}. Then P{ (X,, X,, . . . . X,,) contains A} = P{ u:T; Ei}. By 
Lemma 1, we only have to consider the case when rA = k. Now if 
rA = k, then it is easy to see that Ei and Ej are disjoint if (i-j] <k. 
Hence C:zr’ P(E,) 2 P(U;=+,‘Ei) B C;=+,’ P(Ej)-C,Gi,ic,,+, P(E,nEj). 
Therefore, { 1 - n2-k}(n + 1)2-” < P{U;z: Ei} i (n + 1)2-“, since 
P(E,)=2-” and P(E, CJE~)<~--“-~ for all kf 1 <j<n+ 1. 

LEMMA 3. For any element A in Z;, ((n+1)/2) 2-“<P{(X,, X,,..., 
X,,) contains A} < (n + 1) 2-“. 

ProoJ Let A,= (0, 0, . . . . 0) be the unit element of Z;. Then, by 
Lemma 1, P{(X,, X,, . . . . X,,,) contains A} 3 P{ (X,, X,, . . . . X,,) contains 
A,). Now it is easy to see that P((X,, X,, . . . . X,,) contains A,} = 
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((n+ 1)/2)2-“.Therefore, ((n+ 1)/2)2-“GP{(X,, X2, . . . . X2,)containsA} 
< (n + 1) 2-” for any element A in Z;. 

LEMMA 4. For any positive integer m and any element A in Z; such 
that ~,>k. Then P((X,,Xz,...,X~,+,,,) contains A)am(n+l)2-“(I- 
F12-k -((n+1)2-“)“*-+m(n+1)2-“}. 

Proof For each positive integer i = 1,2, . . . . m, let Bi be the event that Bi 
occurs if (X(i-l)n+l, Xci--ljn+2, . . . . Xti+ ,) n) contains A. It is easy to see 
that WG, X2, . . . . J&,+I~n) containsA)=P{lJ~~iBi}>/~~~lP(Bi)- 
C,Gi<icmP(BinB,) = mP(B,)-(m-l)P(B,nB,)-f(m-l)(m-2)x 
P2(B,), since B, , B,, . . . . B, are exchangeable and Bi, Bj are mutually 
independent if (i--j1 > 1. Now by the lemma of [S, p. 2781 and Lemma 2, 
we have Lemma 4. 

LEMMA 5. For any positive integer m and any element A in Z;. Then 
wG~ x,7 se.7 X(m+ I)J containsA}>+m(n+l) 2-“(l-2((n+1)2-“)I” 
-m(n+ 1)2-“}. 

Proof: Similar to the proof of Lemma 4; use Lemma 3 in the final sub- 
stitution. 

For each positive integer k = 1, 2, . . . . n, let nk = card {A (A E Z!j and 
r, = k}. It is easy to see that nk < 2k for all k = 1, 2, . . . . n. 

LEMMA 6. C,“=, P(T,>d2”ln(2”)}<oo ifd>l. 

Proof: C,“=l P{Tn > d2”W”)j GX,“=I C;= 1 P((X,, X2, -., Xd2nl,,2n,) 
does not contain 

Alt,=k}s f 2k 
tZ=l 

1-~(n+1)2~n(1-2((n+1)2-“)‘~2 

Cd2” In(2)/(m + 111 

-m(n + 1) 2-” 

+ f 2” 
i 

l-m(n+l)2-” 
( 

1-n2-k-((n+1)2-“)1/2 
n=l 

-+m(n+ 1)2-” 
>I 

Cd2” In(2)/(m + 1 )I 
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It is easy to see that if k < 2 In(n), then 

f 2*{*-3 n+1)2-“(l-2((n+1)2-“)‘I2 
n=l 

, Cd” h(Z)/(m + 1 )I 

-?n(n+ 1)2?) 
1 

<cc1 

if md>m + 1; it is possible since d> 1. Now since n2-k -+ 0 as n --+ co if 
k 3 2 In(n), there exists an n, such that if n > n, and m <<n, 
n2-k +((n+1)2-“)‘/2-t$m(n+1)2-“<~, where (I-s)d>l. Hence 

c i 
O” 2” l-m(n+l)2-” 

( 
l-n2-k-((n+1)2-“)“2 

n=l 

<p+‘+ c 2”{1-(1-E)mn2-“}[d2”ln(2)/(m+1)1 

n > no 

?.&yo+ 1 + 1 ye-C&l -E)rnnln(2)/(rn+ 1,l < co 

n z no 

if d(1 -.s)m>m+ 1; 

it is possible since d( 1 -E) > 1. The proof of Lemma 6 now is complete. 

Now we are in a position to state and prove our upper bound for the 
covering time C,. 

THEOREM 1. P( C, > d2” ln(2”) on& finitely often} = 1 for any constant 
d> 1. 

Proof: Since C, = T, -n for all n = 1,2, . . . . C,“= i P{ C, > d2” ln(2”)) < 
C,“=, P{ T, > d2” ln(2”)) < 00 if d> 1. By the Borel-Cantelli lemma, we 
have P{ C,, > d2” ln(2”) only finitely often} = 1 for any constant d> 1. 

With respect to the fair coin tossing process (X,,, I,,,> 1, we define a new 
sequence ( L L r 1 of random variables as follows: For each positive 
integer m > 1, Y, = 0 or 1 according to (Xi, X,, . . . . X,,,+n--2) contains 
(~,,~,+1,...,~,+,-,) or not. For each positive integer n 2 1, let Sr = 
~~ 1 Yi. It is easy to see that Szn = card { IV;;, W;, . . . . FV;,- i } is the number 
of distinct states which the random walk WY visited before the 2”th step. 

LEMMA 7. lim,, m E(S,n) 2-” 3 (e - 1)/e. 
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Proof. To show that lim, _ o. E(S,n) 2-“2 (e- 1)/e, it suffices to show 
that lim, _ oo E(S,n) 2-“>(e- 1)/e-E for any E>O. 

Let m be a fixed positive integer and c = [2”/(mn)] be the largest integer 
<2”/(mn). Since 0 < E( Yi) < 1 and is non-increasing in i, mn c;=, 
E(Yj~,+1)~E(S2n)~mnCf=,E(Yj~,+,). Since mn {C;=,E(Yi,,+I)- 
IX;=, EU’,m,+,)) = mnE(Y,) = mn, lim,,, 2-“mn XT=1 E(Y,,+,) = 
lim, + co 2-“E(S,n) = hm,, u) 2-“mn cjzO E( Yj,, + 1). Hence it is sufficient 
to show that lim,,, 2-“mn~;=,E(Y,,,,+,)>(e-1)/e-c for any E>O. 

By the definition of Yis, it is easy to see that E( Yi,,+ I) = 
P(Y~,,+,=l)=CAEZqP{(X,,XZ,..., Xjmn+n-,) does not contain A and 
(Xl,,,+ 19 Ximrr+zr --, Xjmn+n) = A} > CAEz;P{(X15 Xz5 -.) Xjmn) does not 
contain A and (Xjm,,+,, Xjmn+Z, . . . . X,mn+,,)=A)-n2~“3CABZ; 2-“x 
m7:d~~,,-,,m,+,~ xti- ljmn+2, . . ..X.,,) does not contain A]} -jnZ--’ 3 
(l-mn2-“)‘-jn2-” for all j=O, 1,2,...,c. Hence ~f=oE(Yjm,+,)>, 
C;=. ((I - mn2 -n)j - jn2-“} = 2”(mn)-’ {l - (1 - mn2-“)“+ ‘} - 
n2~“{c(c+1)/2}.Therefore,lim,,,2~”mn~~~oE(Y,,,+,)~lim,,,{{1- 
(1-mn2~“)“~‘}-(n/2)2~“(2”/mn+1))=(e-l)/e-1/2m.Sincemcanbe 
as large as possible, lim, _ ‘-. 2 -“mn J$‘= o E( Y,,, + , ) >/ (e - 1 )/e - 6 for any 
E > 0 and it completes the proof of Lemma 7. 

LEMMA 8. lim,,, E(S,n) 2-“< (e- 1)/e. 

Proof: By a similar argument used in the proof of Lemma 7, it is 
sufficient to show that lim, _ ~ 2-“mn c;.‘= o E( Y/,, + ,) < (e - 1 )/e + E for 
any ~‘0. NOW 
does 

E(Y,,+ 1) = f’( Y,,,+ I= 1) <LeqP{(XI, X2, . . . . xi,,) 
not contain A and (X,, + 1, Xi,,, + , , . . . . Ximn +,,) = A } 6 

Cnk=, nk2-“P{fI;=, C(X,i- ljmn+ 1, XC,- l)mn+2, . . . . X,,) does not contain 
AIT4 =k}=C;=,2-“nk{P((X,, X,,..., X,,) does not contain A))‘. 
Now for sufticiently large n and k >/ 2 In(n), P{ (X,, X1, . . . . X,,) does not 
contain AJz,=k)<(l-mn2-“(l-c)). Since n;<2’, CF==, n,2-“+O 

;Y. 
n-+m if k < 2 In(n). Hence, for sufficiently large n, 

,,,+1)<(1-mn2-“(1-~))i+~. Therefore, 2-“mn~f=,E(Y,,,+,)< 
2-“mn~f’=,(l-mn2-“(1-s))j+s= 1-(1-mn2-“(1-s))C+1+s+1- 
e - ‘A -&) + E as n -+ co and it completes the proof of Lemma 8. 

For each positive integer k = 1, 2, . . . . let A$ = { WY 1 (k - 1) 2” < t < k2”}, 
9%=iJikc1A,, 9k=Z;-93k, and Ek=SQk--&,. 

THEOREM 2. For all k = 1, 2, . . . . 

(i) lim,,, 2-“E(card(&)} = 1 -e-l, 

(ii) lim, _ o. 2-“E(card(SI$)) = 1 -ePk, 

(iii) lim, _ m 2-“E{card(&)} = eek. 
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Proof: By the fact that card(dk) has the same distribution as of S,n for 
all k = 1, 2, . . . . Now, by Lemmas 7 and 8, we have (i). 

By the fact that W; and WY, are independent if 1 t - t’ ( 2 2 and (i), we 
have (ii). 

By the fact that gk n 5S?k = a, Z; = & u gk, and (ii), we have (iii). 

In order to obtain the lower bound for the covering time C,, we have to 
estimate the asymptotic upper bound for the variance of card(gk) for all 
k = 1,2, .._ . We start with the following lemmas. 

For each pair (i,j) of positive integers, let sii= 0 or 1 according to 
(Xi, x;, 1, . . . . Xi+n--l)f;(Xi,Xj+l,...,Xj+n~,) or (XitXi+,I,...,Xj+n--l)= 
Cxj9 xj+ 1 Y ...v Xi+ n _ ,). For each positive integer N> n, let Qn, N) = 
Cl<icj<N q E.. and for each positive integer n, let t, = sup{NI N> n and 
g(,, N) = O}. It is easy to see that c(n, N) is the number of recurrences in 
N+ n - 1 trials and t, is the number of trials before the first recurrence. 
The next lemma is a special case of Theorems 1 and 2 of [3]. 

LEMMA 9. Zf N+ oc, andn varies so that (i) (:)2-“-‘--+A>0 and (ii) 
n’N2-” -+ 0 for all t < co. Then 

(1) E{ zrtn. “‘} -+exp{A(Z- l)/(l -+Z)), 

(2) P{t,>x2”/*) +e -.“. 

Proof See pages 172-179 of [3] 

For each positive integer k = 1,2, . . . . we define a finite sequence (z” Il< 
i<card(&)) (probably empty) of hitting times of gk as follows: r’; = 
min{t( W;E~~, k2”gt<(k+1)2”),= cc if no such t exists, and for each 
j = 2, 3, . . . . card(&), r,k=min(t] W;E$, tr-,<t<(k+1)2”},=ac, if no 
such t exists. Let Yk = (z:) i= 1,2, . . . . and 7: < cc >. It is easy to see that 
E k+l= {wp% Vk). 

If E, + , # @, we define a finite sequence (Zf ( 1 < i < card( Ek + , ) } of ran- 
dom variables as follows: Zi = 1 and for each i = 2, 3, . . . . card(E, + , ), Z: = 0 
or 1 accordingas qf~{v;ll<j<i} or v;${q;[l,Cj<i}. It iseasy 
to check that S(Ek + i) = Czy(Ek+ 1) Zf = C(i:$:“, Y, is the number of new 
states which the random walk W; visited between the (k2”)th step and the 
((k + 1) 2” - 1 )th step. 

LEMMA 10. Var( S( Ek + 1 )) d am-- ’ card( E, + , ) for some constant a > 0. 
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Proof. 

Var(S(E,+ ,)) = Var (=I!+” Z”) 

= 1 Var(Zf)+ C Cov(Zr, Z,“) 
I=1 i+j 

card(&+I) 
= 1 {P(Zf= l)-Pyz:= l,} 

1= 1 

+ C {P((Zf= l)n(Z;= 1)}-P(.Zk= l} P{.Zf= l}}. 
i#/ 

Since Zl;, Zl;, . . . . are O-l random variables, Var(Zf)<t. Since the dis- 
tribution I$$ is independent of y; if 1 i -jl L n, P{ Zf = l( Zf = 1 } 6 
P(Z,k=l)Z)=O}+n2-” (by Lemma9) as n-+cc and j>i+n. 
Hence Ci+jCOV(Z~,Z:)=Cli-j)<,t cov(z~,z~)+~,i~j,..cov(z~,z~) 
< (n/4) card(Ek, ,) + (n/n2-“) card’(E, + ,). Since card(Ek + ,) < 2”, 
Var(S(E,+,))<ancard(E,+,). f or some constant u> 0 and it completes 
the proof of Lemma 10. 

LEMMA Il. lim,,, n -‘2-“Var(card($3k)j < aepk for some constant 
a > 0. 

Proof. We will prove Lemma 11 by induction on k. By Lemma 10, 
Lemma 1 f holds when k = I. Now we assume that Lemma 1 I holds for all 
k = 1,2, . . . . M, and we will show that iim,,, 2-‘2-“Var{card(.~#I~+,)) < 
ae -M-‘. Since ~M+,=~M+I=i4?,,.,uE,,,+, and B,,,nE,+,=@, 

Var(card(?#‘, + 1 ))=E{(card(~,+,)-E(card(~,+,)))‘3 

=E(Ccard(~B,+,)-Efcard(~‘,+I)lcard(~,)}12) 

+ E{ CEbrWL+ I )Icard(~:,)}-E{card(~,+,)}12} 
zee-‘Var(3?,+,)+ E(2”-card(3?M)) .ane-’ 

ze - Zane - M2n +2”e-“ane~‘=an2”e-M-1(l +e-‘). 

Since Czoepi=e/(e- l), by induction, we have lim,,, n-‘2-“Var 
icard( < ueek for some constant a > 0 and for all k 2 1. 

LEMMA 12. C,“= I P{ T, < c2”ln(2”)} < co for any c < 1. 

Proof: P(T,<R”ln(2”)) = P(C:$‘p”“) Y,=2”) = P{card(&#=,,,,,) 
=2”} x P(card(a,,,(,.,) - E(card(@<,,(,.,) > 2” - 2”(1 - 2-“‘)j d 
Var(card(~~,,(,,))/2*““-” z an~“~-2”‘l-c’e-‘l”‘2” = an2-“‘l-c’. Hence 

C,“=, P(T,<c2”ln(2”))z:C,“=, an2-““-“<cc since ccl. 
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Now we are in the position to state and prove our lower bound for the 
covering time C,. 

THEOREM 3. P ( C, > ~2” ln(2”) except finitely many n } = 1, if c < 1. 

Proof By Lemma 12 and the fact that C, = T,, - n for all n 2 1, 
C,“=, P { C, < ~2” ln(2”) > < co. By the Borel-Cantelli lemma, P{ C, < 
~2” ln(2”) infinitely often} = 0. Hence P( C, > c2” ln(2”) except finitely 
many n} = 1. 

Combining Theorem 1 and Theorem 3, we have the following theorems. 

THEOREM 4. P{lim,, u. C,/(2” ln(2”)) = l] = 1. 

THEOREM 5. lim,, m E(C,)/(2” ln(2”)) = 1. 

THEOREM 6. P(C,“=,2”(1-2-n)cn=~}=1. 
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