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Abstract

Understanding the impact of uncertainty in modeling the thermo-physical property of building envelopes and building occupancy 
on energy analysis has recently received attention. This paper evaluates the impact of the variations of the thermo-physical 
property of building envelopes and occupancy on building energy analysis. As the data format for accessing and updating 
building information for energy analysis, gbXML-based BIM is leveraged. We first studied the impact of reflecting the as-is 
thermo-physical properties of different building envelopes from thermographic sensing on building energy load calculation. 
Then, the response of energy simulation model with respect to the variations of building occupancy is explored. Finally, the 
impact of each variation on building energy use intensity is analyzed through the regression analysis. Several experiments were 
conducted on a building located in six different climatic zones in the U.S. The perceived benefits of continuous updating of 
energy profiles for model calibration for reliable energy analysis under uncertainty and the related open research challenges are 
discussed in detail.
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1. Introduction

Building Information Models (BIM)-based energy modeling and analysis enable building information in BIM 
(e.g., geometry, construction types, and material properties) to be directly used for energy analysis, which can save 
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energy modelers’ time and efforts to create energy models [1]. In the current BIM-based energy modeling process, it 
is assumed that each building element has a constant surface-wide thermal property, which is typically obtained 
based solely on industry standard databases available in BIM-authoring tools [2, 3]. However, such assumptions are 
not always applicable for modeling existing buildings to support retrofit decision-makings, since the as-designed 
building condition is not always maintained over the whole building life cycle. Fig. 1 illustrates the changes in 
thermo-physical property of building envelope elements captured by thermographic sensing and analytics [3, 4].
Very recently, Ioannou and Itard [5] assert that such thermo-physical properties (e.g., thermal resistance (R-value)) 
of building envelopes is one of the most influential factors to accurately estimate energy loads. That is because 
thermal conditioning in buildings is basically attributed to heat transfer through building façades, affecting 
occupants’ thermal comfort and the associated energy use for space conditioning that accounts for around 21% of 
the energy consumption in the U.S. [6] For example, deteriorated building façades will increase the amount of 
unnecessary heat transfer and in turn adversely affect occupants’ thermal comfort and energy load. Hence, to model 
such energy-related phenomena in a real-world building for energy analysis, reflecting the as-is building conditions
in BIM-based energy modeling process is vital since it can reduce modeling errors. To explore how much it can 
influence on BIM-based energy analysis, this paper aims to examine the response of building energy simulation 
models with respect to R-value variations of building envelope elements through several case studies in six different 
weather zones in the U.S. In addition, the response of energy simulation models with respect to building occupancy 
variations is also studied for the relative local sensitivity analysis.

Fig. 1. Changes in thermal resistances of building envelope elements. (a): notional value (designed value), (b): distribution of actual thermal 
resistances from indoor thermographic sensing, (c): averaged actual thermal resistance [3].

2. Methodology

2.1. Reference building (base case) and energy simulation engine

In this paper, modeling the reference building for energy simulation builds upon the gbXML Test Case 
Documentation [7] that has similar properties with the real-world residential building in Illinois for analysis. This 
building model consists of a single space, and the details on the dimension are illustrated in Fig. 2. For simulation, 
we used the cloud-based building energy simulation tool, AUTODESK Green Building Studio (GBS), which builds 
on the industry standard DOE-2.2 dynamic thermal energy simulation engine to estimate building energy use based 
on the effects and interrelationships of building’s geometry, materials, systems, usages, and climate [8]. This engine 
rapidly yields output, enabling us to compare performance variations depending on different building specifications 
through iterations [9]. For sensitivity analysis, we directly update the gbXML file and vary design parameters.
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Fig. 2. From left to right: 3D view of a reference building; Floor plan with dimensions; Elevation with dimensions.

2.2. Design parameters

For several case studies of energy simulation, each design parameter of interest is hypothetically varied with 
respect to the baseline by increasing or decreasing within a given range as shown in Table 1. The range for entire 
envelope, wall, and roof was from 1 to 60 because the highest R-value recommended by U.S. DOE is about 60,
while from 1 to 11 for the window component since typical windows’ R-value on market does not typically go over 
11. Then, six locations (i.e., Miami, Houston, LA, Washington, Chicago, and Minneapolis) were selected from 
different climate zone based on the R-value recommendation [10] shown in Fig. 3 (a). For the reference, variations
of outdoor air temperature of selected locations throughout a year are illustrated in Fig. 3 (b) and (c).

Table 1. Designed input values for thermal resistances of building envelope elements for experimental simulations

Envelope Wall Roof Window

-Value
R-value 
(Wall)

R-value 
(Roof)

R-value 
(Win) -Value R-value -Value R-value -Value R-value

-6.5000 0.5033 -4.0000 0.4535 -1.4000 0.5437

-6.0000 1.0033 -3.5000 0.9535 -1.0500 0.8937

-1.5 5.5033 2.9535 0.4437 -4.0000 3.0033 -3.0000 1.4535 -0.7000 1.2437

-1 6.0033 3.4535 0.9437 -2.0000 5.0033 -1.5000 2.9535 -0.3500 1.5937

0 7.0033 4.4535 1.9437 0.0000 7.0033 0.0000 4.4535 0.0000 1.9437

2 9.0033 6.4535 3.9437 2.0000 9.0033 5.0000 9.4535 0.7500 2.6937

7 14.0033 11.4535 8.9437 7.0000 14.0033 10.0000 14.4535 1.5000 3.4437

12 19.0033 16.4535 13.9437 12.0000 19.0033 15.0000 19.4535 2.2500 4.1937

17 24.0033 21.4535 18.9437 17.0000 24.0033 20.0000 24.4535 3.0000 4.9437

22 29.0033 26.4535 23.9437 22.0000 29.0033 25.0000 29.4535 3.7500 5.6937

27 34.0033 31.4535 28.9437 27.0000 34.0033 30.0000 34.4535 4.5000 6.4437

32 39.0033 36.4535 33.9437 32.0000 39.0033 35.0000 39.4535 5.2500 7.1937

37 44.0033 41.4535 38.9437 37.0000 44.0033 40.0000 44.4535 6.0000 7.9437

42 49.0033 46.4535 43.9437 42.0000 49.0033 45.0000 49.4535 6.7500 8.6937

47 54.0033 51.4535 48.9437 47.0000 54.0033 50.0000 54.4535 7.5000 9.4437

52 59.0033 56.4535 53.9437 52.0000 59.0033 55.0000 59.4535 8.2500 10.1937
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Fig. 3. (a) R-value recommendation zone map by U.S. Department of Energy [10]; (b) Monthly average temperature for the selected six different 
locations

2.3. Data analysis – Local sensitivity analysis

Once energy simulation is done, a regression analysis is performed to explore the sensitivity based on the relative 
magnitude of regression coefficients, called ‘impact coefficient’ in this paper. The linear-log regressions are
performed on the collected data for positive (+) variations to obtain the regression coefficients, along with the linear 
regressions for negative (-) variations. The sensitivity analysis is to explore how the variation in the output of a 
model depends upon the input information, enabling to examine the relative impact of various input variables on the 
model output and study the uncertainty of the model results originating from the uncertainty of input parameters 
[11]. It encompasses both parametric studies, in which input parameters are systematically changed to determine the 
influence on program predictions [12]. Sensitivity measures are usually calculated using on the OAT approach (one-
parameter-at-a-time), in which the impact of changing the values of each design parameter is evaluated [13].

Building upon the OAT approach, we focus on the effects of uncertain inputs around a point of a base case, a 
reference building in gbXML schema. In other words, the output variability is evaluated based on the variation of 
one design parameter within a certain range while the rests are maintained at constant level. Then, the building 
energy models with input variations are simulated to analyze the effect of design parameter variation on the total 
energy consumption in terms of Energy Use Intensity (EUI). Here, the input-output relationship is assumed to be 
linear and the correlation between design parameters is not taken into account [5].
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3. Experimental Simulation and Results

3.1. Impact analysis of R-value variations on EUI

Fig. 4. (a) -value; (b) -value (-) and the -value (+) and the linear-log regression;
(d) Log-scale -value and the linear-log regression

Fig. 4 (a) illustrates the correlation between the variations on R-values of the 
window component in six different climate zones. The experimental results show that a strong correlation exists 
between R-value of building envelopes and EUI with different degrees depending on the geographical locations of 
the building. To infer the impact coefficients and analyze their sensitivity, the regression analysis is performed on 
the simulation results as the R-value decreases and increases. Here, to find the best-fit lines, the linear regression is 
applied for the cases of decrease in R-value (Fig. 4 (b)), while the linear-log regression is used for the cases of 
increase (Fig. 4 (c)). Lastly, the independent variable is logarithmically transformed to demonstrate the linearity 
between independent and dependent variables shown in Fig. 4 (d).

3.2. Sensitivity analysis of impact coefficient of different building elements to EUI

Based on the energy performance simulations with respect to the variations on R-value of different building 
components (i.e., entire envelope, wall, roof, and window) in six different locations, the sensitivity analysis is 
implemented. Fig. 5 illustrates the magnitude of the impact coefficients (i.e., regression coefficient) to explore the 
relative sensitivity of R-value variations in each building element for different locations. For example, in the case of 
Chicago in Fig. 5 (a), it is observed that the wall element is the most sensitive one that can affect EUI (without
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considering entire envelope here since its variations affect all elements), while the window element is the least. This 
trend is observed in Washington and Minneapolis, which have the cold winter season than the remaining three 
locations (Miami, Houston, and LA). Fig. 5 (c) and (d) show the variations on R-values of entire 
envelopes, wall, roof, and window in LA and Minneapolis. Interestingly, it is observed that the first three (Miami, 
Houston, and LA) and last three locations (Washington, Chicago, and Minneapolis) have similar trends respectively. 

Fig. 5. Impact coefficient of -value for entire envelope, wall, roof, and window in six different locations: (a): increase in R-value;
and (b) decrease in R-value. -value for entire envelopes, wall, roof, and window in (c): LA, and; (d): Minneapolis.

Fig. 6 (a) presents the impact coefficient of different building elements depending on different geographical 
building location. Fig. 6 (b) shows -value of the window element for six different locations. In our 
simulation, it is observed that Minneapolis shows the greatest impact, followed by Chicago, Washington, LA, 
Houston, and Miami respectively. The observations in the relative sensitivity are explicable when considering the 
monthly average temperature of each location (Fig. 3 (b)). It is observed that the impact coefficient is likely to 
become greater in the area with lower average temperature. The similar tendency could be observed for other 
building elements including walls and roofs.
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Fig. 6. (a): Impact coefficient of -value on each building envelope elements with weather variations. (b): -value of 
window for six different locations

3.3. Impact analysis of occupancy variations on EUI and the comparison with the impact of R-value variations

We further look into ilding. As can be seen in Fig. 7
(a) and (b), the total amount of energy use and the degree of change in EUI are different depending on the location
of the building. Fig. 7 (d) presents the associated sensitivity analysis. Unlike the results shown in above sections, it 
is observed that the impact coefficient is likely to become greater in the location of higher average temperature. Fig. 
8 illustrates the impact of and -value on comparison between relative impact of 
R-value and occupancy variations on EUI, we consider the absolute magnitude of . In our experiments, for 

-
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Fig. 7 the linear-log regression; (d) Impact coefficient of
in six different locations.

Fig. 8. -

4. Discussion and Conclusions 

In this paper, we experimentally studied the impact of the variations of thermo-physical property of building 
envelope elements (e.g., wall, roof, and window) and occupancy on building energy performance assessment by 
several case studies under six different weather zones in the U.S. Each parameter was hypothetically varied with 
respect to the reference building’s values by increasing or decreasing the value within a given range for each 
building element, and then simulation was iterated for different geographical locations. The local sensitivity analysis 
was conducted on the simulation results to explore the relative sensitivity and the impact of R-value and occupancy 
variations for each location. 

In our experimental simulation on a typical small office building under different climates, it is observed that with 
the window component always being the least sensitive building envelope element on EUI, the wall component is 
typically the most sensitive in Washington, Chicago, and Minneapolis, while the roof component becomes the most 
sensitive one in the remaining three locations (Miami, Houston, LA). It is also observed that relative magnitude of 
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the impact coefficient have the similar tendency that in the cases of Washington, Chicago, Minneapolis, the wall
component has much greater impact than the roof component on
the remaining three locations (Miami, Houston, LA), the difference of magnitude of impact between the roof and 
wall component is likely to become minimal as R-value increases. It is observed that the relative magnitude of the 
impact does not always correspond to the surface area of each element proportionally, which implies that other 
significant factors, such as weather conditions and designed (i.e., initial) R-value, have greater influence on EUI
than the surface area. Meanwhile, the relative sensitivity and the impact of weather variations is likely to become 
greater in the area of lower average temperature as R-value increases, while simulation in LA is an exceptional case 
because the difference between the lowest and the highest average temperatures throughout a year is the least among 
all observed locations. On the other hand, the relative sensitivity and the impact of occupancy variations is likely to 
become greater in the location with higher temperature as the number of occupants increases. 

The intent of this research is to support to identify the most influential parameter on building energy consumption 
under environmental uncertainty and facilitate better decision-makings on prioritizing the targets for building 
envelope inspection and determining the optimal envelope retrofit alternatives for improving energy efficiency,
rather than presenting specific simulation results and associated trends that can be generally applied to any universal 
cases. The reference model used for this paper can be scaled-up or assembled with other units for further simulation. 
With various simulation engines, further studies on the relationship between two parameters, R-value and building 
occupancy, are needed for normalization of variables, which allows more accurate comparison of their relative 
impacts on the building energy performance.
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