Advanced oxidation protein products enhances soluble Fms-like tyrosine kinase 1 expression in trophoblasts: A possible link between oxidative stress and preeclampsia

ARTICLE INFO

Article history:
Accepted 25 June 2013

Keywords:
Advanced oxidation protein products
Trophoblast
Soluble Fms-like tyrosine kinase 1

ABSTRACT

Accumulation of advanced oxidation protein products (AOPPs) is prevalent in obesity, advanced maternal age, diabetes mellitus, and polycystic ovary syndrome. Alterations in the regulation and signaling of angiogenic pathways have been recognized as a link between these conditions and pre-eclampsia. To investigate the possible impact of AOPPs on soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in trophoblasts, a trophoblast cell line (HRT-8/SVneo) was treated with various concentrations of AOPPs. The mRNA expression of sFlt-1, vascular endothelial growth factor (VEGF), and placental growth factor (PIGF) in trophoblasts were measured with the use of real-time polymerase chain reaction; and the secretion of sFlt-1, VEGF, and PIGF protein from trophoblasts were detected with the use of ELISA. Exposure of HRT-8/SVneo cells to AOPPs induced overexpression of sFlt-1 at mRNA and protein levels in a dose-dependent manner. These effects could be inhibited by apocynin, an inhibitor of NADPH oxidase. Our data identified AOPPs as a class of important mediator in the regulation and signaling of angiogenic pathways of trophoblasts. Accumulation of AOPPs might contributes to the pathogenesis of preeclampsia and the maternal compartment during pregnancy, but also important for its capacity to generate angiogenesis and growth factors to promote vascularization of the placenta during its development.

1. Introduction

Pre-eclampsia is a complex multi-system obstetric syndrome affecting about 5–10% of pregnant women and is characterized by hypertension and significant proteinuria at or after 20 weeks of pregnancy [1]. Alterations in the regulation and signaling of angiogenic pathways have been showed to contribute to the inadequate blood supply of the placenta in patients with pre-eclampsia [2,3]. Numerous studies have shown that trophoblast cells play important roles during placentation development [4,5]. Placental trophoblasts are not only structural and biochemical barriers between the maternal and fetal compartment during pregnancy, but also important for its capacity to generate angiogenesis and growth factors to promote vascularization of the placenta during its development.

Soluble Fms-like tyrosine kinase 1 (sFlt-1, also referred to as sVEGFR-1) is a splice variant of the vascular endothelial growth factor (VEGF) receptor Flt-1 that lacks the transmembrane and cytoplasmic domains [6]. It is prominently produced by placental trophoblasts and is secreted into the maternal circulation [7]. sFlt-1 is an antagonist of VEGF and placental growth factor (PIGF) and may promote maternal endothelial damage and restriction of placental growth [8]. Abundant evidence suggests that increased trophoblast release of sFlt-1 causes the development of pre-eclampsia [9–11]. Maynard et al. [12] demonstrated hypertension, proteinuria, and edema in pregnant rats as a result of the administration of sFlt-1, suggesting that excess circulating sFlt-1 contributes to the pathogenesis of preeclampsia.

Advanced oxidation protein products (AOPPs) are a family of oxidized, dityrosine-containing protein products generated during excessive production of oxidants and often carried by albumin...
in vivo. The accumulation of plasma AOPPs is prevalent in diverse disorders such as diabetes [13], obesity [14], metabolic syndromes [15], and polycystic ovary syndrome [16]. Mounting evidences suggested that these population, when in pregnancy, have a higher risk of developing for preeclampsia. Most recently, we demonstrated that circulatory AOPPs are higher in patients with pre-eclampsia and associated with the severity of the disease [17].

Given its strong involvement in the pathogenesis of pre-eclampsia, attempts to identify factors that regulate sFlt-1 expression in trophoblasts have been made with the aim to investigate possible novel strategies for managing this condition. In the present study, we hypothesis that AOPPs may enhances sFlt-1 expression in trophoblasts and contributes to the pathogenesis of pre-eclampsia. The aim of the present study was to determine the effect of AOPPs on the expression of sFlt-1, VEGF and PlGF in trophoblasts.

2. Materials and methods

The Institutional Review Board at the Nanfang Hospital, Southern Medical University approved the study protocol and all procedures.

2.1. Cell culture

First trimester extravillous trophoblast cell line (HTR-8/SVneo cells) was a kind gift from Dr Charles H. Graham (Queen’s University, Ontario, Canada). The cells were cultured in RPMI-1640 (HyClone, South Logan, USA) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/ml streptomycin (HyClone), at 37°C plus continuous supplement of 5% CO2. Before experiments, HTR-8/SVneo cells were cultured in RPMI-1640 supplemented with 2.5% FBS for 18–24 h.

2.2. AOPPs preparation

AOPPs—human serum albumin (HSA) was prepared as described previously [18,19]. Briefly, HSA (100 mg/ml, Sigma, St. Louis, MO) was exposed to 200 mmol/L of HOCl (Fluke, Buchs, Switzerland) for 30 min and diazylated overnight against PBS to remove free HOCl. The ratio of HSA to HOCl has been tested previously and the optimal ratio (HSA to HOCl = 1:134) was selected. The AOPPs preparation was passed through a Detoxo- Gel column (Pierce, Rockford, IL, USA) to remove any contaminated endotoxin. Endotoxin levels in the preparation were determined with the amebocyte lysate assay kit (Sigma) and were found to be below 0.025 EU/ml. AOPPs content in the preparation was determined as described previously. The content of AOPPs was 72.4 ± 9.8 nmol/mg protein in prepared AOPPs—HSA and 0.2 ± 0.02 nmol/mg protein in native HSA.

2.3. Intervention with cell cultures

HTR-8/SVneo cells were rinsed with phosphate-buffered saline solution, replenished with fresh serum-free media, and cultured for an additional 24 h. To evaluate the effect of AOPPs, the cells were incubated with serum-free medium and different concentrations of AOPPs-HSA (50, 100, and 200 μg/ml) and HSA (200 μg/ml). Moreover, previous studies showed that plasma AOPPs can induce cellular dysfunctions through NADPH-dependent mechanisms [18,20]. So in the present study, we further observed the effect of apocynin, an inhibitor of NADPH oxidase, on trophoblast in vitro and to explore whether apocynin may regulated the effect of AOPPs on the expression of sFlt-1, VEGF and PlGF in trophoblasts.

2.4. RNA extraction, reverse transcription, and real-time quantitative polymerase chain reaction

Total RNA was extracted from HTR-8/SVneo cells with the use of an RNasey mini kit (Qiagen). One mg total RNA was reverse transcribed in a 20 μl volume with the use of Rever Tra Ace a (Toyobo) according to the manufacturer’s instructions. Real-time quantitative polymerase chain reaction (PCR) and data analysis were performed using Lightcycler (Roche Diagnostic) according to the manufacturer’s instructions. 2 μl cDNA in 20 μl volume was amplified with the use of oligonucleotide primers based on human sFlt-1, VEGF, and PlGF sequence. sFlt-1 Primers (sense 5’-GACATCTCTGTTGTCCGACT-3’, antisense 5’-GGGGCCCGGGGTCTTATT-3’) were used to amplify a 643-bp product; VEGF primers (sense 5’-CCTCCTGTAGCATGGCAGTCATCT-3’, antisense 5’-GGCTCCGTCGAATCTACCTT-3’) were used to amplify a 245-bp product; PlGF primers (sense 5’-GGGGGAGCGAGGAGGAGAAA-3’, antisense 5’-CTTCATCGTCTGTGAAGAGG-3’) were used to amplify a product of 268 bp. The PCR conditions for each mRNA were as follows. sFlt-1: 45 cycles at 95°C for 10 s, 63°C for 10 s, and 72°C for 2 s; VEGF: 45 cycles at 95°C for 10 s, 65°C for 10 s, and 72°C for 2 s; PlGF: 40 cycles at 95°C for 10 s and 64°C for 10 s. All PCRs were followed with melting curve analysis. Human glyceraldehyde dehydrogenase (GAPDH) primers (Toyobo) were used to ensure RNA quality and amounts. The PCR conditions for GAPDH were 30 cycles at 98°C for 10 s, 60°C for 2 s, and 72°C for 20 s. The Ct value of GAPDH is stable throughout the experiment. The expression level of each mRNA was normalized according to GAPDH levels in each case.

2.5. Measurement of protein secretions in culture supernatants

Conditioned culture media were centrifuged and stored at –80°C until assay. Concentrations of sFlt-1, VEGF, and PlGF in supernatants were measured with the use of their specific ELISA kits (Quantikine; R&D Systems) according to the manufacturer’s instructions.

2.6. Statistical analysis

All experiments were performed 3 times or more independently and all the values were expressed as the mean ± SD. Data were analyzed using one-way analysis of variance (ANOVA) with the application of the Dunnett’s test, the least significant difference test, and a three-factor ANOVA classification. Differences were considered as statistically significant at P < 0.05.

3. Results

3.1. Effect of AOPPs on sFlt-1, VEGF and PlGF mRNA expression in HTR-8/SVneo cells

As shown in Fig. 1, exposure of HTR-8/SVneo cells to AOPPs induced significantly overexpression of sFlt-1 and VEGF at mRNA level in a dose dependent manner, while no significant increases of PlGF at mRNA level were observed (Fig. 1C).

3.2. Effect of AOPPs on sFlt-1, VEGF and PlGF secretion in HTR-8/SVneo cells

As concentrations increased, AOPPs significantly increased sFlt-1 protein level (Fig. 2A). Both VEGF and PlGF protein secretion levels were slightly higher, but not significantly increased by AOPPs (Fig. 2B, C).

3.3. Effect of apocynin on the expression of sFlt-1 in HTR-8/SVneo cells treated with AOPPs

Previous studies showed that plasma AOPPs exerts its wide-range cytotoxic effect through NADPH-dependent mechanisms [18,20]. So we further investigated whether apocynin (100 μmol/L), an inhibitors of NADPH oxidase, can regulate the angiogenic factors secreted by trophoblasts treated with AOPPs (200 μg/ml). Both sFlt-1 and VEGF mRNA expression and protein secretion in HTR-8/SVneo cells treated with AOPPs could be inhibited by apocynin, while no significant changes of PlGF at mRNA and protein level were observed.

4. Discussion

Normal placentation requires trophoblast invasion of maternal spiral arteries, in which trophoblast replaced the arterial media and transformed the uteroplacental circulation into a high-flow, low-resistance system [21]. Vascular remodeling occurs under the influence of several angiogenic factors, including VEGF and PlGF [3,9]. Mounting evidences suggested excess circulating sFlt-1, a potent binder and inhibitor of VEGF and PlGF, could impaired the placential anangiosis, is increased in women destined to develop pre-eclampsia [3,7–9]. These findings suggest an important association between angiogenic factors and the pathogenesis of preeclampsia.

Increased recognition of trophoblasts dysfunction as a link between obesity [22], advanced maternal age [23], diabetes mellitus [24], polycystic ovary syndrome [25] and preeclampsia has highlighted the importance of determining mechanisms underlying the pathophysiological abnormalities in these populations. Here we
demonstrated in vitro that increased level of AOPPs, as seen in obesity advanced maternal age, diabetes mellitus and polycystic ovary syndrome, enhance sFlt-1 expression at mRNA and protein levels in cultured trophoblasts, which may impair the placental angiogenesis and cause the endothelial dysfunctions. While native HSA had no effect on trophoblasts, suggesting that the observed effects were due to the protein modification, not a property of HSA or other contaminations.

We have also studied the effect of AOPPs on the expression of VEGF and PIGF in HTR-8/SVneo cells. AOPPs significantly induced VEGF mRNA expression. In contrast, VEGF protein secretion from trophoblasts was not increased by AOPPs. The ELISA system we used for measuring VEGF secretion detects active (free) VEGF, not VEGF bound to sFlt-1. It is conceivable that increased VEGF secretions, due to AOPPs, do not lead to elevated levels of free VEGF, because concurrent increased levels of sFlt-1 reduce free VEGF. The level of PIGF, both mRNA and protein levels, was not changed significantly by AOPPs. Collectively, we can conclude that AOPPs induces both VEGF and sFlt-1 mRNA expression and secretion, but the increase in sFlt-1 overwhelms VEGF levels and consequently diminishes the biologic effects of VEGF in trophoblasts.

In addition, previous studies showed that plasma AOPPs exerts its wide-range cytotoxic effects through NADPH-dependent mechanisms [18,20]. Here, we demonstrated apocynin, an inhibitor of NADPH oxidase, inhibited AOPPs-induced sFlt-1 expression, which suggested NADPH oxidase activation may be responsible for the AOPPs-induced sFlt-1 expression.

It has been demonstrated that hypoxia induces sFlt-1 expression in trophoblasts [6] and that insufficient placentation, speculated to occur in the first trimester, increases trophoblast sFlt-1 production, and consequently systemic and local endothelial dysfunction, which may cause further placental hypoxia/ischaeemia and sFlt-1
production, promoting a ‘vicious’ cycle [26]. Previous studies have demonstrated that hypoxic conditions in the placenta can promote oxidative stress [29]. In the present study, we have shown that AOPPs, as a novel biomarker of oxidative stress, is another factor that enhances sFlt-1 expression in trophoblasts. Given that obesity, advanced maternal age, diabetes mellitus, polycystic ovary syndrome were common high risk factors of developing for pre-eclampsia, excessive levels of AOPPs in the circulation and placenta may enhance sFlt-1 expression by trophoblasts and contribute to this ‘vicious’ cycle.

In the present study, we have only focused on trophoblasts, a major source of sFlt-1 in implantation sites. The drawbacks of the present study are, regarding other sources of sFlt-1, previous studies demonstrated that first trimester decidual cells and endothelial cells could also express sFlt-1 [27,28]. Moreover, mounting evidences suggested that AOPPs may exert its cytotoxic effects through the receptor of advanced glycation end products (RAGE) [18,30]. So in the future, investigation were needed to explore the effect of AOPPs on the sFlt-1 expression in the decidual cells and endothelial cells and whether the RAGE play a role in AOPPs-induced sFlt-1 expression.

In summary, the present study has identified AOPPs as a new class and potentially important mediators in the regulation and signaling of angiogenic pathways of trophoblasts. Accumulation of AOPPs might contributes to the pathogenesis of pre-eclampsia by promoting sFlt-1 production in trophoblasts, probably through induction of NADPH oxidase-dependent pathway. These data provided new information for understanding the basis of trophoblast dysfunction under the conditions of AOPPs accumulation, such as obesity, advanced maternal age, diabetes mellitus and polycystic ovary syndrome. We proposed understanding the pathobiological effect of AOPPs on trophoblasts might be an important step toward development of new intervention for biological dysfunctions and pre-eclampsia in these population when in pregnancy. This also highlights the NADPH oxidase pathway may be a potential therapeutical target for the prevention of pre-eclampsia in the future.

Acknowledgments

This work was supported by the President Grant from Nanfang Hospital (2012C026) to Dr. Qi Tao, HUANG. We are appreciated the kind gift of first trimester extravillous trophoblast cell line (HTR-8/SVneo cells) provided from Dr. Charles H. Graham (Queen’s University, Ontario, Canada).

References