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Abstract 

We investigate the multifractal characteristics of the volatility time series from China’s agricultural commodity 
futures markets, using Multifractal Detrended Fluctuation Analysis and multifractal spectrum analysis. We find that 
prominent multifractal features exit in China’s major agricultural commodity futures markets, including the Hard 
Winter Wheat (HW) futures, the Strong Gluten Wheat (SG) futures, Soy Bean (SB) futures and corn futures. 
Furthermore, the multifractality strength and multifractal spectrum width of HW futures are both bigger than that of 
SG, SB and corn futures, implying that the market risk for HW futures might be the strongest among all the four 
futures contracts. Finally, comparing empirical results of shuffling and surrogate data, we also find that nonlinear 
temporal correlations instead of non-Gaussian distribution constitute the major contributions in the formation of 
multifractal features in these four agricultural commodity futures markets. 
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1. Introduction 

A fractal is a rough or fragmented geometric shape that can be subdivided in parts, each of which is (at 
least approximately) a reduced-size copy of the whole (Mandelbrot, 1982) [1]. Numerous researchers 
found financial markets exh ibit  complex dynamics features and have attempted to apply physical theories 
and methods to analyze these economic and financial problems (e.g. Peters, 1991; Peng et al., 1994; Gu  et 
al., 2010; Alvarez-Ramirez et al., 2002). As a result of that, an interdisciplinary science called 
Econophysics is created. Mandelbrot (1963,1967) [2,3], the pioneer of Econophys ics, applied fractal 
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geometry to US agricultural commodity spot prices to demonstrate  that these market prices do not obey 
“random-walk” hypothesis and they display different properties, that is , long-term correlation or memory, 
chaos, fractal, etc. From then on, fractal phenomena have been widely confirmed in various financial 
markets, commodity markets and capital markets by means of fractal geometry (Peters, 1991, 1994) [4,5]. 

Prior researches have tried various methodological approaches in studying frac tal phenomena in 
complex systems. Hydrologist H.E. Hurst (1951) [6] proposed Rescaled Range Analysis  (R/S), which is 
the most popular analysis of fractal features. However, the results of the R/S analysis depend on the 
extreme values of the selected samples and are sensitive to the abnormal values of series. Thus, the R/S 
analysis cannot be used to analyze the long-range correlat ions of non-stationary series. In order to 
overcome the drawbacks, Peng et al. (1994)[7] proposed Detrended Fluctuation Analysis (DFA) in the 
procedure of studying interior correlat ion of DNA molecu lar chain. This method applies long-range-
power-law correlat ion to analysis procedure to overcome the requirement of strict shot -range correlation 
in R/S analysis and is widely used to determine the mono-fractal scaling properties. Both R/S and DFA 
analysis can only be used to analyze properties of mono-fractal, which cannot describe the mult iscale and 
subtle substructures of fractals in complex systems. So Kantelhardt and Zschiegner (2002) [8] combined 
DFA analysis with mult ifractal system and proposed Multifractal Detrended Fluctuation Analysis (MF-
DFA). Many scholars studied multifractal properties in crud oil market  (Gu et al., 2010; Wang et al., 2010;  
Alvarez-Ramirez et  al., 2002) [9-11], stock markets (Zunino et al., 2008;  Yuan et al., 2009) [12,13], 
international exchange rate markets (Norouzzadeh et al., 2006) [14] and gold markets(Wang et al., 2010) 
[15]. However, few studies can be found in the area of econophysics to test the efficient of agricultural 
commodity futures markets  and there has no empirical evidence provided by the existing literature that 
can describe mult ifractal features of China’s agricultural commodity futures and exp lain why there exist 
such multifractality in China’s agricultural commodity futures markets. 

This paper seeks to answer these questions by the means of MF-DFA and multifractal spectra. We 
choose Hard Winter Wheat and Strong Gluten Wheat futures from Dalian Commodity Exchange and Soy 
Bean and corn futures from Zhengzhou Commodity Exchange as the representatives of China ’s 
agricultural commodity futures markets, we then apply MF-DFA to analyze the strength of multifractality 
and risk in China’s agricu ltural commodity futures markets and find the main contributions to information 
of multifractality by means of shuffled and surrogate data. 

The paper is organized as follows: Sect ion 2 presents the MF-DFA procedure. Section 3 describes the 
data for four representative agricultural commodity futures prices and the summary statistics of their 
returns. Section 4 applies the MF-DFA method to China’s agricultural commodity futures markets and 
analyzes the mult ifractal properties and sources of multifractality in the time series. Section 5 outlines the 
conclusions. 

2. Methodology 

Let us suppose P i , i=1,2, ,N to be the time series of four representative agricultural commodity 
futures prices, where N is the length of the series. Firstly, define their prices returns as  

1ln lnt t tr P P                                                                                                                             (1) 

Then the “profile” is given by 
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where r  denotes the averaging returns over the whole time series. 
Next, div ide the profile Y(i) into Ns=[N/S]  non-overlapping segments of equal length s. Since the 

length N of the series is often not a multiple o f the cons idered time scale s, a short part at the end of the 
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profile Y(i) may remain. In order not to discard this part of the series, the same procedure is repeated 
starting from the opposite end. Thereby, 2Ns segments are obtained altogether. And then calculate the 
local trends for each of the 2Ns segments by mth order polynomial fit. Then the variance is determined by 
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for each segment , =Ns+1 Ns+2 2Ns Here, ( )y j is the fitting polynomial with order m in  
segment (generally, called mth order MF-DFA and wrote MF-DFAm). 

Then let us average over all segments to obtain the qth order fluctuation function 
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for any real value q 0 and 
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Repeating Eq(2)-(6) above for different t ime scale s. It is apparent that Fq(s) will increase with 
increasing s. At the same time, Fq(s) depends on the MF-DFA order m with s≥m+2. 

By analyzing log-log plots Fq(s) versus s for each value of q, we determine the scaling behavior of the 
fluctuations. If the time series rt are long-range power-law correlated, Fq(s) will increase for large values 
of s as a power-law 

          ( )( ) h q
qF s s                                                                                                                            (7) 

Here, the scaling exponent h(q) can be obtained by observing the slope of the log-log p lots of Fq(s) 
versus s through the method of ordinary least squares (OLS).  

Another way to confirm multifractality in time series is using the singularity spectrum f( ), which can 
be obtained by multifractal spectrum analysis based on the relationship  

( ) ( ) 1q qh q                                                                                                                                 (8) 

and then the Legendre transform 
( ) ( )h q qh q                                                                                                                              (9) 

( ) [ ( )] 1f q h q                                                                                                                    (10) 

where  is the Holder exponent and f( ) indicates the dimension of the subset of the series that is 
characterized by . 

3. Data analysis 

The data of this research are the time series of daily closing price for Hard  Winter Wheat futures 
contract from March 28, 2003 to November 12, 2010 (L=1810) and Strong Gluten Wheat futures contract 
from November 1,1999 to November 12, 2010 (L=2448) from Zhengzhou Commodity Exchange, Soy 
Bean futures contracts from Ju ly 15, 2002 to November 12, 2010 (L=1963) and corn futures contracts 
from September 22, 2004 to November 12, 2010 (L=1492) from Dalian Commodity Exchange. All these 
data are taken from wind©database. In the following discussions, we define size s ranges from 10 to N/6 
with the computation interval 5, where N  is the length of the agricultural commodity futures return series; 
the degree of polynomial m=1,2,3; the rang of q varies from -5 to 5 with the step 0.1. 
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Table 1. The summary statistics of SB, corn, HW and SG futures contracts 

Commodity 
Exchange 

Kind of 
futures mean Std.dev Kurtosis Skewness JB 

Dalian 
SB 0.000399 0.013869 25.36428 0.290936 40895* 

corn 0.000377 0.009591 23.64962 2.251746 27750.49* 

Zhengzhou 
HW 0.000220 0.017038 62.53799 3.120718 364644.3* 

SG 0.000341 0.013930 74.43165 4.008425 389443.8* 

* indicates the number of JB reject the null hypothesis that the sample comes from a normal distribution at the significance of 0.01.  

According to Table 1, we can see a large positive skew and the probability distribution function of 
variations also show a high degree of peakness and fat-tails instead of a normal d istribution. Thus there is 
a clear departure from Gaussian distribution. 

4. Empirical results 

4.1. Multifractal characteristics of agricultural commodity futures markets returns 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1. The relationships between lnFq(s) and lns in Strong Gluten Wheat(a), Hard Winter Wheat(b), Soy Bean(c) and corn(d) 
futures contracts respectively where q varies from -5 to 5 from bottom to top. 

First of all, based on MF-DFA model, we  obtained the relationships between lnFq(s) and lns in 
agricultural commodity futures markets (see Fig.1) for q=-5, q=-4, , q=5, where the upper and the lower 
curves are the curves of q=5 and q=-5. From the figures we can see the relationships are linear. It shows 
the return series obey power-law and agricultural commodity futures markets in China d isplay fractal 
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characteristics. Furthermore, according to the relationships of h(q) and q (see Fig.2), we can see that the 
exponent h(q) is not a constant, which decreases with the rising q. These results imply China’s 
agricultural commodity futures markets are multifractal. 

In order to further investigate the existence of multifractality in the agricu ltural commodity futures 
markets, we got the relat ionships of Renyi exponent and q (see Fig.3), which are nonlinear and the 
figures of four representative agricultural commodity futures are all convex to the horizontal axis. It is 
another evidence of mult ifractality in  agricu ltural commodity futures markets. At the same t ime, as the 
higher nonlinearity of the spectrum has the stronger multifractality in time series, we can obtain the order 
of multifractal strength in China’s agricultural commodity futures markets from the biggest to the 
smallest one is Hard  Winter Wheat, Strong Gluten Wheat, corn and Soy  Bean  futures according to the 
different convexity of figures. 

Table 2 also shows that the exponent h(q) depends on q for all d ifferent orders, which is another piece 
of empirical ev idence for multifractality in agricu ltural commodity futures markets. Take order m=3 for 
instance, when q varies from -5 to 5, h(q) of Hard Winter Wheat futures return series decreases from 
0.838 to 0.2238; h(q) of St rong Gluten Wheat futures return series decreases from 0.9415 to 0.3053;  h(q) 
of corn futures return series decreases from 0.8516 to 0.3436;  h(q) of Soy Bean futures return series 
decreases from 0.6929 to 0.3968. All of these are apparently not constant, indicating agricultural 
commodity futures markets are multifractal. Especially, when q=2, all Hurst exponent in these 
commodity futures markets are less than 0.5 for all different orders except Soy Bean futures. It shows 
China’s agricu ltural commodity futures markets are inefficient and Hard Winter Wheat, Strong Gluten 
wheat and corn futures markets display anti-persistent properties, while Hurst exponent in Soy Bean 
futures market is more than 0.5 in the same circumstances, which implies Soy Bean futures market 
displays persistent properties. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. The relationships of h(q) and q in Strong Gluten  
Wheat(SG), Hard Winter Wheat(HW), Soy Bean(SB) and 
corn futures contracts respectively where m=3 and -5 q 5  
with the step 0.1                                                   

Fig.3. The curves of  (q)~q in Strong Gluten Wheat(SG), 
Hard Winter Wheat(HW), Soy Bean(SB) and corn futures 
contracts when m=3 and  -5 q 5 with the step 0.1

In addition, the variat ion range of Hurst exponent (see h  in  Table 2) in  the four agricu ltural 
commodity futures markets fo r the same order m is different. The variation range of Hurst exponent in 
Hard W inter Wheat futures market is greater than that of other three futures contracts, suggesting that the 
multifractal features of Hard  Winter Wheat futures is stronger than that other three futures and the risk 
(Yuan et al., 2009) [13] in Hard Winter Wheat futures markets is also higher than that of three futures. 
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In General, there are two major sources for mult ifractality in various time series. One is different long-
range temporal correlations for small and large fluctuations, the other is fat -tailed p robability distribution 
of increments (Norouzzade et al., 2006)[14]. Usually we apply two  procedures, that is, shuffling 
procedure and phase-randomizat ion, to d istinguish the contribution of two sources. The shuffling 
procedure destroys any temporal correlations for s mall and large fluctuations but preserves the 
distribution of the variations. In other words, the shuffled data have the same fluctuation distributions 
with the orig inal data without memory. In contrast, since memory in the time series can be retained and 
non-Gaussianity of the d istributions can be weakened by creating the phase-randomized  surrogates, we 
introduce the surrogate data to explore the contribution of the fat-tailed probability distribution on the 
multifractality. Both procedures were given by Norouzzade and Rahmani (2006)[14]. 

Table 2.  The Hurst exponent for original, shuffled and surrogate data 

 original shuffled surrogate 
SG HW SB corn SG HW SB corn SG HW SB corn 

m=1 
h(-5) 0.8991 0.8066 0.6943 0.7593 0.6492 0.7026 0.647 0.7081 0.4601 0.4582 0.5597 0.4762 
h(-1) 0.6917 0.5689 0.652 0.6191 0.5368 0.5855 0.5828 0.6232 0.4791 0.4287 0.5366 0.4597 
h(2) 0.4667 0.359 0.6155 0.4861 0.5051 0.4415 0.5324 0.5197 0.4758 0.4082 0.522 0.4679 
h(5) 0.3038 0.2048 0.5455 0.402 0.3861 0.3071 0.4985 0.4254 0.4581 0.3862 0.5111 0.4743 

h  0.5953 0.6018 0.1488 0.3573 0.2831 0.3955 0.1485 0.2827 0.002 0.072 0.0486 0.0019 
m=2 
h(-5) 0.9197 0.8325 0.7114 0.8398 0.6913 0.7486 0.6424 0.7206 0.4881 0.5011 0.5526 0.5083 
h(-1) 0.7080 0.5959 0.6376 0.6542 0.6542 0.641 0.5469 0.5898 0.4958 0.4613 0.5323 0.4825 
h(2) 0.4853 0.3717 0.5459 0.4727 0.5377 0.5312 0.4875 0.4916 0.4952 0.4366 0.5179 0.4816 
h(5) 0.3051 0.1821 0.4442 0.3542 0.3434 0.4245 0.4268 0.4045 0.4795 0.4139 0.5018 0.4832 

h  0.6146 0.6504 0.2672 0.4856 0.2631 0.3241 0.2156 0.3215 0.0086 0.0872 0.0508 0.0251 
m=3 

h(-5) 0.9415 0.868 0.6929 0.8516 0.7233 0.7820 0.6387 0.748 0.499 0.5287 0.5853 0.5492 
h(-1) 0.7203 0.6178 0.6094 0.6668 0.6414 0.6387 0.5649 0.6263 0.5019 0.482 0.5446 0.5014 
h(2) 0.4886 0.4036 0.5093 0.4699 0.4732 0.4641 0.5092 0.5120 0.5018 0.458 0.5199 0.4842 
h(5) 0.3053 0.2238 0.3968 0.3436 0.2934 0.2922 0.4456 0.3981 0.4947 0.4377 0.4984 0.4708 

h  0.6362 0.6442 0.2961 0.508 0.4299 0.4898 0.1931 0.1217 0.0043 0.091 0.0869 0.0784 

Notes: SG, HW, SB stands for Hard Winter Wheat futures, Strong Gluten Wheat futures and Soy Bean futures respectively.  

According to the results in Table 2, we find that the Hurst exponents h(q) of original agricultural 
commodity  futures price returns for order m=1,2,3  do change and become weaker after we shuffled or 
randomized  the time series, which indicates that both nonlinear temporal correlat ion and non -Gaussianity 
of the distributions make major contributions to the multifractality format ion. Especially , when q=2, for 
the shuffled data, all the Hurst exponent in China’s agricu ltural commodity futures markets are 
approximate to 0.5, for example, h(2)=0.5053±0.032 (Strong Gluten Wheat futures), h(2)=0.4789±0.0374 
(Hard W inter Wheat futures), h(2)=0.5097±0.0227(Soy Bean futures) and h(2)=0.5078±0.0119 (corn 
futures). These results clearly display the shuffled returns series are close to random walk and nonlinear 
temporal correlations make much larger contribution to the information of mult ifractality than non -
Gaussianity of the distributions. 

5. Conclusions 

In this paper, we have tested the mult ifractality properties and the causes in four representative 
agricultural commodity futures markets in China, including Hard Winter Wheat futures, Strong Gluten   
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Wheat futures, Soy Bean and corn futures. Our findings are as follows.  
First, empirical evidence from MF-DFA confirms that there exist mult ifractality in China’s agricultural 

commodity futures markets. 
Second, by shuffling the original time series, we eliminated market memories and remained the 

distribution of price fluctuations, while by phase randomizat ion of original time series, we weakened the 
non-Gaussianity distributions of price fluctuations. Comparing the empirical results from MF-DFA of 
shuffling data with surrogate one, we can identify that most mult ifractality of agricu ltural commodity 
futures prices variations is due to different long-range correlations for small and large fluctuations; at the 
same time, the non-Gaussianity distribution also contributes to multifractal behavior of time series. 

Finally, the multifractality properties of the four representative agricultural commodity futures prices 
are different. Compared to Strong Gluten Wheat, Soy Bean and corn futures markets, Hard Winter Wheat 
futures market indicates much richer multifractality and wider singularity spectrum, implying there exit  
higher risk in Hard Winter Wheat futures market. 
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