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Abstract In this paper, the new idea of finding the exact solutions of the non-

linear evolution equations is introduced. The idea is that the exact solutions of

the auxiliary ordinary differential equation are derived by using exp-function

method, and then the exact solutions of the nonlinear evolution equations are

derived with aid of the auxiliary ordinary differential equation. As examples,

the classical KdV equation, Boussinesq equation, (3+1)-dimensional

Jimbo–Miwa equation and Benjamin–Bona–Mahony equation are discussed

and the exact solutions are derived.
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Introduction

In this paper, the equation is considered as
Au00 þ Buþ Cu2 ¼ 0; ð1Þ

where A;B;C are arbitrary constants. Eq. (1) is one of the most important auxil-
iary equations, because many nonlinear evolution equations can be converted to
Eq. (1) using the traveling wave reduction (it is shown in ‘‘The applications of
the auxiliary ordinary different equation (1)’’ section).

Recently, He and Wu (2006) proposed a straightforward and concise method
called ‘‘exp-function method’’ to explore the exact solutions of modified KdV
equation, the Dodd–Bullough–Mikhailov equation. This method has been paid
attention by many researchers. Up to now, the exp-function method has been ap-
plied to find the solutions of a class of the nonlinear evolution equations, such as
the nonlinear Schrödinger equations with cubic and power law nonlinearity (Kha-
ni et al., 2007), combined KdV–mKdV equation (Ebaid, 2007), KdV equation
with variable coefficients (Zhang, 2007a), the discrete (2+1)-dimensional Toda
lattice equation (Zhu, 2008), and the Maccari’s system (Zhang, 2007b). Thus it
is easy to see that the exp-function method is a very powerful method and can
be used to study the exact solutions of the high-dimensional system, the discrete
system, and the system with variable coefficients.

According to the introduction above, the method presented in this paper is de-
scribed as follows: exact solutions of the auxiliary ordinary differential Eq. (1) are
firstly derived using exp-functionmethod. The exact solutions of a class of nonlinear
evolution equations which can be converted to Eq. (1) using the traveling wave
reduction are presented with the aid of the auxiliary ordinary differential Eq. (1).

This paper is organized as follows: in the next section, the exact solutions of the
auxiliary ordinary differential Eq. (1) are derived by exp-function method. A class
of the nonlinear evolution equations, such as the classical KdV equation, Bous-
sinesq equation, (3+1)-dimensional Jimbo–Miwa equation and Benjamin–
Bona–Mahony equation, which can be converted to auxiliary ordinary differential
Eq. (1) using the traveling wave reduction are introduced in ‘‘The applications of
the auxiliary ordinary different equation (1)’’ section, and the exact solutions can
be obtained with the aid of the auxiliary ordinary different Eq. (1). Some conclu-
sions and discussions are given in the final section.
The exact solution of auxiliary ordinary differential Eq. (1)

According to the exp-function method, we suppose that the exact solutions of
Eq. (1) is in the form as
uðgÞ ¼
Pc

n¼�dan expðngÞPp
m¼�qbm expðmgÞ ¼

ac expðcgÞ þ � � � þ a�d expð�dgÞ
bp expðpgÞ þ � � � þ b�q expð�qgÞ

: ð2Þ
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Thus we have
u00 ¼ c3 exp½ðcþ 3pÞg� þ � � �
c4 exp½4pg� þ � � �

; ð3Þ

u2 ¼ c1 exp½ð2cþ 2pÞg� þ � � �
c2 exp½4pg� þ � � �

; ð4Þ
where ciði ¼ 1; � � � ; 4Þ are constants determined later.
Considering the balancing between u00 and u2 in Eqs. (3) and (4) yields
c ¼ p:
From Eq. (2), we have
u00 ¼ � � � þ d3 exp½�ð3qþ dÞg�
� � � þ d4 exp½�4qg�

; ð5Þ

u2 ¼ � � � þ d1 exp½�ð2qþ 2dÞg�
� � � þ d2 exp½�4qg�

; ð6Þ
where diði ¼ 1; � � � ; 4Þ are constants determined later.
Considering the balancing between u00 and u2 in Eqs. (5) and (6) yields
q ¼ d:
Case 1 c ¼ p ¼ 1; d ¼ q ¼ 1
The Eq. (2) is converted as
uðgÞ ¼ a1 expðgÞ þ a0 þ a�1 expð�gÞ
expðgÞ þ b0 þ b�1 expð�gÞ ; ð7Þ
Substituting (7) into (1) and using Mathematica, the left hand side of Eq. (1) is
converted into a polynomial in eng. Setting the coefficients of eng to zero yields a set
of algebraic equations for a1; a0; a�1; b0; b�1.

With the help of Mathematica, we can obtain the solutions of the algebraic
equations above as

Case 1.1 a�1 ¼ 0; a1 ¼ 0; a0 ¼ �
3Bb0
C

; b0 ¼ b0; b�1 ¼
b20
4
;A ¼ �B;

Substituting the results above in to Eq. (7) yields the exact solutions of Eq. (1)
as
uðgÞ ¼ � 3Bb0

Cðeg þ b0 þ 1
4
b20e

�gÞ
; ð8Þ
where A ¼ �B.
In (8), setting b0 ¼ 2 yields
uðgÞ ¼ � 6B

C½coshðgÞ þ 1� ; ð9Þ
Case 1.2 a�1 ¼ � Bb20
4C
; a1 ¼ � B

C
; a0 ¼ 2Bb0

C
; b0 ¼ b0; b�1 ¼ b20

4
;B2 ¼ AC

Similar to Case 1.1, the exact solutions of Eq. (1) is obtained as
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uðgÞ ¼ �Bð4eg � 8b0 þ b20e
�gÞ

Cð4eg þ 4b0 þ b20e
�gÞ

: ð10Þ
where B2 ¼ AC.
Case 2 c ¼ p ¼ 2; d ¼ q ¼ 1
The Eq. (1) is in the form as
uðgÞ ¼ a2 expð2gÞ þ a1 expðgÞ þ a0 þ a�1 expð�gÞ
expð2gÞ þ b1 expðgÞ þ b0 þ b�1 expð�gÞ : ð11Þ
Case 2.1 B ¼ �1,
Case 2.1.1
Similar to Case 1, we obtain
a�1 ¼ 0; a0 ¼ 0; a1 ¼ a1; a2 ¼ 0; b1 ¼
2a1
3
; b0 ¼

a21C
2

36
;B ¼ �1:
Substituting the results above into (11) yields
uðgÞ ¼ a1e
g

e2g þ 2a1
3
eg þ a2

1
C2

36

: ð12Þ
Case 2.1.2
Similar to Case 1, we obtain
a2 ¼ 0; a1 ¼ a1; a0 ¼ a0; a�1 ¼ 0; b1 ¼
2Ca21 þ 6a0

6a1
; b0 ¼ �

24Ca0 þ a21C

72
; b�1

¼ a0a1C
2

36
;

Substituting the results above into (11) yields
uðgÞ ¼ a1e
g þ a0

e2g þ 2Ca2
1
þ6a0

6a1
eg � 24Ca0þa21C

72
þ a0a1C

2

36
e�g

: ð13Þ
Case 2.1.3
Similar to Case 1, we obtain
a�1 ¼
2a3

2
b31�3a

2
2
a1b

2
1þa

3
1

108a2
2

; a0 ¼ �
5a2

2
b21�3a

2
1
�2b1a1a2

12a2
; a1 ¼ a1; a2 ¼ a2;

b1 ¼ b1; b0 ¼
3a2

2
b21�2b1a1a2�a

2
1

12a2
2

; b�1 ¼
2a3

2
b31�3a

2
2
a1b

2
1þa

3
1

108a3
2

;

Substituting the results above into (11) yields
uðgÞ ¼
a2e

2g þ a1e
g � 5a2

2
b21�3a

2
1
�2b1a1a2

12a2
þ 2a3

2
b31�3a

2
2
a1b

2
1þa

3
1

108a2
2

e�g

e2g þ b1eg þ 3a2
2
b21�a21�2b1a1a2

12a2
2

þ 2a3
2
b31�3a22a1b

2
1þa31

108a3
2

e�g
: ð14Þ
where a2 ¼ 1
C
:
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Case 2.2 B > 0, We can obtain the exact solutions of Eq. (1), here we omit for
simplicity.

Case 3 c ¼ p ¼ 2; d ¼ q ¼ 2
The Eq. (2) is in the form as
uðgÞ ¼ a2 expð2gÞ þ a1 expðgÞ þ a0 þ a�1 expð�gÞ þ a�2 expð�2gÞ
expð2gÞ þ b1 expðgÞ þ b0 þ b�1 expð�gÞ þ b�2 expð�2gÞ

; ð15Þ
In Eq. (15), setting b�1 ¼ b1 ¼ 0 for simplicity, Eq. (15) is converted to
uðgÞ ¼ a2 expð2gÞ þ a1 expðgÞ þ a0 þ a�1 expð�gÞ þ a�2 expð�2gÞ
expð2gÞ þ b0 þ b�2 expð�2gÞ

: ð16Þ
Case 3.1
Similar to Case 1, we obtain
a2 ¼ 0; a1 ¼ 0; a0 ¼ a0; a�1 ¼ 0; a�2 ¼ 0; b0 ¼ �
2Ca0
6B

; b�2 ¼
a20C

2

36B2
:

Substituting the results above into (16) yields
uðgÞ ¼ a0

e2g � 2Ca0
6B
þ a2

0
C2

36B2 e�2g
; ð17Þ
Case 3.2
a2 ¼ 0; a1 ¼ a1; a0 ¼
Ca21
3B

; a�1 ¼
a31C

2

36B2
; a�2 ¼ 0; b�2 ¼

C2a41
5184B2

; b0 ¼ �
C2a21
18B2

:

Thus the exact solutions of Eq. (1) can be obtained as
uðgÞ ¼
a1e

g þ Ca2
1

3B
þ a3

1
C2

36B2 e
�g

e2g � C2a2
1

18B2

C2a4
1

5184B2 e�2g
: ð18Þ
Case 3.3
a2 ¼ a2;a1 ¼ 0;a0 ¼�2a2b0;a�1 ¼ 0;a�2 ¼
a2b

2
0

4
;b0 ¼ b0;b�2 ¼

b20
4
;B¼�Ca2:
Thus the exact solutions of Eq. (1) can be obtained as
uðgÞ ¼
a2e

2g � 2a2b0 þ 1
4
a2b

2
0e
�2g

e2g þ b0 þ 1
4
b20e

�2g
: ð19Þ
where a2 ¼ � B
C
.



194 J.-L. Zhang et al.
Case 3.4
a2 ¼ a2;a1 ¼ a1;a0 ¼
5a21
18a2

;a�1 ¼
a31

36a22
;a�2 ¼

a21
1296a32

;b0 ¼�
a21
18a22

;b2 ¼
a41

1296a42
:

The exact solutions of Eq. (1)are in forms as
uðgÞ ¼
a1e

g þ a2e
2g þ 5a2

1

18a2
þ a3

1

36a2
2

e�g þ a4
1

1296a3
2

e�2g

e2g � a2
1

18a2
2

þ a4
1

1296a4
2

e�2g
: ð20Þ
where a2 ¼ � B
C
.

Remark 1: We can obtain other type solutions of Eq. (1) such as we set
f ¼ c ¼ 4; d ¼ g ¼ 4.

The applications of the auxiliary ordinary different equation (1)

In this section, the classical KdV equation, Boussinesq equation, (3+1)-dimen-
sional Jimbo–Miwa equation and Benjamin–Bona–Mahony equation are consid-
ered again and the exact solutions are derived with the aid of the auxiliary
ordinary different Eq. (1).

KdV equation

We firstly consider KdV equation (Mei and Zhang, 2005; Siraj-ul-Islam et al.,
2008; Wang et al., 2008; Zhang, 2009) as
ut þ uux þ buxxx ¼ 0; ð21Þ

where b is constant.

Supposing the exact solutions of Eq. (21) are in the form as
uðx; tÞ ¼ uðnÞ; n ¼ kðx� ctÞ þ n0; ð22Þ

where n0 is constant.

Substituting (22) into (21) yields
�cu0 þ uu0 þ bk2u000 ¼ 0: ð23Þ

Integrating Eq. (23) once and setting integral constant to zero, Eq. (23) is con-

verted to Eq. (1), where
A ¼ bk2;B ¼ 1

2
;C ¼ �c: ð24Þ
Boussinesq equation

The Boussinesq equation (Abassy et al., 2007; Inc, 2008; Javidi and Jalilian, 2008)
considered as
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utt � c20uxx � auxxxx � bðu2Þxx ¼ 0: ð25Þ

Supposing the exact solutions of Eq. (25) are in the form as
uðx; tÞ ¼ uðgÞ ¼ uðkxþ xtÞ; ð26Þ

where k;x are constants.

Similar to the ‘‘KdV equation’’ section, by using Eq. (26), Eq. (25) is converted
to Eq. (1),where
A ¼ ak4;B ¼ c20k
2 � x2;C ¼ b:
(3+1)-Dimensional Jimbo–Miwa equation

(3+1)-Dimensional Jimbo–Miwa equation (Liu and Jiang, 2004; Ma and Lee,
2009; Ma et al., 2009; Turgut and _Ismail, 2008) is considered as
uxxxy þ 3uyuxx þ 3uxuxy þ 2uyt � 3uxz ¼ 0: ð27Þ

Supposing the exact solutions of Eq. (27) are in the form as
uðx; y; z; tÞ ¼ uðgÞ; g ¼ kxþmyþ rzþ xt; ð28Þ

where k;m; r;x are constants.

Similar to the ‘‘KdV equation’’ section, by using Eq. (28), Eq. (27) is converted
to Eq. (1),where
A ¼ k3m;B ¼ 2mx� 3kr;C ¼ 3k2m:
Benjamin–Bona–Mahony equation

In this section, we consider Benjamin–Bona–Mahony equation (El-Wakil et al.,
2008; Lai et al., 2009) as
ut � uxxt þ ux þ
u2

2

� �
x

¼ 0; ð29Þ
Supposing the exact solutions of Eq. (29) are in the form as
uðx; tÞ ¼ uðgÞ; g ¼ kx� xt; ð30Þ

where k;x are constants.

Similar to the ‘‘KdV equation’’ section, by using Eq. (30), Eq. (29) is converted
to Eq. (1),where
A ¼ k2x;B ¼ k� x;C ¼ 1

2
k:
Remark 2:We can obtain the solutions of Eqs. 21, 25, 27, and 29 with the aid of
the auxiliary ordinary different Eq. (1). Here we omit for simplicity.
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Remark 3: There are other partial differential equations which can be converted
to the auxiliary ordinary different Eq. (1) with the aid of the traveling wave
reduction.

Conclusions and discussions

The auxiliary equation method is very important in finding the exact solutions of
nonlinear evolution equations, and the auxiliary ordinary different Eq. (1) is one
of most important auxiliary equations because many nonlinear evolution equa-
tions, such as the classical KdV equation, Boussinesq equation, (3+1)-dimen-
sional Jimbo–Miwa equation and Benjamin–Bona–Mahony equation and other
PEDs, can be converted to this equation using the traveling wave reduction. In this
paper, we apply exp-function method to derive the exact solutions of the auxiliary
ordinary different Eq. (1). The exact solutions of the classical KdV equation,
Boussinesq equation, (3+1)-dimensional Jimbo–Miwa equation and Benjamin–
Bona–Mahony equation are derived with the aid of the auxiliary ordinary differ-
ent Eq. (1). The idea introduced in this paper can be applied to other nonlinear
evolution equations.
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