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Abstract 

In this paper some properties of the correlation autoregressive (CAR) sequences are studied 
A representation for the correlation function of an arbitrary CAR sequence is obtained and the 
relationship between a CAR equation and the growth of the variance and location of spectral 
lines is revealed. It is also observed that bounded correlation autoregressivc sequences coincide 
with almost periodically correlated sequences with the spectral measure supported on finite11 
many lines. As a consequence a characterization of the spectrum of a bounded CAR sequencr 
is provided. @ 1997 Elsevier Science B.V. 

Ke~~ovds: Correlation autoregressive sequence: Almost periodically correlated sequence; 
Harmonizable process; Spectral representation 

AMS ck&fi~~ltion: 60GlO; 6OG25 

I. Introduction 

Recently there has been a growing interest in the study of nonstationary stochas- 
tic processes, which are interesting from the theoretical point of view, see Chang 

and Rao (1966), Cramer (1962), Gardner and Frank ( 1975), Gladyshev ( 1961). Hurd 
(1974), Hurd (1991), Miamee and Salehi (1978), as well as for their numerous appli- 
cations in science and engineering, see Gardner and Frank (1975), Hardin and Miamee 
(1990), Miamee and Salehi (1980), Priestly (1988). In most cases the study leads 
to consideration of different classes of nonstationary processes which in one way or 
the other extend the class of stationary processes. Periodically correlated processes 
(Gladyshev, 1961) and almost periodically correlated processes (Hurd, 1991) arc two 
examples of such classes. Hardin and Miamee (1990) introduced a new class of non- 
stationary stochastic processes, called correlation autoregressive processes. A sequence 
x = {x,,: n E Z} of complex, zero-meansquare integrable random variables is called 
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correlation autoregressive (CAR, in short) if its correlation function RJm, n) = Ex,G 
satisfies a CAR equation 

R,(m,n)= ~a~R,(m+k,n+k), n,mEZ 
k=l 

(1) 

for some finite set of scalars ak, k = 1,. . . , r. 
Below are some examples of CAR sequences. 

Example 1. If x = {xn: n E Z} is a stationary sequence then its correlation function 
satisfies the equation R.y(m, n) = R,(m + 1, fi + l), m, n E Z. It also satisfies the equa- 
tion R,(m,n)=2R,(m+ l,n+ 1) ~ Rx(m+2,n+2), m,nEZ. It shows that a CAR 
equation of a CAR sequence is not unique. 

Example 2. A sequence x = {x,: n E Z} is called periodically correlated (PC), if there 
is an integer T such that RJm, n) = R,(m + T, n + T), m, n E Z. Clearly each PC se- 
quence is CAR. 

Example 3. If z, is a stationary sequence then both y, = a”z,, and w, = nz,, are CAR 
sequences, for 

Ry(m,n)=(la12 + l)-‘R,(m+ l,n+ l)+ lai2(1a12 + l)-‘R,(m - 1,n - l), 

R,~~(m,n)=3R,~(m+1,n+1)-3R,(m+2,n+2)+R~,(m+3,n+3), 

m, n E L. In fact every sequence of the form x, = innkz,,, where 3. # 0 and k is a non- 
negative integer is a CAR sequence. This follows from the next example. 

Example 4. If z = {(z,k ): k = 1,. , N, n E Z} is an N-dimensional stationary sequence 
then for all nonnegative integers kl, . . , kN, complex nonzero numbers 1.1,. . , &, and 
scalars c,,,~ the sequence x, defined by 

(2) 
s=l CL=0 

is CAR. 

Proof. Observe that the correlation of x, can be written as 

R,(n+p,n)= 2(&i.,)” 
s,t=l -( 

with proper coefficients C(s, t, v, p) that do not depend on n. Let 

p(z) =A n (/ISIb, - Zy,fk,+‘, 
s,t=l 

where A is such that the constant term of p is equal 1. From Hildebrand (1968) it 
follows that RJm, n) satisfies the Eq. (1) with the scalars ak, k = 1,. . . , Y defined by 
equation p(z)= 1 - CL=, akzk. 0 



The question whether or not every CAR sequence is of the form (2) is still open. 
In the present work we study only discrete time processes. However, the continuous 

time CAR processes have been introduced and proved to be useful in applications; cf. 
Hardin and Miamee (1990) and Dargahi-Noubary and Miamee (1993). For example. in 
analysis of a helicopter noise an observer records consist of two periodically correlated 
random noise processes, namely, those generated by the main and tail rotors. Since the 
periods of these processes are generally incommensurate, the helicopter noise is not 
periodically correlated. However, once the spectrum of the helicopter noise is analyzed 
it turns out to be supported on several lines parallel to the line J’ =_Y. We will see 
later that the helicopter noise process is actually a CAR process. 

Another potential area for the applications of the CAR processes is that of seismic 
waves. Numerous models ranging from simple stationary white noise to ARMA sta- 
tionary process have been proposed by different authors for modeling seismic waves. 
The most popular and successful models are uniformly modulated stationary processes. 
These models are generally based on the assumption that seismic records ~3, arc com- 
posed of a dctcrministic envelope function g(t) and a zero-mean stationary stochastic 
process s,_ i.e. _ilt = ox,. Here are some typical envelope functions proven to bc 
useful in fitting some data: 

Example 4 shows that all these models are included in the class of CAR processes. 
In this paper we discuss some fundamental properties of CAR sequences. In Section 2 

a representation for the correlation function of a CAR sequence is provided and the 
growth of the variance of x,, as n + +x, is examined. In Section 3 the spectrum of 
a CAR sequence is studied. Among other results, it is shown that every bounded CAR 
sequence is almost periodically correlated. 

Throughout the paper 1w, C), Z, and N will denote the set of real numbers, complex 
numbers, integers, and nonnegative integers, respectively. H will stand for a complex 
Hilbert space (which replaces the space of zero-meansquare integrable complex ran- 
dom variables) and (.:) will denote the inner product in H. The unit circle T will 
be identified with the interval [0,27c) and the torus T’ with the square [O. 2rr)’ (the 
algebraic operation are in the usual module 27t sense). B(T) and B(T’) will denote 
the Bore1 o-algebras in T and T’. respectively. If cp is a function on T then supp(cp) 
will denote the closure of the set {I: (p(t) # 0). If ,f’ IS an integrable function on T 
(T’, respectively) then 

and 

ePi(m’L”‘) ,f’(s. t) ds dt, 171, n t M, 
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respectively, will denote the Fourier transform of f. In the sequel all integrals will be 
over [0,2x), unless otherwise is stated. The symbols C”(T) (Cx(T2), respectively) 
will denote the set of all infinitely many times differentiable functions on T (T*, 
respectively) equipped with the topology of uniform convergence of all derivatives 
(see Edwards, 1979, 12.1). C(T) and C(T*) will stand for the space of all continuous 
functions on T and T*, respectively. If f, g E C(T) then f@ g will stand for the C(T2) 
function defined by f@ g(s, t) = f(s)g(t). 

2. Representation of the correlation function of a CAR sequence 

Recall that, by definition, the correlation function R,(m,n) = (xm,xn) of a CAR se- 
quence x = {x,: n E Z} satisfies a CAR equation 

R,(m,n)= ~akR,(m+k,n+k), n,mEZ, 
k=l 

(3) 

where r is a positive integer and ak, k = 1,. . . , Y, are some complex numbers. Example 
1 shows that ak’s and r are not uniquely determined by the sequence x. Below we 
introduce the concept of a miminal CAR equation that is unique. 

Definition 1. Let x = {x,: II E Z!} be a sequence in a Hilbert space H. 
1. An admissible polynomial for x is any polynomial p(z) = 1 - CL=, akzk such that 

the correlation function of x satisfies the equation RJm, n) = xi=, ak R,(m+k, n+k), 
n,mEZ. 

2. A minimal admissible polynomial is an admissible polynomial of the lowest degree. 

Clearly, x is a CAR sequence if and only if it has at least one admissible polynomial. 

Lemma 1. Each CAR sequence x = {xn: n E Z} has only one minimal admissible poly- 
nomial and hence a unique minimal CAR equation. 

(i) Proof. Suppose that pi(z) = 1 - C,‘=, uk z k, i = 1,2, are two distinct minimal admis- 
sible polynomials of a CAR sequence x. Let m = min{j: u;” #a:“}. Then zpM(a$) - 

a:))-‘(pz(z) - p,(z)) is clearly an admissible polynomial with degree lower than n, 
which leads to a contradiction. 0 

The unique minimal admissible polynomial of a CAR sequence x will be referred 
to as the MAP of x. 

In this section we discuss certain properties of a CAR sequence controlled by its 
MAP, or more precisely by the roots of its MAP. This includes a representation of 
the correlation function of a CAR sequence. Most of the proofs are lengthy and of 
algebraic nature and, hence, for the sake of clarity, they are presented in Appendix. 

Theorem 1. (Representation of correlation function). Let x = {xn: n E Z} be a CAR 
sequence and let p(z)= 1 - CL=, &zk, z E C, be its MAP. Let ij, j=O,. . .,q, be 



distinct root,r of p und let m(R,) = mi, j = 0,. . y, be their nzultiplicitirs. Tlwn thtw 
urt~ numhrrs %,,h(p), p E z, j = 0,. ,q, k = 0,. . mj - 1. such that 

From (4) it is clear that the growth rate of the variance R,Y(n,n) of x as II -- rf x 

is controlled by the roots of the MAP and their multiplicities. This statement is made 
more precise in the following sequel of theorems. 

First we record some properties of the roots of a MAP. 

Theorem 2. Lrt p(z) = 1 ~ xi=, @,z ’ he the MAP of’ u CAR srqurncr s. id. . I,, 
denote> distinct roots of p and m(i,j stund.fbr tlw multiplicity of a root I,. Furtlwr- 
mow let i.,,,, = max{ llbi I: j = 0,. , q} untl k+ = max{ m( i, ) ~ 1 : 1 i, 1 = 2,,;,,}. Sinzilrrrl~~. 
Ir t im,,, = min{li.,/: j=O ,..., q} und k_=:max{m(i,)- 1: /jL,/=&,,,,}. Tlwn 
1. All ok’s clre red. 
2. i = i .,,, ax is LI root of p \rlith multiplicity m( i .,,, ax ) = k 1 + 1. 
3. i = i, ,111 is (I root of’ p with rnultiplit~ity m(j.,,,,) = k_ + I. 

The roots i.,,,,, and imin and their multiplicities govern the growth behavior of the 
variance of x,, at +o as we see in Theorem 3. In the next section we observe that 
the other roots are responsible for the location of spectral lines of a sequence. 

Theorem 3. Let x = {x,: n E I?} hr u CAR scquencr md p(z) = 1 - C; _, LISZT 170 
its MAP. Lrr I.,,,, k,, irnl,, und k _ ht> us in Thrortw 2. Then tlwrr urt’ ho~rntl~~tl 
.wquencf.s cl (11) und c_(n), n > 1, not convrrging to 3tw .swh tliat 

1. //.~,~/l’=(.,(n)R’~,,n~-. n>l, uncl 
2. //.~,,ll’ -=c,_(n)&,:nk -, n> 1. 

The following are two immediate corollaries from Theorems 2 and 3 

corollary 1. Let x = {&: n E i?} hl’ u CAR sequenw md p(z) = 1 ~ )-_, (ihZh ix’ 
its MAP. Lrt j.0.. ,i,, denote the roots sf p and lvt m(j+), k = 0.. _. .q, he their 

rnultiplicitirs. Tlwn ~Ix,//~ <Clnl”, II E Z, ,f& sornr C >O und k E N, if’ rrntl onl~s if’ 
Ii., 1 = 1 jiw (I// j = 0,. . , q, If’ this is t/w cuse thrn 
1. i,= 1 is u root ?f p, i.e. c;=, ah = 1, 
2. m(l)=max{m(i,): j=O ,..., q}<k + 1. 

Corollary 2. A CAR sequence x = {xn: n E Z} is hountid if’ md only, if’ ~111 root.s of’ 
its MAP we of’ modulus 1 und multiplicity 1. 
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3. Spectrum of a CAR sequence 

Roughly speaking, the spectrum of an H-valued sequence x = {x,,: n E Z} is the 
Fourier transform of R,(m, -n) in whatever sense it exists. If for example a sequence 
x = {x,: n E Z} c H is hurmonizable, that is if there is an H-valued Bore1 measure p 
on T such that 

x, = J exp(intMdt), (5) 

for all IZ E Z, then the spectrum of x is identified with the bimeasure &( ld,, 1~~) = 
(p(Al),p(Az)), Al, 42 EB(T). If a sequence x is strongly harmonizable, that is if there 
is a Bore1 measure r, on T2 such that 

R,(m,n)= JJ e’(ms-“t)rX(ds, dt), (6) 

m,n E Z, then the spectrum of x is identified with r,. 
Recall that a sequence x = {xn: II E Z} is stationary if its correlation function R,(m, n) 

depends only on m -n. Each stationary sequence is strongly harmonizable and the mea- 
sure r, in representation (6) sits on the diagonal D = {(s, t) E T2: s = t}. Commonly, 
the spectrum of a stationary sequence is identified with the measure r, o P’, where 
@: (s,s) + s maps D onto T. Harmonizable sequences, and hence strongly harmoniz- 
able and stationary sequences are bounded. 

The notion of the spectrum of a second-order stochastic sequence can be, in a natural 
way, extended to the class of sequences with polynomial growth of variance as follows. 
We also include here the definition of the random spectrum, which in the harmonizable 
case corresponds to the measure ,U in the integral (5). 

Definition 2. (c$ Mukugon and Mundrekur, 1990). Let x = {x,,: n E Z} be a sequence 
in H such that IIx,lllbClnlk for some C>O and kE N and all FEZ. 
1. The mapping F, : C”(T) ---f H defined by 

F,(f) = c .h>xn 

f E C”(T), is called the random spectrum of x. 
2. The mapping D, : C”(T”) + C defined by the formula 

&(.f) = ~?(~,n)R,(m, --yl) 
m,n 

f E Cx(T2), is called the spectrum of x. 

Since the Fourier coefficient of functions from C” decrease faster than in polynomial 
rate, FX and D, are well-defined continuous linear operators from C”(T) to H and 
from Cx(T2) to @, respectively, and hence D,, is a distribution in the Schwartz sense 
(for definition and other facts about distributions see Edwards, 1979). Also note that 

VXf)>My))=Wf @:9)> f>sEC‘=CU. (7) 



Proof. Since R,(m,n) = D,y(ei(““P’7’) ), _I- is a CAR sequence if and only if there arc 
scalars a~. k = I,. . , Y such that 

D,(e 
I(1111~111)) = D, 

( 

2 ~/;elh(.s~r’e’(“‘.‘-“‘) 

I=1 ) 

for every 1n.n E Z. Since the Fourier transform determines a distribution uniquely. this 
holds true if and only if the distribution 

h - D, 
cc 

1 _ e akelkL-t) 

h-1 ) ‘i 
h(,c t 1 

is identically zero. The argument above also shows that R,(m.n) = R,(m f 1.11 t I ) fat 
every nz,n E H if and only if D,(( 1 ~~ e “‘+‘))h(s, t)) mz 0 for every h E c’” (T’). I 

Recall that the support supp D of a distribution D: C”(T’) - K is the smallest 
closed subset S of T2 such that D( J’) = 0 provided that supp( f’) n 5’ = fl. 

The following theorem shows that the spectrum of a CAR sequence .Y of polynomial 
growth is supported on finitely many lines parallel to the diagonal, and that the root< 
of the MAP of x determine the location of the lines. 

Proof. Since x is a CAR sequence. from (8) it follows that 

D,( p(e”“-“)h(s, t)) = 0 for all h E C”(T’ ). (9) 

Let ,f’t Cy(T’) be such that supp(f) is disjoint from S = UT=,, Dir,. Putting 
h(s. t) = ,f’(s, t)/p(e’(“P”) into Eq. (9) we obtain that D.,( ,f’) = 0. Hence, the support of 
D, is contained in S. 0 

If a CAR sequence x is bounded then certainly the conclusion of Theorem 4 holds 
true. We will show that in this case D,, is a measure. 

We present two proofs of this fact. The first proof, given below, is based on the 
observation that due to Theorem 1 and Corollary 2 bounded CAR sequences are almost 
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periodically correlated and on an advanced result on the spectrum of almost periodically 
correlated processes established by Hurd (1991). The second proof, although lengthy, 
uses elementary distribution theory and is given in Appendix. We feel that the second 
method is worth to be looked upon for it is more direct and introduces new technique 
in analysis of APC processes. 

Recall that a sequence x = {xn: n E Z} in a Hilbert space is almost periodically 

correlated (APC) if for every p E L the sequence R,(n+p, n), n E Z, is almost periodic 
in n in Bohr sense (that is it is a uniform limit of trigonometric polynomials of the 
form c, ck exp(&n)). If x is an APC sequence then the limit 

ue( p) = N__$ERX(n+p,n)e+” lim 
iI=0 

(10) 

exists for every 8 E [0,2rc). If se(p) is not identically zero then Q will be referred to 
as a cycle frequency of X. Hurd ( 1991) showed that if x is APC then x has at most 
countably many cycle frequencies and for each of them a~(.) is the Fourier transform 
of a complex measure. 

Theorem 5. Let x = {x,: n E Z} be a bounded sequence in a complex Hilbert space. 
The following three conditions are equivalent: 
1. x is a CAR sequence, 
2. x is an APC sequence with jinitely many cycle jiequencies, 
3. x is strongly hurmonizable and its spectral meusure is supported by jinitely many 

lines parallel to the diagonal. 

Proof. (1 e 2): Let x be a bounded CAR sequence. From Theorem 1 and Corollary 2 
it follows that the correlation function of x is of the form 

r-i 
R,(n + p, n) = c e’“‘$ a,,o(p>. 

,j=O 

(11) 

and Uj,a(.) is not identically zero for any j = 0,. . . , Y - 1. Hence, x is APC and Qj, 
j = 0,. . , r - 1, are its cycle frequencies. 

Conversely, suppose that x is APC and it has only finitely many cycle frequencies 
&, k=O ,..., Y- 1. By (10) 

r-l 
R,(n + p, n) = c einui au,(p), n, p E Z. (12) 

k=O 

Letting p(z) = C nL=,(ei”Ok - z), where C = n;=, einOk, one can see that p is an ad- 
missible polynomial for x (cf. proof of Theorem 1 in the appendix), and hence x is a 
CAR sequence. The equivalence (2~3) is proved in Hurd ( 1991) in a more general 
setting. 17 

In this paper we do not address questions concerning prediction or statistics of CAR 
sequences. In the case of a bounded CAR sequence, Theorem 5 makes possible to 
adopt procedures described in Hurd and Leskow (1992) and Leskow (1994) for APC 
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processes to estimate the coefficients z;.o(p) in (1 I ) and the density of the spectral 
measure D, restricted to the line Do,. A deficiency of this approach is that these 
procedures assume prior knowledge of cycle frequencies O,, k = 0,. , Y - 1. and at 
present no consistent estimators of cycle frequencies are known. It seems that it would 
be more desirable to develop direct estimates of coefficients a!, appearing in the CAR 
equation (3), and then use Theorem 4 to retrieve cycle frequencies. We feel that more 
research is to be done in this direction. 

Appendix 

A. 1. Proof‘ of’ Theorem I 

Recall that every solution to a system of homogenous difference equations 

is of the form 

(A.2) 

where 20,. , i, are distinct roots of the characteristic polynomial q(z) = cl=,, h,z’ of 
the Eq. (A.1) and m(i) denotes the multiplicity of a root 3,. Note that if in (A.2) 
‘x~,,~~(;,, )_, = 0 for some p E (0,. . , q} then the sequence II, also satisfies an equation 
of lower degree, namely 

1.-I 

c C,Uh +, = 0. (A.3) 
/@ 

where c,, ,j = 0,. .r - 1, are such that 

2 h,Zl = 2 CjZ’ (Z - ip). 
1x0 

i 1 j=O 

Let now x be a CAR sequence. By assumption the sequence L$ = R,(n+ p. n). n cc 2. 
’ satisfies the difference equation z&-~;_, &U,,+h - , - 0 n E L. Hence, from the discussion 

above it follows that R,Jn + p, n) has the form (4). If for some j, s(,,,~, _ r ( p) = 0 for all 
p E Z, then for every p E Z the sequence R,(rz + p. n) would satisfy the lower degree 
equation 

R,(n + p, n) = c ckR,(n + y + k. n + k), 
k=l 

where 1 - c;l: ckZk = - ~,p(z)/(z ~ ij), z E @. This contradicts the minimahty of 
the polynomial p(z). 0 
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A.2. Proof of Theorem 2 

We will need the following two lemmas. 

Lemma 4.1. (Zygmunt, 1968, pp. 235-238). Let 70,. , yq be distinct numbers from 
[0,2x). Then there is u sequence of integers np + 00, such thut 

max lein,,;” - 1 ) 'Z 0, 
O$j<q 

The next lemma is an easy consequence of the above result. 

Lemma 4.2. Let ‘li, j=O,. ,q be distinct numbers from [0,2x) and pj, j = 0,. ,q, 
be anjl complex numbers. 
1. If C,“=, e’i~“~i ‘ix 0, then pj = 0, j = 0,. , q. 

2. If’not all p,j’s ure zero und CJ_, e’)inflj 30, f or all n >no, then there is un index 
jo, 0 < jo <q, such thut yjO = 0 und /3j0 >O. 

Proof. 1. Let np be as in Lemma 4.1 and let k E Z. Then 

0= lim 
p + 0 

where p(dt) = C,“=, fljisy,(dt), and 6, denotes the probabilistic measure concentrated at 
a point a. Since the Fourier transform determines a complex measure uniquely, flj = 0, 
j = 0, , , , q. 

2. Let U, = C,y:, e’;‘inpi, n > 0. If all Yj’S are different from zero, then 

9 1 _ e';',(n+l) 

u. + ... + 24 = C 1 _ eiy, pj 
j=O 

Since u, 30 for jano, and the right-hand side in the expression above is bounded in 
n, ~,~o u, <CW. Hence, u, 4 0 (as n--f cc), which in view of Part I contradicts the 
assumption that not all 13/‘s are zero. Therefore, one of the numbers yj, say yjO, is zero 
and fi,” # 0. In this case, 

rtEN, which yields that b,” = limn+x l/(n + l)(uo + . . + u,)>O. Therefore, 
pi, >O. 0 

Proof of Theorem 2. 1. Since xi=, GR,(m+k, n+k) = &(n, m) = R,(m, n), p*(z) = 1~ 

c;=, Gz k is an admissible polynomial. Therefore, from Lemma 1 it follows that 
&=a, k=l,..., r. 



2. Let B = {,j: ii.ji = ;.“,a,}, k+ = max{nz(L,)-m l:,j~B}, &,={,~EB: m(R,)-=h, + 

l}, and Bt =B\&. Then from (4) it follows that 

and hence 

where r.(r~)+O, as n + cx and ;‘, =arg(/,), ,j E Bo. From Theorem I it follows 
that there is an integer p and j E &I such that xl!, (y) # 0. With this p, in virtue of‘ 
Lemma 4.2 there is a subsequence I?,, -- :X such that 

Since (R,(n + p,n)12 <R,( n.n)R,(n + p.n + y), we obtain that 

Because ,-‘i (n) --f 0 as IZ + CC, at least one x,,~+ (0) must be nonzero. Taking JJ = 0 in 
the Eq. (A.4) we conclude that 

(A.5) 

where not all x,J_ (0) = 0, ,j E Bo. Let ~~~~ 4 cx be a sequence such that exp(i;‘,rr,, ) - I 
for all j t Bo. Since r!(n) + 0, 

for all p E Z. From Lemma 4.2 we conclude that one of 7,‘s say J’,,,. j. E Bo, is equal 
to 0 and rj,,h.(O)>O, i.e. ILj,) =I.,,, and m(I.,,,)=li_ + I = max{m(i.,): ;).,I =i .,,, ;,y}. 

3. The proof of Part 3, goes along the same lines as the proof of Part 2. L 
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A.3. Proof of Theorem 3 

1. Let B, Bo, Bi, ~$?(n) and yi be as in the proof of Theorem 2, Part 2. From (A.4) 
if follows that 

lIxnI12 =c+(n)&d+, (‘4.6) 

where c+(n) = y!(n) + C,EBoei)‘%j,k+(0) does not converge to zero. 
The proof of Part 2 follows in the same way from the proof Part 3 of Theorem 2. 

0 

A.4. The second proof of Theorem 5 

Let x = {x,: n E Z} be a bounded CAR sequence, and D, and F, be its spectrum 
and random spectrum, respectively (see Definition 2). Let p(z) be the MAP of x and 
let ibj, j = 0,. . . , Y - 1 denote the zeros of p. In view of Corollary 2, we may assume 
that3~,=ei’~~,j=O,...,r-1,where00=O<0~<~~.<8,~~<2~. Letd=imin{l@- 
OjiLjfk}. 

With these notation we break the proof into few lemmas. 

Lemma 4.3. Zj’ supp( f) c{(s, t) E T2: Js - t - Ok / cd}, then 

D,(f) = eCi”iDx(e’(“-‘)f (s, t)). (A.7) 

Proof. Consider the function 

P(e ) 
i(s-t) 

d&t)= (el”i _ e’(S-‘))’ 

Then ,f(s, t)/g(s, f) = h(s, t) E Cs(T2) and from (8) we get Dx((e’“i - e’(“-“))f(s, t)) = 
Dx(p(ei(S-‘))h(s, t)) = 0, which proves (A.7). 0 

Lemma 4.4. The sequence x = {x,: n E Z} is harmonizable. 

Proof. Let fk E C”(T), k = 0,. . , N - 1 be functions such that 
1. O<fj(t)<l, k=O ,..., N-l, 

2. c&’ ji(t) = 1, t E [O, 27c), 

3. supp(h @ fk) c{(s,t): Is - 4 cd}. 
Let fi(f )=E(ffk), f E C”(T). S’ mce & = 1 is a root of p with multiplicity one, 
the function 

P(c ) 
i(s-t) 

vl(s, t)’ (1 _ ,i(s-t)) 

is nonzero in the strip IS - tI <d. Moreover, because supp(,fk @ fk)~{(.s,t)ET~: 
Is - tI cd}, the function fk(s)fko/y(s, t) IS in Cm(T*) for every k. Hence, by (8), 

D,(( 1 _ e’(S-‘) )fk(s)fk(t)f(& t)) = Dx p(e 
i(s-t))h(s)h(t) 

v(s,t) f(s,t) =0 
> 

(A.8) 



for all J’ E Cm(T2). Let yi = J$(e”‘. ), n E Z, k = 0.. , N - I. By (7) The spectrum ot 
1,’ = {yi = Fj.(e’“‘): n E Z} is given by 

D,v ( f’) = D,( .f~(s)ji(t).f(.s, t)), ,f’E C”(T2) 

and in view of (A.7) DY~( ,f) = Dj,h (e’(‘-“J‘(.r, t)), for each k = 0,. . N ~ I and 
f‘ E C”(T’). Therefore, by Lemma 2 Part 2., each sequence ltk = {pi : II t Z}. X = 
0.. , N ~ I, is stationary and hence harmonizable. Since X, = c,“lO’ .I,:, .I- is also 
harmonizable, that is there exist an H-valued measure 1~ such that x,, = ,j’c”“/l(df). 
r?EB. n 

Recall that an r-dimensional stochastic sequence in a Hilbert space K is a sequcncc 
y={y,,: FEZ}, where y,=(yi)k_~ . . . . . -._I and y,! E K. An /.-dimensional stochastic 
sequence y is called stationary if the matrix correlation function R,.(m, II) == (y,,(,y,,) = 

KG,? yi, )]~.,X~j,. .,r- 1 depends only on m - 17. The matrix correlation function R, of an 
r.-dimensional stationary stochastic sequence y admits the representation 

J’ 
2n 

R,.(m, n) = e’Cm-n)rc,(dt), m. pt E Z (A.9) 
0 

where c, is a countably additive nonnegative definite matrix-valued measure on T 
called the spectral measure of y. 

Lemma 4.5. Let a = min{ IHi - 0, - 0~ I: 0, - 0, ~ 0~ # 0} und let q E N lx .scrch 1111/1 
271~ qa. Let El = [2njjlq, 27~(j + l)/(/), ,j = 0,. . L/ - 1. FOV ~~1~17 k = 0,. . . I.- I. ~/C/~/IO 

(I K = HY-calued sr~urnc~ y,! by the ,fivtt7ulu 

(A.10) 

n t Z, ~~hcre ,H is the rundom spectrul nzeusuw of’x (rrcull thut addition it7 10.2~) 
is tnodulo 2x sense). Then y,, = (_$I.. 1 yi-- ’ ). tt E U. is ut7 r-dit77ensiot7ul .sttrtiomrv~~ 
srqucnw in K. 

Proof. Since .X is harmonizable, 

where I/ 112 denotes the L2-norm with respect to some probability measure (e.g. Gra- 
ham and Schreiber, 1984). Therefore, the formula (A.7) as well as the fact estab- 
lished in Theorem 4 that DX(J’) = 0 provided that supp( ,f’) n u;I,t Do, = Q’J, remain 
valid for functions .f,~ which are pointwise limits of uniformly bounded sequences of 
the form .f;, ~1 gnr where ,fn,<gn E C”(T) and supp( ,f,) x y,,), tt = 1,2.. . . satisfy ap- 
propriate constrains. In particular, taking f(s) = elm‘ 11:# _,I/ (s) and y(t) = e”” 1,. _-,,.( / ), 
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where O,<k,ldr - 1, we obtain 

(/’ 
eimSIE,-Oi(s)~(ds), eintls,--ti,(tMdt) 

.I’ > 

= Dx(ei(ms~n’)lE,_HI(S)lE,--Oi(t)) 

= 
e-iH,,D*(ei(s-t)ei(ms-nt) 1 ~,_~,~(S)1~,__0,(t)) if 01 - Hk = 0, for some p, 

0 otherwise 

= ei(mi-‘)slEj_Ol (s)l(ds), 
J’ 

e’(“+‘)’ lE,-O,(t)p(dt) 
> 

. 

This shows that (y,$ y!) = (yk,, , yi+, ), m, n E Z, and hence y is stationary. 0 

Note that the random spectral measure \‘k of {y,“: n E Z} is given by 

q--l 
l’k(d)= @p((d nEj> - ok> 

J=o 

for all k = 0,. , r - 1 and d E B(T). Therefore, the spectral measure T,(d) = 

[rk,/(d)]k,/=O ,,.., r-l 0f.v has the form 

fi/(d)=(vk(d),vl(4)= JJP(@ nEj) - Ok>,Pl((d “Ej> - 6)). 

j=O 

Lemma 4.6. If we dejine 
1. “,$(d)=&(d), AGE?(T), k=O ,..., r - 1 and 

2. r(d)=: C;=t)Yk{S~T:(s,s-t)k)Ed}, AEB(T’), 
then r is the spectrum oj’x, that is 

W.f> = 
JJ 

f(s, t)r(ds, dt), f E C”(T’). (A.ll) 

Proof. Since by Lemma 4.4, D, is a bimeasure, it is enough to prove (A.1 1) for 
functions of the form f = l~~,~) 8 I,,,,), where [u, U) and [w,z) are intervals (arcs) 
in T of length smaller than a/2, and [u, v) is contained in only one interval Ek. If 
I,,,,, CD l~,~,,) is zero on each set D/={(S,t)ET*: s - t=Hj}, j=O,...,r - 1, then 
DX( l[,,,) ‘8 lc,,,,)) = 0, and (A.1 1) holds true. Otherwise there is exactly one line, say 
Dj, that intersects [u, U) ~8 [w,z). In the latter case, assuming that [u,v) cE~, we have 

D,(l[,,.) cs 1bv.z)) 

= (~L([U,L’)nEk),1L([W,Z)n(Ek - ~~j>> 

=(~([U,U)nEk),C1(([W,Z)+Hj)nEk-t),)) 

= (VO[4~),Vj([W,Z) + oj))=ToJC[Wu)n([W,Z) + oj)> 

= Yj([u,~)nUw,z) + dj>>= 
J 

l[u,u)l[w,z)(S - Hjhj(~) 



1 ~u,&)l~,,:;)(.~ - 01, );la(ds> 

=/I l[~,.~~)(t)l[,~..;)(.(.)~(d.r. df ). ??
.I .I 

Note that by the definition the measure r sits on lines DA = {(KS ~- 0~ ): .Y c T). 
k = 0.. , I' ~ 1, and hence the essential implication 1. + 3. of Theorem 5 is proved. 
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