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Abstract

In this paper some properties of the correlation autoregressive (CAR) sequences are studied
A representation for the correlation function of an arbitrary CAR sequence is obtained and the
relationship between a CAR equation and the growth of the variance and location of spectral
lines is revealed. It is also observed that bounded correlation autoregressive sequences coincide
with almost periodically correlated sequences with the spectral measure supported on finitely
many lines. As a consequence a characterization of the spectrum of a bounded CAR sequence
is provided. (© 1997 Elsevier Science B.V.
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1. Introduction

Recently there has been a growing interest in the study of nonstationary stochas-
tic processes, which are interesting from the theoretical point of view, see Chang
and Rao (1966), Cramer (1962), Gardner and Frank (1975), Gladyshev (1961), Hurd
(1974), Hurd (1991), Miamee and Salehi (1978), as well as for their numerous appli-
cations in science and engineering, see Gardner and Frank (1975), Hardin and Miamee
(1990), Miamee and Salehi (1980), Priestly (1988). In most cases the study leads
to consideration of different classes of nonstationary processes which in one way or
the other extend the class of stationary processes. Periodically correlated processes
(Gladyshev, 1961) and almost periodically correlated processes (Hurd, 1991) are two
examples of such classes. Hardin and Miamee (1990) introduced a new class of non-
stationary stochastic processes, called correlation autoregressive processes. A sequence
x={x,: neZ} of complex, zero-meansquare integrable random variables is called
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correlation autoregressive (CAR, in short) if its correlation function R.(m,n)=Ex, %,
satisfies a CAR equation

Rx(m,n):Zaka(m+k,n+k), nme’Z (1)
k=1
for some finite set of scalars a;, k=1,...,7r.

Below are some examples of CAR sequences.

Example 1. If x={x,: n€Z} is a stationary sequence then its correlation function
satisfies the equation Ry(m,n)y=R,(m+1,n+ 1), mneZ. 1t also satisfies the equa-
tion Ry(m,n)=2R.(m+1,n+1) — Re(m+2,n+2), mnecZ It shows that a CAR
equation of a CAR sequence is not unique.

Example 2. A sequence x = {x,: n € Z} is called periodically correlated (PC), if there
is an integer T such that Ri(m,n)=R.(m+T,n+T), mneZ. Clearly each PC se-
quence is CAR.

Example 3. If z, is a stationary sequence then both y, =a"z,, and w, =nz,, are CAR
sequences, for
Ry(m,n)=(la* + 1)"'Ru(m+ Lin+ 1)+ |al*(la]* + 1) 'Ry(m — Ln — 1),
R,(m,n)y=3R,(m+1,n+1)—-3R,(m+2,n+2)+ R, (m+3,n+3),

m,n € Z. In fact every sequence of the form x, = A"n*z,, where 2#0 and k is a non-

negative integer is a CAR sequence. This follows from the next example.

Example 4. If z={(z5): k=1,...,N, n€Z} is an N-dimensional stationary sequence

then for all nonnegative integers ki,...,ky, complex nonzero numbers A,..., Ay, and
scalars ¢, ; the sequence x, defined by
N &
X, = Z Z Alntcy sz, nEZ (2)
s=1 u=0
is CAR.

Proof. Observe that the correlation of x,, can be written as

n ky+k
R(n+pn)= Z (AS/"_,,)” ( Z n*C(s, ¢, v, p)) R
=0

s,t=1

with proper coefficients C(s,t, v, p) that do not depend on n. Let

N
p(zy=4 H (isz _ Z)ks'+k,+]’

s, =1

where A is such that the constant term of p is equal 1. From Hildebrand (1968) it
follows that R.(m,n) satisfies the Eq. (1) with the scalars az, k=1,...,r defined by
equation p(z)=1-Y,_azF. O
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The question whether or not every CAR sequence is of the form (2) is still open.

In the present work we study only discrete time processes. However, the continuous
time CAR processes have been introduced and proved to be useful in applications; cf.
Hardin and Miamee (1990) and Dargahi-Noubary and Miamee (1993). For example, in
analysis of a helicopter noise an observer records consist of two periodically correlated
random noise processes, namely, those generated by the main and tail rotors. Since the
periods of these processes are generally incommensurate, the helicopter noise is not
periodically correlated. However, once the spectrum of the helicopter noisc is analyzed
it turns out to be supported on several lines parallel to the line v=x. We will sce
later that the helicopter noise process is actually a CAR process.

Another potential area for the applications of the CAR processes is that of scismic
waves. Numerous models ranging from simple stationary white noise to ARMA sta-
tionary process have been proposed by different authors for modeling seismic waves.
The most popular and successful models are uniformly modulated stationary processes.
These models are generally based on the assumption that seismic records y, arc com-
posed of a deterministic envelope function ¢g(¢) and a zero-mean stationary stochastic
process x;, 1.e. v, =¢(t)x,. Here are some typical envelope functions proven to be
useful in fitting some data:

g(ry="0, exp((}gt) + 03 exp(()4t).
gty =00+ 01t + -+ 4 010",
g(ty=1"exp(—p1).

Example 4 shows that all these models are included in the class of CAR processes.

In this paper we discuss some fundamental properties of CAR sequences. In Section 2
a representation for the correlation function of a CAR sequence is provided and the
growth of the variance of x,, as n — oo, is examined. In Section 3 the spectrum of
a CAR sequence is studied. Among other results, it is shown that every bounded CAR
sequence is almost periodically correlated.

Throughout the paper R, C, Z, and N will denote the set of real numbers, complex
numbers, integers, and nonnegative integers, respectively. H will stand for a complex
Hilbert space (which replaces the space of zero-meansquare integrable complex ran-
dom variables) and (-,-) will denote the inner product in H. The unit circle T will
be identified with the interval [0,27) and the torus T2 with the square [0.27[)2 (the
algebraic operation are in the usual modulo 2r sense). B(T) and B(T?) will denote
the Borel g-algebras in T and T2, respectively. If ¢ is a function on T then supp(¢)
will denote the closure of the set {z: @(t)#0}. If f is an integrable function on T
(T, respectively) then

R 1 21 .
f)y=— / e f(ydr, ncZ
2n Jqo
and

R 1 2n 2n ) )
flmn)y=—— / / emimsrun) £(s ydsdt, mncZ,
emy? Sy Jo
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respectively, will denote the Fourier transform of f. In the sequel all integrals will be
over [0,27), unless otherwise is stated. The symbols C>°(T) (C*°(T?), respectively)
will denote the set of all infinitely many times differentiable functions on T (T2,
respectively) equipped with the topology of uniform convergence of all derivatives
(see Edwards, 1979, 12.1). C(T) and C(T?) will stand for the space of all continuous
functions on T and T?, respectively. If f,g € C(T) then f® g will stand for the C(T?)
function defined by f®g(s,t)= f(s)g(¢).

2. Representation of the correlation function of a CAR sequence

Recall that, by definition, the correlation function R, (m,rn)= (x,,x,) of a CAR se-
quence x = {x,: n € Z} satisfies a CAR equation

Rmn)= > aR(m+hkn+k), nmeZ, 3)
k=1
where 7 is a positive integer and a;, k=1,...,r, are some complex numbers. Example

1 shows that @;’s and r are not uniquely determined by the sequence x. Below we
introduce the concept of a miminal CAR equation that is unique.

Definition 1. Let x = {x,: n€ Z} be a sequence in a Hilbert space H.

1. An admissible polynomial for x is any polynomial p(z)=1—>;_, axz" such that
the correlation function of x satisfies the equation R, (m,n) = ZZ:] ay Ry (m+k,n+k),
nmel’z.

2. A minimal admissible polynomial is an admissible polynomial of the lowest degree.

Clearly, x is a CAR sequence if and only if it has at least one admissible polynomial.

Lemma 1. Each CAR sequence x = {x,: n € Z} has only one minimal admissible poly-
nomial and hence a unique minimal CAR equation.

Proof. Suppose that pi(z)=1—Y;_, a}’z*, i=1,2, are two distinct minimal admis-
sible polynomials of a CAR sequence x. Let m = min{: a}” #aﬁ-z)}. Then z ™(ay) —
aﬁ,f))‘l( p2z) — pi(z)) is clearly an admissible polynomial with degree lower than n,
which leads to a contradiction. [

The unique minimal admissible polynomial of a CAR sequence x will be referred
to as the MAP of x.

In this section we discuss certain properties of a CAR sequence controlled by its
MAP, or more precisely by the roots of its MAP. This includes a representation of
the correlation function of a CAR sequence. Most of the proofs are lengthy and of
algebraic nature and, hence, for the sake of clarity, they are presented in Appendix.

Theorem 1. (Representation of correlation function). Let x={x,: n€ Z} be a CAR
sequence and let p(z)=1— % ,_, axz*, z€C, be its MAP. Let J;, j=0,...,q, be
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distinct roots of p and let m(A;)=m;, j=0,....q, be their multiplicities. Then there
are numbers o, (p), p€Z, j=0,....,q. k=0,....m; — |, such that

g m;—1

R(n+ p.n)= Z Z /'#rzkocj,k(p), (4)

=0 k=0

Jor all p,neZ. Moreover, sup, |2 —1(p)| >0, for every j=0,....4q.

From (4) it is clear that the growth rate of the variance R,(n,n) of x as n — +x
is controlled by the roots of the MAP and their multiplicities. This statement is madc
more precise in the following sequel of theorems.

First we record some properties of the roots of a MAP.

Theorem 2. Lei p(z)=1—5;_, a;z* be the MAP of a CAR sequence x, iy..... 4,
denote distinct roots of p and m(1) stand for the multiplicity of a root i Further-
more let i = max{ 45| = Amax }. Similarly,
= Amint. Then

Al J=0....,q} and ki = max{m(+;)—1:
let Amin =min{|4,]: j=0,....q} and k_ =max{m(z;) - 1
1. All a;’s are real.

2. 2= luux Is @ root of p with multiplicity m(Zp)=k. + 1.
3. 2= Amin IS « root of p with multiplicity m(ipin)=k_ + 1.

Aj

The roots Ana and i, and their multiplicities govern the growth behavior of the
variance of x, at oo as we see in Theorem 3. In the next section we observe that
the other roots are responsible for the location of spectral lines of a sequence.

Theorem 3. Let x={x,: n€Z} be a CAR sequence and p(z)=1— >, ,az" be
its MAP. Let Ayax, ko, Amin and k _ be as in Theorem 2. Then there are bounded
sequences ¢, (n) and ¢_(n), n=1, not converging to zero such that

Loladl?=c mat  nk- n=1, and

2 P = (m)A ek n= 1

‘min
The following are two immediate corollaries from Theorems 2 and 3.

Corollary 1. Let x={x,: n€Z} be u CAR sequence and p(z)=1— 3, ,az" be
its MAP. Let 4y, ...,y denote the roots of p and let m(z;), k=0...., g, be their
multiplicities. Then ||x,||> <Cin|*, nc€ Z, for some C>0 and k €N, if und only if
|4 =1 for all j=0,....q. If this is the case then

I. A=1lisaroot of p,ie >,  a =1,

2. m(ly=max{m(%;): j=0,....q} <k + 1.

Corollary 2. 4 CAR sequence x = {x,: n € Z} is bounded if and only if all roots of
its MAP are of modulus 1 and multiplicity 1.
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3. Spectrum of a CAR sequence

Roughly speaking, the spectrum of an H-valued sequence x ={x,: ncZ} is the
Fourier transform of Ry(m,—n) in whatever sense it exists. If for example a sequence
x={x,: n€Z} CH is harmonizable, that is if there is an H-valued Borel measure p
on T such that

o / exp(int)u(de), 5)

for all n€Z, then the spectrum of x is identified with the bimeasure B(1,,, 14,)=
(u(4y), u(42)), 41, 42 € B(T). If a sequence x is strongly harmonizable, that is if there
is a Borel measure I, on T? such that

R.(m,n)= / / e (ds, dr), (6)

m,n € Z, then the spectrum of x is identified with I,

Recall that a sequence x = {x,: n € Z} is stationary if its correlation function R (m,n)
depends only on m—n. Each stationary sequence is strongly harmonizable and the mea-
sure I, in representation (6) sits on the diagonal D= {(s,¢) € T?: s=¢}. Commonly,
the spectrum of a stationary sequence is identified with the measure I, o @', where
®:(s,s)— s maps D onto T. Harmonizable sequences, and hence strongly harmoniz-
able and stationary sequences are bounded.

The notion of the spectrum of a second-order stochastic sequence can be, in a natural
way, extended to the class of sequences with polynomial growth of variance as follows.
We also include here the definition of the random spectrum, which in the harmonizable
case corresponds to the measure u in the integral (5).

Definition 2. (¢f. Makagon and Mandrekar, 1990). Let x = {x,: n € Z} be a sequence
in H such that ||x,|||<C|a|f for some C>0 and k€N and all n€ Z.
1. The mapping F, : C>(T) — H defined by

F(S)= f(mx,

f€C>(T), is called the random spectrum of x.
2. The mapping D, : C>(T?)— C defined by the formula

D f)=Y _ f(m,m)Re(m,—n)

€ C>=(T?), is called the spectrum of x.

Since the Fourier coefficient of functions from C° decrease faster than in polynomial
rate, F, and D, are well-defined continuous linear operators from C°°(T) to H and
from C*(T?) to C, respectively, and hence D, is a distribution in the Schwartz sense
(for definition and other facts about distributions see Edwards, 1979). Also note that

FE(NFE(@)=D(f @7). [f.g€CT(T). (7
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Lemma 2. Let x={x,: n€Z} be a sequence in H such that ||x,|| <C|n|* for some
C>0 and keN and all ne 7. Then

l. x is CAR if and only if there are scalars ay, k=1,....r such that

D, ( (1 - Zakei’“-y—”) h(s,t)) =0, heC(T); (8)
k=1

2. x is stationary if and only if D((1 — e~ Na(s. e =0 for all he C>(T?) or
equivalently ||F( f(s)|? = |F(e¥ f(s)? for all £ C>(T).

Proof. Since R.(m,n)=D(e"™ "), x is a CAR sequence if and only if there are
scalars ay, k=1,...,r such that

-
Dx(ei(mxfnr)) _ Dx < § a; eik(sfl )ei(m.\'—m)>
k=1

for every m,n € Z. Since the Fourier transform determines a distribution uniquely, this
holds true if and only if the distribution

h— D, ( (1 - Z akeik””> h(s.t )>
k=1

is identically zero. The argument above also shows that R (m.n)=R.(m+ 1,n+ 1) for
every m,n € Z if and only if D((1 — e~ h(s.1)) =0 for every he C>(T?). [~

Recall that the support suppD of a distribution D:C>*(T?)— C is the smallest
closed subset S of T? such that D( f)=0 provided that supp( /)N S = .

The following theorem shows that the spectrum of a CAR sequence x of polynomial
growth is supported on finitely many lines parallel to the diagonal, and that the roots
of the MAP of x determine the location of the lines.

Theorem 4. Let x={x,: n€Z} be a CAR sequence such that |\x,|| <Cinl*, for all
neZ and some C>0 and ke N. Let D, be the spectrum of x and p be its MAP.
Let 7;=exp(ity), j=0,...,q, denote distinct roots of the MAP of x (¢f. Corollary
). Then supp Dy is a subset of |J;_, Dy,. where Dy={(t + 0.1): 0<t<2n}.

Proof. Since x is a CAR sequence, from (8) it follows that
Di(p(e“~N(s,6))=0 for all he C>(T). (9)

Let fcC™(T?) be such that supp(f) is disjoint from S=J!_,Dy. Putting
h(s,t)= f(s,0)/ p(e'“") into Eq. (9) we obtain that D.( f)=0. Hence, the support of
D, is contained in S. [

If a CAR sequence x is bounded then certainly the conclusion of Theorem 4 holds
true. We will show that in this case D, is a measure.

We present two proofs of this fact. The first proof, given below, is based on the
observation that due to Theorem 1 and Corollary 2 bounded CAR sequences are almost
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periodically correlated and on an advanced result on the spectrum of almost periodically
correlated processes established by Hurd (1991). The second proof, although lengthy,
uses elementary distribution theory and is given in Appendix. We feel that the second
method is worth to be looked upon for it is more direct and introduces new technique
in analysis of APC processes.

Recall that a sequence x={x,: n€Z} in a Hilbert space is almost periodically
correlated (APC) if for every p € Z the sequence R,(n+ p,n), n € Z, is almost periodic
in n in Bohr sense (that is it is a uniform limit of trigonometric polynomials of the
form }°, ¢y exp(i&en)). If x is an APC sequence then the limit

N-1
: 1 —in
ag(p)= Nll_)moC N g R.(n+ p,n)e 0 (10)
n=0

exists for every 8¢€[0,2n). If ay(p) is not identically zero then 6 will be referred to
as a cycle frequency of x. Hurd (1991) showed that if x is APC then x has at most
countably many cycle frequencies and for each of them ay(-) is the Fourier transform
of a complex measure.

Theorem 5. Let x={x,: n€ Z} be a bounded sequence in a complex Hilbert space.

The following three conditions are equivalent:

1. x is a CAR sequence,

2. x is an APC sequence with finitely many cycle frequencies,

3. x is strongly harmonizable and its spectral measure is supported by finitely many
lines parallel to the diagonal.

Proof. (1< 2): Let x be a bounded CAR sequence. From Theorem 1 and Corollary 2
it follows that the correlation function of x is of the form
r—1

R(n+ pm)= " a;(p). (11)
/=0

and o;0(-) is not identically zero for any j=0,...,r — 1. Hence, x is APC and 0,
j=0,...,r — 1, are its cycle frequencies.

Conversely, suppose that x is APC and it has only finitely many cycle frequencies
O, k=0,....,r — 1. By (10)

r—1

Rn+ pn)=Y " ay(p), npel (12)
k=0

Letting p(z)=C[[,_,(e"% —z), where C=[];_, e"%, one can see that p is an ad-
missible polynomial for x (cf. proof of Theorem 1 in the appendix), and hence x is a
CAR sequence. The equivalence (2¢<3) is proved in Hurd (1991) in a more general
setting. [

In this paper we do not address questions concerning prediction or statistics of CAR
sequences. In the case of a bounded CAR sequence, Theorem 5 makes possible to
adopt procedures described in Hurd and Leskow (1992) and Leskow (1994) for APC
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processes to estimate the coefficients x;o(p) in (11) and the density of the spectral
measure D, restricted to the line Dy. A deficiency of this approach is that these
procedures assume prior knowledge of cycle frequencies #;, k=0,....r — 1. and at
present no consistent estimators of cycle frequencies are known. It seems that 1t would
be more desirable to develop direct estimates of coefficients a; appearing in the CAR
equation (3), and then use Theorem 4 to retrieve cycle frequencies. We feel that more
research 1s to be done in this direction.

Appendix
A.l. Proof of Theorem 1

Recall that every solution to a system of homogenous difference equations
> by =0, bo,b, #£0, ke Z, (A1)
j—0

is of the form

mii;)—1

g
Uy = Z )i’,fnkoz_;,k, ne’z, (A.2)

=0 k=0
where A, ..., 7, are distinct roots of the characteristic polynomial g(z)= }:;:” bz of
the Eq. (A.1) and m(4) denotes the multiplicity of a root A. Note that if in (A.2)
%p.mii,—1 =0 for some pc{0,....q} then the sequence u, also satisfies an equation

of lower degree, namely

r—1

Zc‘,u“/‘:(), (A3)

=0
where ¢;, j=0,...,r — 1, are such that

F—1

i bz = Zc,—zj (z — 4p).
=0

Jj=0

Let now x be a CAR sequence. By assumption the sequence uf =R (n+ p,n). n< 2,
satisfies the difference equation uf =" | axu’,, =0, n € Z. Hence, from the discussion
above it follows that R.(n+ p,n) has the form (4). If for some j, o, —1(p) =0 for all
p € Z, then for every p € Z the sequence R.(n + p,n) would satisfy the lower degree

equation

r—1

Ri(n+ pon)= ) _ciRo(n+ p + k.n + k).
k=1

where | — 327~ cxzF = — 4, p(z)/(z — 4;), z€ C. This contradicts the minimality of
the polynomial p(z). O
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A.2. Proof of Theorem 2
We will need the following two lemmas.

Lemma 4.1. (Zygmunt, 1968, pp. 235-238). Let y,...,74 be distinct numbers from
[0,2n). Then there is a sequence of integers n, — oo, such that

in. p— 00
max |e"" — 1] "— 0.
0<j<q

The next lemma is an easy consequence of the above result.

Lemma 4.2. Let y;, j=0,...,q be distinct numbers from [0,2n) and B;, j=0,...,q,

be any complex numbers.

1. Ifz;’:o e, "—5°0, then f; =0, j:O,...,q.

2. If not all B;’s are zero and Zj:o eVt B; =0, for all n=ny, then there is an index
Jo. 0<jo<gq, such that y;, =0 and ; >0.

Proof. 1. Let n, be as in Lemma 4.1 and let k€ Z. Then

q q 2
0= )hil:lo Z el)r/(n,,+k)ﬁj — Z ely,kﬁj — / e"ky(dt),
! j=0 j=0 0
where p(dt) = j:o B;6,,(dt), and &, denotes the probabilistic measure concentrated at

a point a. Since the Fourier transform determines a complex measure uniquely, f; =0,

Ji=0,...,q
2. Let u, = 3.1 ;€7 f;, n>0. If all y,’s are different from zero, then

g 1 — ei;r,(n+l)

uo+~-'+un22ﬁ/‘“ﬁj-
=0

Since u; >0 for j=ny, and the right-hand side in the expression above is bounded in
n, ;Zo u; <oo. Hence, u, — 0 (as n— oc), which in view of Part 1 contradicts the
assumption that not all §;’s are zero. Therefore, one of the numbers y;, say y;,, is zero
and f3;, #0. In this case,

q l_ei",r',n
u0+...+u": Z‘mﬁj+(n+l)ﬂ](i,
J=0

neN, which yields that f; =lim, . 1/(n+ 1)y + --- + u,)=0. Therefore,
Bjﬂ >0. O

Proof of Theorem 2. 1. Since Y, _, @R.(m+k,n+k) =R(n,m)=Ri(m,n), p*(z)=1-
Si_@z" is an admissible polynomial. Therefore, from Lemma 1 it follows that
ay :E;Z, k= 1,...,r.
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2. Let B={/: || = /max}, kv = max{m(z;,)—1: jE€ B}, By={jcB: m(};)=k, +
1}, and By = B\By. Then from (4) it follows that

m;—

R(n+pn) sy
a2 Z (m) )

max /QB l\ 0
my—1
ST X () ottt
JEB) k=0 mdx
ky—1 - n
FE S () et (G e
/mdx Amax
JEBy k=0 jeBy
and hence
R (n + p’n) H
S =+ Y e g (), (A4)
/nnxn jeB

where r#(n)—0, as n—oc and y; =arg(4;), j € By. From Theorem 1 it follows
that there is an integer p and j € By such that %, (p)5 0. With this p, in virtue of
Lemma 4.2 there is a subsequence n, — oc such that
Rn, + p.ng)
S TP %0,

n
L axfly

Since |R.(n + p,n)? <R (n,n)R,(n + p.n+ p), we obtain that
R.(n, + p,ny)|? 7
I—L’—Tﬂ— < [P+ Y e (0)

g 2
[/m]an ] =
l ", 7
o (n, + p)+ E et Py (0)
JEBy

Because r(}(n)—>0 as n— oo, at least one x;4, (0) must be nonzero. Taking p =0 in
the Eq. (A.4) we conclude that

Ri(n,

(’7’7):r9(n)+ E e oy (0), nx=l. (A5)
i ok '

max JEBy

where not all «;, (0)=0, j € By. Let n, — oo be a sequence such that exp(iy;n, ) |
for all j € By. Since ri(n)—0,

Rny + p,ng+ p) g— .
St T D e, (0)20
/.max (ﬂq + p) + R,

for all pe Z. From Lemma 4.2 we conclude that one of y;’s, say 7., jo € Bo, is cqual
to 0 and 2,4 (0)>0, i.e. Aj, = Amax and m(2;)) =k, + 1 = max{m(4;): {4;| = Zmax}
3. The proof of Part 3, goes along the same lines as the proof of Part 2. [
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A.3. Proof of Theorem 3

1. Let B, By, By, r{(n) and y; be as in the proof of Theorem 2, Part 2. From (A.4)
if follows that

| * = € ()™ (A.6)

where c+(n):r3(n) +3 je Boei"-'"ozj,h(O) does not converge to zero.
The proof of Part 2 follows in the same way from the proof Part 3 of Theorem 2.
|

A.4. The second proof of Theorem 5

Let x={x,: n€Z} be a bounded CAR sequence, and D, and F, be its spectrum
and random spectrum, respectively (see Definition 2). Let p(z) be the MAP of x and
let 4;, j=0,...,r — 1 denote the zeros of p. In view of Corollary 2, we may assume
that 4;=¢', j=0,...,r — 1, where 6 =0<0; < --- <0,_; <2m. Let d = { min{|6; —
0,l: j #k}.

With these notation we break the proof into few lemmas.

Lemma 4.3. If supp( f) C{(s,t) € T?: |s — t — 04| <d}, then

D(f)=e"%D (7D f(s5,1)). (A7)

Proof. Consider the function

p(ei(sft))

g(s,1) = (@ ey

Then f(s,t)/g(s,t) =h(s,t) € C>(T?) and from (8) we get D, ((e% — =) f(s,1)) =
D, (p(e“~)n(s,t))=0, which proves (A.7). O

Lemma 4.4, The sequence x={x,: n€ Z} is harmonizable.

Proof. Let f, € C*°(T), k=0,...,N — 1 be functions such that

1L O fi)<1, k=0,...,N—1,

2. M Al =1, 1€[0,2m),

3. supp( fk ® fi) C{(s,0): |s — ¢} <d}.

Let £( f)=F.(f fx), f€C>=(T). Since 4g=1 is a root of p with multiplicity one,
the function

p(ei(sft))

nis,t)= (1 — et

is nonzero in the strip |s — t| <d. Moreover, because supp(fix @ fi)C{(s,t)€ T
|s — ¢| <d}, the function fi(s)fi(t)/n(s,t) is in C>°(T?) for every k. Hence, by (8),

o) f(s,t)) =0 (A8)

D((1 — &) fiu(s) fi() f(5,8)) = D (p(e
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for all £ € C>(T?). Let y*=F(e" ), nc Z, k=0....,N — 1. By (7) The spectrum of
vE={yF=F(e"): neZ} is given by

Do =D fils) il f(s,1)),  fEC™(T?)

and in view of (A.7) D),A(f):D).A(e““'””f(s,t)), for each £=0,....] N — 1 and
f€C>(T?). Therefore, by Lemma 2 Part 2., each sequence v* :v{y,f': neZ}, k=
0,....N — I, is stationary and hence harmonizable. Since x, = Z/‘\;ol vhox s also

harmonizable, that is there exist an H-valued measure u such that x, = j " u(dn,
nes. U

Recall that an #-dimensional stochastic sequence in a Hilbert space K is a sequence
y=1{y,. n€Z}, where y”:(y,f Ye=0..r-1 and y,fEK. An r-dimensional stochastic
sequence y is called stationary if the matrix correlation function R ,(m,n)}=(pu.y,) =
[(vE, vk i=o.. -1 depends only on m—n. The matrix correlation function R, of an
r-dimensional stationary stochastic sequence y admits the representation

2n
R_‘.(m,n):/ em=mir(dt), mnel (A.9)
0

where I, is a countably additive nonnegative definite matrix-valued measure on T
called the spectral measure of y.

Lemma 4.5. Let a= min{|0; — 0; — 0;|: 0; — 0, — 0, #0} and let ¢ €N he such that
2n<qa. Let E; = [27j/q,2n(j + 1)/g), j=0..... g—1. For each k=0,..., r—1. define
a K =H9valued sequence v by the formula

Y

g—1

2n
= @/ " 1g (p(dr — Og) (A.10)
40

=0

neZ, where p is the random spectral measure of x (recall thar addition in 10.2n)
is modulo 2w sense). Then y,=(),.... v/~ 1), nc Z. is an r-dimensional stationary
sequence in K.

Proof. Since x is harmonizable,

DS )0 :[ ( [ran | gdu) [sv'wn:,

where || - ||2 denotes the L?-norm with respect to some probability measure (e.g. Gra-
ham and Schreiber, 1984). Therefore, the formula (A.7) as well as the fact estab-
lished in Theorem 4 that D,( f)=0 provided that supp( /)N U,’;(: Dy, =0, remain
valid for functions f,¢g which are pointwise limits of uniformly bounded sequences of
the form f, ® g,, where f,,g,€ C>(T) and supp( f, % ¢gn), n=1,2,.... satisfy ap-
propriate constrains. In particular, taking f(s):ei"”l,;/_“,,, (s) and g(1)=e" 1, _n (1),



192 A. Makagon, A.G. Miamee/ Stochastic Processes and their Applications 69 (1997) 179-193

where 0 <k, I <r — 1, we obtain

( / ™1,y (s)u(ds), / ei"‘lg,g,mu(dz))

= D(e " g g () g,_0,(1))

_ {e“iHI’DX(ei(s“()Ci(mskm)lE/_()k(S)IE/*y,([)) if 6; — 0 =9p for some p,
0 otherwise

= (/ei(m+1)SlE,.—U/‘v(S)H(dS)7 /ei(n+[)t1E/~0/(t),u(dt)>'

This shows that (pf, ¥})=(y%,,, 3!, }), mn€Z, and hence y is stationary. [J

Note that the random spectral measure v, of {y*: n€Z} is given by

g—1
()= EPuanE) —6,)

j=0
for all £=0,...,r — 1 and A€B(T). Therefore, the spectral measure [,(4)=
g—1

L(4) = (i), vi(A) =D (AN E) = 0), (AN E}) — 0))).

J=0

Lemma 4.6. If we define
L oye(A)=Iu(A), A€B(T), k=0,...,r — 1 and

2. T(A)= Y0t n{s €T (5,5 — O) € 4}, A B(T?),
then I is the spectrum of x, that is

DS = / / F(s.0O(ds,dr), [ € C(T?), (A1)

Proof. Since by Lemma 4.4, D, is a bimeasure, it is enough to prove (A.11) for
functions of the form f = 1j,,) ® lpw,2), where [u,0) and [w,z) are intervals (arcs)
in T of length smaller than a/2, and [u,v) is contained in only one interval Ej. If
ey @ Ly, is zero on each set D;={(s,1)eT? s —t=0;}, j=0,...,r — 1, then
D10y @ 1pwzy) =0, and (A.11) holds true. Otherwise there is exactly one line, say
D;, that intersects [u,v) ® [w,z). In the latter case, assuming that [u,v) C E;, we have

Dx(l[u,v) ® l[w,Z))
= (u([u, ) N ER), w([w,2) N (Ex — 0))
= (u([w,v)NER), p(([w,2) + 0,) N Ex — 6,))

= (o, v),v;(Iw, 2) + 6,)) = Lo ;([u, v) N ([w,2) + 0;))

) ([ 2) + 0,)) = / oy Loy (s — 6)75(ds)
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r—1

Z / l[u,r)(s)l[w,:)(s - H/\' )/'A(ds)

k=0

i

/ / T (O sy ($)T(ds. dr). O

Note that by the definition the measure I' sits on lines Dy = {(s,s — 0Ux): v€ T},
k=0,....r — 1, and hence the essential implication 1. = 3. of Theorem 5 is proved.
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