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Abstract

A new operation calledree-wreathingis defined on groups of automorphisms of the
binary tree. Given a countable residually finite 2-gratipand a free abelian grouki of
finite rank r this operation produces uniformly copies of these as automorphism groups
of the binary tree such that the group generated by them is an over-group of the restricted
wreath product : K. Indeed,G contains a normal subgroup which is an infinite direct
sum of copies of the derived grodp’ and the quotient grou@ /N is isomorphic toH : K.
The tree-wreathing construction preserves the properties of solvability, torsion-freeness
and of having finite state (i.e., generated by finite automata). A faithful representation of
any free metabelian group of finite rank is obtained as a finite-state group of automorphisms
of the binary tree.
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1. Introduction

Automorphisms of the one-rooted regutaary tree have a natural interpreta-
tion as input—output automata on the alphget, ..., n — 1} and the automor-
phisms which correspond to finite-state automata form an enumerable gjoup
called the group of finite-state automorphisms [2]. The present paper continues
the study of the group of automorphismsof the binary tree and especially of
its subgroup of finite-state automorphisgig12]. For an overview of the present
situation for groups generated by input—output automata, see [8].

The identification of the elements @ with finite automata provides a proof
that the word problem itF is solvable. Given a countable set of subgroup$ of
it is possible using the tree structure to embed their direct sunvintdkewise,
given a countable subgroup and a finite 2-subgroufy’ of F, it may be shown
that the restricted wreath produgt: K embeds intaF. In this paper,H : K
indicates the restricted wreath product obtained from the regular representation
of K. Residual finiteness of wreath products of groups is governed by Gruenberg’s
theorem: the groupr = H: K is residually finite if and only if, K are residually
finite andK finite or H abelian [6]. Thus, in considering the question of which
pairs(H, K) of subgroups ofF the restricted wreath produft: K is embeddable
in F, we have to consider only the second alternative in Gruenberg’s theorem and
this has been the motivation behind our work.

We define a new operation on subgroupsdpfwhich we calltree-wreathing
Given a subgroup! of A and a free abelian group of finite rankr this operation
produces uniformly copies of thesefhsuch that the grou@ generated by them,
indicated byH 7 K, is an over-group of the restricted wreath prodéct K.
Indeed,G contains a normal subgrowp which is an infinite direct sum of copies
of the derived groug’ and the quotient grou/N is isomorphic toH : K.

The tree-wreathing construction preserves the properties of solvability, torsion-
freeness and of having finite state. WhAnis an abelian subgroup of, we
obtain an embedding df : K in F. An application of this result is an embedding

of the free metabelian group of finite rank infa

The groupK is shown to be generated by a certainfeat) |0<i <r — 1}
such that the closur& of K in A with respect to its pro-2 topology as
K= Z{@ | 0<i <r — 1} where eacm is isomorphic to the dyadic
integersZ,. Moreover, the tree-wreath construction is extended/to K. We

—

find that the normalizer il of each{«(i)) contains a subgrougp; isomorphic to
the group of units oZ,. Furthermore, the group generated by thd;’s is their
direct sum andi normalizesH T K.

Our construction considerably enlarges the class of known residually finite
2-groups and in particular of those which afford finite-state representations.
However, the concrete realization as finite-state automorphism groups of most
of the groups in the second alternative of Gruenberg’s theorem remains open. For
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example, doe€ : (C: C) have a finite-state representation, wh€ris an infinite
cyclic group?

A faithful representation of the affine groufyy GL(m, Zz) for m > 1 was
obtained in [3] as a group acting on th&-ary regular tree. LeZ, be the
localization of the rational numbers at the prime 2. It was also shown in the same
paper that the restriction of the representation to the sung@ﬁSL(m, Z2))
produced a faithful finite-state representation of this subgroup. In a later work
[5] it was proven that form > 1, the group of finite-state automorphisms of the
binary tree/ embeds the affine group™ B(m, Z) where B(m, Z) consists of
those invertible matricegs;;) with a;; even for all j > i, which is therefore of
finite index inGL(@m, Z). In particular then,F embeds the free group of rank 2
and by a result of Malcev [10, Section 17.2] it also embeds any finitely generated
torsion-free nilpotent group. We note that the 2-generator free metabelian group
is not linear ovefZ (since it contains free abelian subgroups of infinite rank).

It is by now a well-known fact thatF embeds Burnside 2-groups with
branching subgroup structure and, as was shown more recently, it also embeds
torsion-free groups sharing such a property [4]. These groups cannot admit
faithful finite-dimensional linear representations. A comprehensive exposition on
the topic of Branch Groups is forthcoming [1].

As large as the class of finitely generated subgrougs ofay be, this group is
not as universal agd. The known argument in support of the assertion is based on
cardinality considerations. For, by a variation on a construction of Hall [9], there
exist 20 isomorphism classes of 2-generated center-by-metabelian residually
finite 2-groups; yet clearly, there are only a countable number of 2-generated
subgroups inF. The class of Grigorchuk groups provides another proof; see [7].

We thank Laurent Bartholdi, Alexei Krasilnikov and Pavel Zaleskii for
exchanges on different parts of this paper.

2. Preliminaries

The binary treeZ” can be identified with the free monaidf = (0, 1)* of finite
sequences on,Q, ordered by < u providedu is an initial subword ob. Leto
be the transpositio0, 1) whose action is extended to the treedyOu < lu.
Then a general automorphisme A can be represented as= (o, «1)oy Where
oy =0',i=0,1 with ¢ the empty word, and where, @1 are automorphisms
of the subtrees headed byl respectively. As these subtrees are isomorphic to
T by simply deleting the first letter from the labels of vertices in the subtrees,
we may by using this isomorphism considey, a1 € A. The automorphisr is
said to be active providedl, = o, otherwise it is inactive. Proceeding with the
development ofr, we produce the set of stat€s= {«, | u € M} whereay = o
and the set of activitiegr, | u € M}.
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A subgroup of4 which fixes all the vertices outside the subtree headed by the
indexu and projects onto a groufi at the vertex: will be indicated byu x H
and the elements of the latter will be denoteddsyi. The sef{1’ xo | 0<i <k}
generates a group, which is the 2-Sylow subgroup of the symmetric group on
the setlu € M | |u| = k+ 1} andisisomorphictd((Cz2:---):C2):C2), thek-fold
wreath product of cyclic groups of order 2.

The following constructions preserve subgroups of hétand F:

(i) Let {H;|i > 0} be subgroups afl , then the group generated by 0 x H; |
i > 0} is a direct sum of copies df;;
(i) Given H a subgroup of4 and an integek > 0, the group generated by
1¥ % H and P; is a subgroup ofd isomorphic toH @ Py;
(iif) Given a groupR < A, we define inductively the following subgroup gf,
whose elements have finite support:

V(R) = (v(R) X R) X (v(R) X R).

The groupv(R) is generated by x R for all u € U = ({02, 10*){01, 11}.

The automorphismy has activity growtho (n) = #{u | |u| =n, o, # e}. Also,
a hasm-circuit type provided the length of the longest circuit in the graph
of the automata corresponding éois m; the length of a circuit is measured
by the number of distinct vertices lying on it. If the only circuit in the graph
corresponding tax occurs at the identity elementthen« is of O-circuit type.
Given a sufficiently natural measure of activity growth, the set of automorphisms
with growth limited above by this measure forms a subgroup. The finite-state
automorphisms of bounded growth form the subgrdtyp Those elements of
O-circuit type form the subgroup of finitary automorphisfivso = ({ Px | k > 1}.
Furthermore, ifm > 1, then those which have O-circuit type bicircuit type
wherek dividesm form the groupFo ,; see [12].

The tree7 is the inverse limit of its truncations at théh levels. Thus the group
A s the inverse limit of the permutation groups it induces onititidevel vertices.
This endowsA with a pro-2 topological group structure. An infinite product of
elementsA is a well-defined element ofl provided for any given levet, only
finitely many of the elements in the product have non-trivial action on vertices at
leveln. Let H be a subgroup ofl. The closure of a subgroug in the topological
group.A will be indicated byﬁ. We note that ifHf is abelian then

H=1{h* | h e H, & adyadic integey

which is also an abelian group.
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3. Thetree-wreath product H TC
3.1. The translation operator

Let « be the automorphism of the binary tree defined specifically and
recursively byo = (e, («, e))o. Thena will serve from now on as the translation
operator in the construction of a tree-wreath product. We notexthat 3 states,
has bounded growth and is of 2-circuit type.

3.2. Copying subgroups

Let H be some group acting on the tree. We seek to construct anp;/
H which will be compatible with the translatiam, in the sense thatl should
commute with all (or as many as possible) of its conjugates by elementgdnom

For everyh € H define the automorph|snln of the tree recursively ab =
((h, h), (e, e)), or simply ash = ((h, h), e). Itis clear that the self = {h|heH)
is a group of automorphisms of the tree and tHais isomorphic toH . Also, if
H is a finite-state group then s0 i$. We note that for alh € H, the element:
provides a partial mapping: M — H from the labels of the tree intd, defined
by (u)h = e if u=01,i even, and byu)i = h if u =01, odd. In this sensd;
has infinite support for alk # e.

3.3. Tree-wreathing

Let G be the group generated By anda. We say thatG is H tree-wreathed
by the infinite cyclic grougC generated by and use the notatiof = H Y C.

11

0/0

\ (a,e)
N

Fig. 1. The automaton.
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Theorem 1. Let G be the tree-wreath produdt T C defined above. The&
satisfies the following properties

() the subgroup
N=([H", H]|0<i < j)

which is normal inG can be expressed in its action on the treeMs=
v(H)=(N x H') x (N x H);

(i) the quotient grougs /N is isomorphic to the restricted wreath produé¢t C;

(iii) the subgroup ofz generated by0%?"~11) x H' and « is isomorphic to a
central extension off’ : Com;

(iv) if J is a subgroup off then(J, a), considered as a subgroup 6f= H7C,
is isomorphic ta/ TC; in particular, if J is abelian thenJ, «) is isomorphic
toJ::C;

(v) the groupgG is finite-state(solvable, torsion-freeif and only if H is finite-
state(solvable, torsion-free

Proof. I. DefineH; = H* andH; ; = [H*', H*']forall0< i < j. Furthermore,
defineN = (H; ; | 0<i < j) and its stratification by = {e}, Ny = (H; ; | 0 <
i<j<2tl j—i<2)foralls > 1. We will show that

N; is a normal subgroup af,

Ny = P; x Py whereP; =N, 1 x H',
and

[Ns, azs] =e

forall s > 1. Also, (N, ) is a central extension df’ : Cys.
(i) Let h, k € H and leti be any integer then

o = (@' e). (@ e)).  a? = (o). (a2 0))o
R = (. h).e), T = (e, (A, h)),
[ B2 = (B ). ). (7 k). )] = (7. B ] 1. k) )
= ((e (A, k]), e).
It follows that
Ho,2i+1={e},
Hosiv2=({e} x H') x {e} = (0D) x H',
Hisis3={e} x ({e} x H) =1 = H'.

Thus we verify in the first stage of generation/of
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N1 = (Hp2, H13) = P1 x P,
Pr={e} x H',
[N1,0%] ={e}, N1 <G

and((01) x H’, ) is a central extension df’: C».
(i) Let n =2°m, s > 1,m odd. Then for alk, k € H,

= [ &)= [((h k). e). (=" k). €)] = ([ k"] th. k1), €) =
= ((((te, .. ), [h, k1), ), [, k), ).
Thereforec is defined as a partial mapping ot by
(01)c = { [h,k] forall z odd and 1< ilg 21,
e foralli evenand i <28 — 2,
(Ozs)c =e:
also,

c=[h k" | =[h k"], [c.d®]=e.
Inductively, we produce0’1) =« H' for all i odd and 1< i < 2 — 1.

(i) Let P = P;. Then,N = P x P, P =N x H'. The elements of N, are
partial mappings from the monoit! into H’, defined on the sequences of length
25 in

({02, 10}"){01, 11
and as such have finite support. Therefore, all elememélodive finite support.

II. We will now show thatG /N is isomorphic toH : C. Itis clear that the coset
representatives a¥ in G can be chosen as expressions having the form

~ ,2iq ~ 2 ~ 2is 2j1+1 ~ 2 +1 ~ 2j+1
a“l rac2 acls a1 2 a<t m
:(hl R, )(k AR . )

with distinctintegersy, io, .. ., iy, distinctintegersu, jo, ..., js andm =2m’ +¢
with ¢ € {0, 1}. Letl(m) be the 2-valuation of:.. We call semi-normal a form for
w having (I(m), s + t) minimal under lexicographical ordering. The elemeant
can be developed in its action on the treewas (u, v)o® where

= (A" B o hano-ohy ).
v = (12‘{“123"2 R kg -kt).

Supposew € N is as above, in semi-normal form, and# ¢. Choosew having
these properties and being minimal with respect to the ordered pair of integers
(I(m),s + t). SinceN stabilizes the first level of the tree, we hawe- 0. Thus,
eithers + ¢ or m is different from 0. Therefore, a&§ = P x P, it follows that

u,v € P. Likewise, asP = N x H’, it follows that
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RYVRG? R o KRSk e e N,
hth" .hs’ k1k2' . 'kt c H’.
By the minimality condition/(m’) = 0 and asx” is inactive,m’ is even; thus
m' =0.
Therefore,
SRR KRSk e N.

Again, by the minimality condition, we hawe= 0, ort = 0. Thus, by a repetition
of this argument we reach=0, ¢ =1, ors = 1, ¢ = 0. On conjugatingv by an
adequate power eof we havew = i = ((h, h), ¢) andh € H'. Sinceh has infinite
supportwhereas elementsithave finite support, a contradiction is reached

Remark 1. (i) It is clear from the last part of the proof that/ife H' thenh is
an element of the topological closukeof N in A. Therefore, the guotient group
G/N is metabelian.

(i) Since C : (C: C) is residually a finite 2-group, we ask whether there could
exist a copy of such a group withilf T C for some groupH. Let hy,ho € H.
Then,

~ ~ ~ flot ~
¢ =(e. (i ), (R2)'t =z
Thus, there do not exist non-triviak, h» € H such that
(h1, h2, o) = (h1) 2 (h2, @).

(iii) The translationa = (e, (o, ¢))o has bounded growth and has 2-circuit
type. If H is also of bounded growth then the tree-wreath prodiiGt («) also
has bounded growth. Furthermore Hf is generated by automorphisms with a
bounded circuit structure theHd 7 (@) also has bounded circuit structure. So,
the tree-wreath construction preserves subgroupgf i.e., those formed by
automorphisms having bounded growth and 2-circuit type.

Proposition 1. Let L be the normal closure df inG.If His solvablgnilpoten),
thenL and H have equal solvability degrdeilpotency clasg

Proof. Let R be a subgroup ofl andv(R) = (v(R) x R) x (v(R) x R) as defined
previously, and: € H. Then we have

[v(R), ] = ([v(R) x R, (h,h)],e) = ([v(R), h] x [R, R, e).

In particular, forR = H’,

[v(H"), L] =v(y3(H)). [v(H", L']=v(H").
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SinceL is the normal closure off in G, clearly, L=v(H")(H; |i =0,1,...),
whereH; = H* as before, and we have the following formulas for the derived
series ofL,

L'=v(H")([v(H"), H;], H] | i > 0)=v(ys(H))(H] | i >0)
and forj > 1,
LY =v([ysH), H', ..., HI™V])(H i > 0).
The formulas for the lower central seriesiofor j > 2 are
y2(L) = v(y3(H))(H] | i >0),
vi(L) = v(y;(ED)yj(H) i 20). O

4. Thetree-wreath product H T K

We determine the structure of the centralizerofind then choose within it
a convenient abellan free subgroKg= K (r)) of rankr; we then consider the
topological closurek and also the normalizer df .

4.1. The centralizer af

Let y commute withe. Sincey also commutes witlya, we may assume
to be inactive; that isy = (30, y1). Then it is direct to see thap = y4, thatyp
commutes with(e, ¢) and thatyo = (y00, y01) Whereygg commutes withw and
yo1 IS an arbitrary element ofl. We use the notation that f@ € A we define
BD = (B, B), an element also iM. We conclude tha€ 4(«) has the following
decomposition in its action on the tree

Cal@)=Ca(@e)Pl@),  Ca((@ e)=Cal@) x A.

Also, givens € A, we defines’ = (§',8)V in A. The following calculation
provess’ € C 4(a):

o = (e, @ ))o = (e, (a” ¢))o =@

Using this last definition, we produce inductively the following sequence of
elements inC 4 («):

a@=a, ()= (), al—1)"
foralli > 1. DefineK (r) to be the group generated by(i) |0 <i < r}.

Lemma 1. The groupkK (r) defined above is free abelian of rank

Proof. Straightforward. O
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4.2. The topological closure & (r) and its normalizer

Lemma 2. The closure oK () is the direct sum
K=Y {fe@)lo<i<r}.
Proof. Straightforward. O
Now we produce some elementsdfvhich normalizel?(r\). For every dyadic
unité =1+ > {a;2' | i > 1} with a; =0, 1, we define ind the element
re = ((he, @), (rea®™D/2¢)),

and define the sett = {A¢ | £ a dyadic unif. Then it is direct to verify thah,
conjugatesy to of; i.e., a*¢ = . Sinceis, = g4, for all dyadicsE, pu, it
follows that Aut{a)) = A. Now define

2 (0) =1e = (e, 0), (rea® D2 e)),
and define inductively
2 (i) = (he (i), he (i — )P

foralli > 1.
Let Ai = {A:(0) | & a dyadic integgrand A(r) = (A; | 0< i < r). Then,
Aut((a (D)) = A;:

a(l-))\g(i) — (Ol(l'))\f(i), Ol(l _ 1)15(1'71))(1) — (Ol(l.))hs(i), Ol(l _ 1)3;‘)(1)
= a(i)®.

Proposition 2. The groupA(r) = (A; |0<i <r) normalizesf(r\) and the group
(K (r), A(r)) is the direct sum

Yo lle@)aij0<i<r).

Proof. (i) As A¢ (i) is of types” seen above, it commutes witghand thus
re(i) e Cp(a) foralli >1.

(ii) We compute the commutator
[0, 2] = (([re, 2] €), ([2ex P2 26 ()] €))

) L L&-D/2
= (([re. @] e). (2. e D] e)) =e,
foralli > 1, and we prove inductively thts (j), Ae ()] = e forall j, i. It follows
directly thatA(r) =) {A; |0<i < r}.
(iif) We compute the conjugates afi) fori > 1
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QD)2

a(*@ = ((a@)*, el — 1), (ai)* La(i — 1))
= ((a(™,ai — 1), ()™, ali — 1)) = al),
and by induction ory, for j # i, compute
a(i)D = (a(@)*Y, ali — 1)As(j71>)(1>
= (@@, 0 -1))Y =a@). O
4.3. The grouquf(r\)
The copying process df used in the previous section can be iterated to remain
compatible with wreathing b (r) as follows: define for every € H,
hO)=h,  h(Q)=h=((h),h),e),
and inductively for all > 1
h(i) = ((hG), k(i — D)), e).

Then clearlyﬁ(i) ={h(i) | h € H} is a group isomorphic t&{. Now, we prove
Theorem 2. The groupG = (ﬁ(r), I?(r\)) is a tree-wreath product 71?(7).

Proof. Let N(r) be the subgroup o& generated by the commutator groups
[H(r), H(r)’] for all y € K (r). We need to show that the commutator quotient
G/N(r) is isomorphic toﬁ(r) 2 f(r\) and thatV (r) is a direct sum of an infinite
number of copies of the derived groif.

Let £ be a dyadic integer and denote 1§§) is its 2-valuation. We also recall
the generators ok (r),

@ =a,  al)=(a6),al—1)",

0<i <r — 1. The following is a sketch of the proof.
() Leté =e+2&,6=0,1. Then,

N KCO if £ =0,
(' e), (X8 e))o, ife=1.
(i) Let
& =& + 2§, ¢ =0,1,
y = a(0)0a(1) - a(r)®, B=a@)f - ar).
Then,

B=B.)Y, B =a@a @) a1,
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andy is active if and only ifsg = 1.
Let

h(r) = ((h(r), h(r — D) e),  b(r) = ((b(r),b(r — 1)), e) € H(r).
Then,

E( v { ﬁ(’,)a(o)foﬁ — ((E(r)a(O)féﬁ’ }Nl(l" _ 1)/3/)’ 6) if 0= 0.
r =

(e, (fz(r)"‘(o)géﬂ, h(r — l)ﬂ/)) if eg=1.
Note that
e, ifegg=1,
[h(r), b(r) ] = [ (([A (). E(r)aw)é‘/’/f‘], [A(r — 1), b(r — DP']), e),
if e0=0.

(i) We argue by induction onr that [A(r), b(r)”], seen as a partial map
from the monoidM into H’, has a finite number of non-trivial entries in places
with indices fromU” whereU = ({02, 10}*){01, 11} and that all of these entries
are equal td#, b]. The caser = 1 is argued as in part (ii) of the theorem. By
the inductive hypothesis, the second tdin — 1), b(r — 1)#'] in [h(r), b(r)"]
conforms to the assertion. Now, if the conjugakﬁf))géﬂ is active (that is§; is

a dyadic unit) then the first terfih (), E(r)“(o)é‘/’ﬁ] =e¢ and
[2(r), b)) ] = ((e. [A(r — 1), b(r — DP']), ).

On the other handji(r), 5(-)*©™#] is non-trivial if and only ifl(&) > 1 and
then in this case we repeat the argument as in the above paragrap. 0fthen
[ (&) = s for some finites and so this development stops after at mosteps.

(iv) Let N(r) be subgroup generated by the commutators betweem
conjugates ofd (r). Then,N(r) = P(r) x P(r) andP(r) = N(r) x N(r — 1),
whereN(0) = H'. -

(V) The argument for showing th&t/ N (r) is isomorphic toH : K () follows
closely that of the theorem.

The coset representatives®{r) in G can be chosen as expressions of form

w = (}%71%72 . .mys)(b/ivmﬂll%MZ . .%Mt)

x (2 (0)0a(1)5---a(r)®),

wherey1, y2, ..., ys are inactive elements d?(r\) andu1, U2, ..., u, are active
elements 0177(7) .

Let us call semi-normal a form fap having minimal(>_{l(&;) | i > 0}, s +1).
Supposew € N(r) is as above, in semi-normal form and that£ e. Since
N(r) stabilizes the first level of the tree, we haig) > 0. Therefore, as
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N(@) = P(r) x P(r), it follows that w = (u,v) andu,v € P(r). Likewise,
asP(r) = N(r) x N(r — 1), by considering the respective coordinates:pb
and the minimality ofw, we reach thatw = h(r) = ((h(r),h(r — 1),¢) and
h(r — 1) € H(r — 1). Again, we appeal to the fact that elementshof-) have
finite support whereas nontrivial elementsifr) have infinite support to reach
a contradiction. O

Corollary 1. The groupA(r) normalizes the tree-wreath prodthTf(r\) .

Proof. First we note that for
h= ((l;, h), e) and Ag = ((Ag, e), ()\Ea(s—l)/Z’ e)),

we haver’s = ((h*¢, h), e) = h and thusi; centralizes . Inductively, it is easy
to see thatA(r) centralizesH (r). We conclude thati(r) normalizes the group
(H(r),K(r)). O

Corallary 2. The free metabelian groug of rankr has a faithful representation
as a group of finite-state automorphisms.

Proof. Let H = (x1,x2,...,x,) and K = (y1, y2,..., yr) be two free abelian
groups each of rank and letG = H : K. Then, using the Magnus embed-
ding of wreath products into 2 2 matrices, it can be seen that the sub-
group (x1y1, x2y2, ..., X, y») iS isomorphic to the free metabelian grolyp of
rankr [11]. Since we have produced in the previous theorem a faithful represen-
tation of G into F, the proof follows. O
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