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Abstract

The Fock space ofm+ p bosonic andn+ q fermionic quantum oscillators forms a unitarizab
module of the general linear superalgebraglm+p|n+q . Its tensor powers decompose into dire
sums of infinite-dimensional irreducible highest-weightglm+p|n+q -modules. We obtain an explic
decomposition of any tensor power of this Fock space into irreducibles, and develop a ch
formula for the irreducibleglm+p|n+q -modules arising in this way.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Fock space ofm + p bosonic andn + q fermionic quantum oscillators (se
Section 3.3 for definition) with the standard inner product furnishes a unitarizable com
representation of the real formu(m,p|n,q) of the general linear superalgebraglm+p|n+q .
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This representation decomposes into a direct sum of infinite-dimensional irred
representations which are of highest-weight type with respect to an appropriate
of a Borel subalgebra. Because of the unitarity, any tensor power of the representa
also semi-simple with all irreducible sub-representations being unitarizable highest-w
representations. We shall characterize the irreducible sub-representations and de
their structure.

In recent years there have been considerable activities (see, e.g., [7] for refer
in the physics community to study unitarizable highest-weight representations o
superalgebras. This is motivated by applications of such representations in quantu
theory. For example, the symmetry algebra of the yet largely conjecturalM-theory is
closely related toosp1|32(R) [23]. An understanding of the unitarizable highest-wei
representations of this Lie superalgebra will help to solve mysteries ofM-theory. It has
also been recognized [9] that some real forms of simple basic classical Lie supera
provide the conformal superalgebras of higher-dimensional space–time manifold
extended supersymmetries. The unitarizable highest-weight representations of th
superalgebras thus describe the spectra of possible elementary particles existing
space–times.

The problem of determining the possible unitarizable irreducible highest-w
representations of real forms of simple Lie superalgebras was investigated by a n
of people (see [7] and references therein), with the most systematical study given i
However, a classification analogous to the Enright–Howe–Wallach [11] classific
of unitarizable positive energy irreducible representations for ordinary real simpl
algebras has yet to be achieved (see Section 3.3).

A demanding but physically more important problem is to understand the stru
of the unitarizable irreducible representations. Recall that a character formula f
unitarizable irreducible highest-weight representations of real forms of simple
algebras [11] was given in [10] some fifteen years ago. In a recent publication [6
of the authors studied the irreducible representations arising from the decomposi
the tensor powers of the oscillator representations of the orthosymplectic superalg
By using results of [8,10], a character formula for these irreducible representation
derived. In this paper we investigate the case of the general linear superalgebra.

It is known from [14] thatu(d) andu(m,p|n,q) form a dual reductive pair on thed th
tensor power of the Fock space ofm+p bosonic andn+q fermionic quantum oscillators
We explore the duality between the complexifications of these Lie (super)algeb
obtain in Theorem 3.3 an explicit decomposition of the tensor power of the Fock
into irreduciblegld × glm+p|n+q -modules. The Howe duality again as in [2,6] form
the key ingredient and further enables us to compute the characters for the irred
glm+p|n+q -representations of Theorem 3.3. This result is presented in Theorem
Another application of the Howe duality is the computation of the tensor pro
decomposition of any two such unitarizable modules, which is the contents of Theore

Here is an outline of the paper. In Section 2 we discuss the(gld , glm|n)-dualities on
S(Cd ⊗ C

m|n) and its graded dual space. The material is largely known, but the hig
weight vectors in the graded dual ofS(Cd ⊗ Cm|n) given in Lemma 2.2 have not bee
computed previously as far as we are aware of. In Section 3 we study theglm+p|n+q -
representations furnished by tensor powers of the Fock space ofm + p bosonic and
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n + q fermionic quantum oscillators. In Section 3.2 we show that such represent
are unitarizable and their irreducible sub-representations are infinite-dimensional h
weight representations, and in Section 3.4 we obtain the explicit decomposition of thd th
tensor power of the Fock space with respect to the semi-simple multiplicity free act
gld × glm+p|n+q . Section 4 gives theglm+p|n+q → glp|q × glm|n branching rule for the
infinite-dimensional unitarizable irreducibleglm+p|n+q -representations arising from th
decomposition of tensor powers of the Fock space. In Section 5 we develop a ch
formula for these infinite-dimensional irreducibleglm+p|n+q -representations in terms o
hook Schur functions. Finally, in Section 6 we calculate the tensor product decompo
of two such irreducibleglm+p|n+q -modules that appear in our decompositions of ten
powers.

2. Tensorial representations of general linear superalgebra

This section presents some results on the(gld , glm|n)-dualities onS(Cd ⊗Cm|n) and its
graded dual vector space. The material contained here will be important for the rem
of the paper.

2.1. Preliminaries

We work over the fieldC of complex numbers throughout the paper. Letgld denote the
Lie algebra of all complexd × d matrices. Let{e1, . . . , ed} be the standard basis forCd .
Denote byeij the elementary matrix with 1 in theith row andj th column and 0 elsewher
Thenhd =∑d

i=1 Ceii is a Cartan subalgebra, whilebd =∑1�i�j�d Ceij is the standard

Borel subalgebra containinghd . The weight ofei is denoted bỹεi for 1 � i � d .
Let Cm|n = Cm|0⊕ C0|n denote them|n-dimensional superspace. The superspac

complex linear transformations onCm|n has a natural structure of a Lie superalgebra [1
which we will denote byglm|n. Choose a basis{e1, . . . , em} for the even subspaceCm|0
and a basis{f1, . . . , fn} for the odd subspaceC0|n, then {e1, . . . , em,f1, . . . , fn} is a
homogeneous basis forCm|n. We may regardglm|n as consisting of(m+ n)× (m+ n)

matrices relative to this basis. Denote byEij the elementary matrix with 1 in theith
row andj th column and 0 elsewhere. Thenhm|n =∑m+n

i=1 CEii is a Cartan subalgebr
while bm|n =∑1�i�j�m+n CEij is the standard Borel subalgebra containinghm|n. We
shall denote the weights ofei andfj by εi and δj , respectively, fori = 1, . . . ,m, and
j = 1, . . . , n.

By a partitionλ of lengthk we mean a non-increasing finite sequence of non-neg
integers(λ1, . . . , λk). We will let λ′ denote the transpose of the partitionλ. For example, if
λ= (4,3,1,0,0), then the length ofλ is 5 andλ′ = (3,2,2,1). By a generalized partitio
of lengthk, we shall mean a non-increasing finite sequence of integers(λ1, . . . , λk). In
particular, every partition is a generalized partition of non-negative integers. Correspo
to each generalized partitionλ= (λ1, . . . , λd), we will defineλ∗ := (−λd, . . . ,−λ1). Then
λ∗ is also a generalized partition.

We regard a finite sequenceλ= (λ1, . . . , λd) of complex numbers as an element of t
dual vector spaceh∗ of hd defined byλ(eii ) = λi , for i = 1, . . . , d . Denote byV λ the
d d
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Similarly, we shall also regard a finite sequence of complex numbersλ= (λ1, . . . , λm+n)
as an element of the dual vector spaceh∗m|n of hm|n such thatλ(Ejj )= λj , 1� j � m+n.

We denote byV λ
m|n the irreducibleglm|n-module with highest weightλ relative to the

standard Borel subalgebrabm+n.

2.2. The(gld , glm|n)-duality onS(Cd ⊗Cm|n)

Recall that the natural action of the Lie superalgebragld × glm|n on Cd ⊗ Cm|n
induces an action on the supersymmetric tensor algebraS(Cd ⊗ Cm|n). This action is
completely reducible and multiplicity free [3,4,14,22]. Indeed the pair(gld , glm|n) forms
a dual reductive pair onS(Cd ⊗Cm|n) in the sense of Howe [14,15].

Theorem 2.1 [3]. Under thegld × glm|n-action, S(Cd ⊗Cm|n) decomposes into

S
(
C
d ⊗C

m|n)∼=∑
λ

V λ
d ⊗ V λ̃

m|n, (2.1)

where the sum in(2.1)is over all partitionsλ of lengthd subject to the conditionλm+1 � n,
and

λ̃= (λ1, . . . , λm; 〈λ′1−m〉, . . . , 〈λ′n −m〉). (2.2)

Hereλ′ is the transpose partition ofλ, and〈r〉 stands forr, if r ∈N, and0 otherwise.

Remark 2.1. The conditionλm+1 � n is considered to be automatically satisfied by ev
generalized partitionλ of lengthd if m� d .

We shall need an explicit formula for the joint highest-weight vectors of the irredu
gld × glm|n-module V λ

d ⊗ V λ̃
m|n inside S(C ⊗ Cm|n). (See also [20,21] for differen

descriptions of these vectors.) We set

xil := ei ⊗ el, ηik := ei ⊗ fk, (2.3)

for i = 1, . . . , d , l = 1, . . . ,m, andk = 1, . . . , n. We will denote byC[x, η] the polynomial
superalgebra generated by (2.3). By identifyingS(Cd⊗Cm|n) with C[x, η] the commuting
pair (gld , glm|n) can be realized in terms of the following first-order differential opera
acting on the left (1� i, i ′ � d , 1� s, s′ � m and 1� k, k′ � n):

φ(eii′) :=
m∑

j=1

xij
∂

∂xi
′
j

+
n∑

j=1

ηij
∂

∂ηi
′
j

, (2.4)

φ(Ess ′) :=
d∑

x
j
s

∂

∂x
j
′
, φ(Em+k,m+k′ ) :=

d∑
η
j
k

∂

∂η
j
′
, (2.5)
j=1 s j=1 k
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φ(Es,m+k) :=
d∑

j=1

x
j
s

∂

∂η
j

k

, φ(Em+k,s) :=
d∑

j=1

η
j
k

∂

∂x
j
s

.

Straightforward calculations show thatφ(eij ), 1 � i, j � d , and φ(Eab), 1 � a, b �
m + n, satisfy the same commutation relations as the elementary matriceseij andEab,
respectively. Thus (2.4) spans a copy ofgld , and (2.5) a copy ofglm|n.

For 1� r � min(d,m), we define

∆r := det


x1

1 x1
2 · · · x1

r

x2
1 x2

2 · · · x2
r

...
...

...
...

xr1 xr2 · · · xrr

 . (2.6)

If d >m, we consider the following determinant of anr × r matrix for everym< r � d :

∆k,r := det



x1
1 x2

1 · · · xr1
x1

2 x2
2 · · · xr2

...
... · · · ...

x1
m x2

m · · · xrm
η1
k η2

k · · · ηrk
η1
k η2

k · · · ηrk
...

... · · · ...

η1
k η2

k · · · ηrk


, k = 1, . . . , n. (2.7)

That is, the firstm rows are filled by the vectors(x1
j , . . . , x

r
j ), for j = 1, . . . ,m, in

increasing order and the lastr −m rows are filled with the same vector(η1
k , . . . , η

r
k). Here

the determinant of anr × r matrix

A :=


a1

1 a2
1 · · · ar1

a1
2 a2

2 · · · ar2
...

... · · · ...

a1
r a2

r · · · arr

 ,

with matrix entries possibly involving Grassmann variables, is by definition the expre∑
σ∈Sr (−1)l(σ )aσ(1)1 a

σ(2)
2 · · ·aσ(r)r , where l(σ ) is the length ofσ in the symmetric

groupSr .
Observe that both∆r and∆k,r (if non-zero) are weight vectors ofgld × glm|n. Their

gld -weights are respectively

wtd(∆r)= (1, . . . , 1︸︷︷︸
r

,0, . . . ,0),

wtd(∆k,r)= (1, . . . , 1︸︷︷︸,0, . . . ,0), (2.8)

r
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while theglm|n-weights are respectively

wtm|n(∆r)= (1, . . . , 1︸︷︷︸
r

,0, . . . ,0),

wtm|n(∆k,r )= (1, . . . , 1︸︷︷︸
m

,0, . . . ,0, r −m︸ ︷︷ ︸
m+k

,0, . . . ,0), (2.9)

In correspondence to each partitionλ of lengthd satisfying the conditionλm+1 � n, we
define

∆λ :=
{
∆λ′1∆λ′2 · · ·∆λ′λ1

, if λ′1 � m,∏λm+1
k=1 ∆k,λ′k

∏λ1
j=1+λm+1

∆λ′j , if λ′1 >m.
(2.10)

Lemma 2.1 [3]. The space ofgld × glm|n highest-weight vectors in the submod

V λ
d ⊗ V λ̃

m|n of C[x, η] is C∆λ.

2.3. The(gld , glp|q)-duality onS(Cd∗ ⊗Cp|q∗)

Let us denote byCp|q∗ the dual of the naturalglp|q -moduleCp|q , and byCd∗ the
dual of the naturalgld -moduleCd . Then thegld × glp|q -action onCd∗ ⊗Cp|q∗ induces a
gld × glp|q -action onS(Cd∗ ⊗Cp|q∗)

If Sk(W) denotes the set of all homogeneous elements of degreek in the supersym
metric tensor algebra of the superspaceW , thenSk(Cd∗ ⊗ C

p|q∗) ∼= Sk(Cd ⊗ C
p|q)∗,

and thusS(Cd∗ ⊗ Cp|q∗) ∼=∑k S
k(Cd ⊗ Cp|q)∗. Therefore it follows from the decom

position (2.1) that thegld × glp|q -action onS(Cd∗ ⊗ Cp|q∗) is also semi-simple an
multiplicity free. Furthermore, we have the following decompositionS(Cd∗ ⊗ Cp|q∗) ∼=∑

λ(V
λ
d )
∗ ⊗ (V λ̃

p|q)∗, whereλ is summed over all partitions of lengthd subject to the con

dition λp+1 � q . Clearly,(V λ
d )
∗ ∼= V λ∗

d . Also, (V λ̃
p|q)∗ ∼= V λ̂∗

p|q , whereλ̂∗ is the negative o

the lowest weight ofV λ̃
p|q . We shall give an explicit formula for̂λ∗ in Eq. (2.20).

Since the supertrace Str is trivial on the derived algebra ofglp|q , one may twist any
action ofglp|q by any scalar multiple of the supertrace. This is to say that, ifX ∈ glp|q
acts on a space, then we may define a new action ofX on this space byX + γ Str(X)

instead, whereγ ∈C. This in particular allows us to twist the standard action ofglp|q on
S(Cd∗ ⊗Cp|q∗) by−dStr. Under this twisted action ofglp|q , the spaceS(Cd∗ ⊗Cp|q∗)
decomposes into

S
(
C
d∗ ⊗C

p|q∗)∼=∑
λ

V λ
d ⊗ V−d1+λ̂

p|q , (2.11)

where

1 := (1, . . . , 1︸︷︷︸,−1, . . . ,−1).

p
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Here the summation inλ is over all generalized partitions of non-positive integers w
length d subject toλd−p � −q . Observe thatλ∗ is a partition of lengthd satisfying
(λ∗)p+1 � q .

Remark 2.2. For any generalized partitionλ of length d , the conditionλd−p � −q is
considered to be automatically satisfied ifp � d .

Remark 2.3. Hereafter we shall always mean this twisted action ofglp|q when considering
S(Cd∗ ⊗Cp|q∗) as agld × glp|q -module.

Let e1, . . . , ed be the standard basis ofCd . Let e1∗, . . . , ed∗ be a basis for the
contragredientgld -moduleCd∗. We require the two bases to be dual in the sense
ei
∗
(ej ) = δij for all i, j ∈ {1, . . . , d}. Similarly, we lete1, . . . , ep, f1, . . . , fq denote the

standard homogeneous basis for the naturalglp|q -moduleCp|q ande∗1, . . . , e∗p, f ∗1 , . . . , f ∗q
denote the dual basis for the contragredientglp|q -moduleCp|q∗. For 1� l � d , 1� i � p

and 1� j � q , we set

yli := el
∗ ⊗ e∗i , ζ lj := el

∗ ⊗ f ∗j , (2.12)

which form a basis forCd∗ ⊗Cp|q∗.
We will denote byC[y, ζ ] the polynomial superalgebra generated by (2.12). Leteij ,

1 � i, j � d and Eab, 1 � a, b � p + q be the bases respectively forgld and glp|q
consisting of elementary matrices. Then the action of the commuting pair(gld , glp|q) on
C[y, ζ ] can be realized in terms of first-order differential operators as follows (1� i, j � d ,
1 � r, r ′ � p and 1� s, s′ � q):

φ̄(eij ) :=−
p∑

k=1

y
j
k

∂

∂yik

−
q∑

k=1

ζ
j
k

∂

∂ζ ik

, (2.13)

φ̄(Err ′) :=−
d∑

l=1

∂

∂ylr
ylr ′, φ̄(Es+p,s ′+p) :=

d∑
l=1

∂

∂ζ ls
ζ ls ′, (2.14)

φ̄(Es+p,r) :=−
d∑

l=1

∂

∂ζ ls
ylr , φ̄(Er,s+p) :=

d∑
l=1

∂

∂ylr
ζ ls .

It is straightforward to show that thēφ(eij ) and φ̄(Eab) satisfy the same commutatio
relations as theeij andEab, respectively. Furthermore, the elements of (2.13) comm
with those of (2.14).
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For 1� r � min(d,p), we define the following determinant of anr × r matrix:

∆∗r := det


ydp ydp−1 · · · ydp−r+1

yd−1
p yd−1

p−1 · · · yd−1
p−r+1

...
...

...
...

yd−r+1
p yd−r+1

p−1 · · · yd−r+1
p−r+1

 . (2.15)

For 1� r � d , we define

∆∗k,r := ζ dk ζ
d−1
k · · · ζ d−r+1

k , k = 1, . . . , q. (2.16)

It is clear that the∆∗r and∆∗k,r are allgld highest-weight vectors with respect to t
standard Borel subalgebrabd . They are also weight vectors under the action ofgld ×glp|q
with thegld -weights respectively given by

wtd
(
∆∗r
)= (0, . . . ,0, −1︸︷︷︸

d+1−r
, . . . ,−1),

wtd
(
∆∗k,r

)= (0, . . . ,0, −1︸︷︷︸
d+1−r

, . . . ,−1), (2.17)

and theglp|q -weights respectively given by

wtp|q
(
∆∗r
)=−d1+ (0, . . . ,0, −1︸︷︷︸

p+1−r
, . . . , −1︸︷︷︸

p

,0, . . . ,0),

wtp|q
(
∆∗k,r

)=−d1+ (0, . . . ,0, −r︸︷︷︸
p+k

,0, . . . ,0). (2.18)

Let λ = (λ1, . . . , λd) be a generalized partition of non-positive integers subject to
conditionλd−p �−q . Thenµ := λ∗ is a partition satisfying the conditionµp+1 � q . We
let µ′ denote the transpose partition ofµ. Define

∆∗λ :=
{∏µ1

k=1∆
∗
q+1−k,µ′k , if µ1 � q,∏q

k=1∆
∗
q+1−k,µ′k

∏µ1
l=q+1∆

∗
µ′l
, if µ1 > q.

(2.19)

Lemma 2.2. Let λ = (λ1, . . . , λd) be a generalized partition of non-positive intege
subject to the conditionλd−p � −q . Then∆∗λ is a non-zero highest-weight vector
C[y, ζ ] with respect to the joint action ofgld andglp|q . Thegld -weight of∆∗λ is λ, while
theglp|q -weight of∆∗λ is−d1+ λ̂ with

λ̂ := −(〈µp − q〉, 〈µp−1− q〉, . . . , 〈µ1− q〉,µ′q,µ′q−1, . . . ,µ
′
1

)
, (2.20)

whereµ= λ∗.
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Proof. Note that φ̄(eij ), for all 1 � i, j � d , act onC[y, ζ ] by derivations. Thus th
product of any subset of thegld highest-weight vectors∆∗r , ∆∗k,r , r = 1,2, . . . ,min(d,p),
k = 1,2, · · · , q , is also agld highest-weight vector. Hence so is∆∗λ.

Obviously∆∗λ is a highest-weight vector with respect to the action of the subalg
glp × glq of glp|q . Consider the action of̄φ(Ep,p+1) =∑d

l=1 ∂ζ
l
1/∂y

l
p on ∆∗λ. When

−λd = µ1 � q , ∆∗λ does not involve any of the variablesylp, thusφ̄(Ep,p+1)∆
∗
λ = 0. By

using the equation

∆∗1,r
d∑

l=1

ζ l1
∂

∂ylp
∆s = 0, r � s,

we also easily show that∆∗λ is annihilated byφ̄(Ep,p+1) whenµ1 > q . This proves tha
∆∗λ is indeed agld × glp|q highest-weight vector. The rest of the lemma easily follo
from Eqs. (2.17) and (2.18).✷

To summarize this subsection, we combine Lemma 2.2 with Eq. (2.1) into the follo
theorem.

Theorem 2.2. Under thegld × glp|q -action, C[y, ζ ] decomposes into

C[y, ζ ] ∼=
∑
λ

V λ
d ⊗ V −d1+λ̂

p|q ,

whereλ is summed over all generalized partitions of non-positive integers with lengd

subject toλd−p � −q . The space of highest-weight vectors inV λ
d ⊗ V −d1+λ̂

p|q is given by
C∆∗λ.

3. The (gld, glm+p|n+q)-duality on S(Cd ⊗ Cm|n ⊕ Cd∗ ⊗ Cp|q∗
)

3.1. Thegld × glm+p|n+q -action onS(Cd ⊗Cm|n⊕Cd∗ ⊗Cp|q∗)

We described the semi-simple multiplicity free actions ofgld ×glm|n onS(Cd ⊗Cm|n)
andgld × glp|q onS(Cd∗ ⊗Cp|q∗) in the last section. Through the obvious isomorph
betweenS(Cd ⊗ Cm|n) ⊗C S(Cd∗ ⊗ Cp|q∗) andS(Cd ⊗ Cm|n ⊕ Cd∗ ⊗ Cp|q∗), these
actions lead to agld × glm|n × glp|q -action on the latter, wheregld acts diagonally. It is
not immediately obvious, but nevertheless true [14], thatS(Cd ⊗ Cm|n ⊕ Cd∗ ⊗ Cp|q∗)
also admits an action of the larger algebragld × glm+p|n+q .

For the purpose of describing this action, it is convenient to introduce a bas
glm+p|n+q different from that given in Section 2.1. SetI= {1,2, . . . ,m+ p+ n+ q}. Let
{vA | A ∈ I} be a basis ofCp|q ⊕Cm|n such that{va | 1 � a � p + q} and{vp+q+c | 1 �
c � m+n} are respectively the standard bases forCp|q andCm|n described in Section 2.1
Let EA, A,B ∈ I, be the set of the elementary matrices satisfyingEAvC = δBCvA.
B B
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These matrices form a homogeneous basis ofglm+p|n+q with the following commutation
relations:

[
EA
B,E

C
D

]= δBCE
A
D − (−1)degEA

B degEC
DδADE

C
B , (3.1)

where degEA
B is theZ2-degree ofEA

B .
Let B :=∑

A�B; A,B∈I CEA
B , and hm+p|n+q :=∑

A∈I CEA
A . ThenB forms a (non-

standard) Borel subalgebra ofglm+p|n+q with the Cartan subalgebrahm+p|n+q . Note
that

∑p+q
a,b=1 CEa

b forms a subalgebra isomorphic toglp|q , and
∑m+n

u,v=1 CE
p+q+u
p+q+v forms

a subalgebra isomorphic toglm|n, and these two subalgebras mutually commute. Toge
they formglp|q × glm|n, which is a regular subalgebra ofglm+p|n+q in the sense tha
its standard Borel subalgebrabp|q × bm|n is contained inB, and the correspondin
Cartan subalgebrahp|q × hm|n is identified withhm+p|n+q . This identification leads to
canonical embeddings ofh∗p|q and h∗m|n in h∗m+p|n+q . Choose a basis{ε̂A | A ∈ I} for
h∗m+p|n+q such thatε̂A(EBB) = δAB , for all A,B ∈ I. An elementΛ = ∑

A∈I ΛAε̂A
of h∗m+p|n+q will also be written asΛ = (Λ1,Λ2, . . . ,Λp+q+m+n). Now any pair of
elementsλ = (λ1, λ2, . . . , λp+q) ∈ h∗p|q andµ = (µ1,µ2, . . . ,µm+n) ∈ h∗m|n gives rise
to an element(λ;µ) ∈ h∗m+p|n+q defined by

(λ;µ) := (λ1, λ2, . . . , λp+q,µ1,µ2, . . . ,µm+n). (3.2)

We retain the notationsC[x, η] andC[y, ζ ] from Section 2, and denote byC[x,y, η, ζ ]
the polynomial superalgebraC[x, η] ⊗C C[y, ζ ]. Let D[x,y, η, ζ ] denote the oscillato
superalgebra generated by the variablesxli , η

l
j , ylr , ζ

l
s , and their derivatives∂/∂xli , ∂/∂η

l
j ,

∂/∂ylr , ∂/∂ζ
l
s , where 1� i � m, 1 � j � n, 1 � r � p, 1 � s � q , and 1� l � d . Then

D[x,y, η, ζ ] naturally acts onC[x,y, η, ζ ], thus forms a subalgebra of End(C[x,y, η, ζ ]).
The general linear groupGL(d) acts onD[x,y, η, ζ ] by conjugation. The correspondin

action of the Lie algebragld is realized in terms of the following first-order different
operators (1� i, j � d):

Φ(eij )=
m∑

k=1

xik
∂

∂x
j
k

+
n∑

k=1

ηik
∂

∂η
j
k

−
p∑

k=1

y
j
k

∂

∂yik

−
q∑

k=1

ζ
j
k

∂

∂ζ ik

. (3.3)

Let D[x,y, η, ζ ]GL(d) denote theGL(d)-invariant subalgebra ofD[x,y, η, ζ ]. TheGL(d)-
action is semi-simple. Thus from the first fundamental theorem of the invariant theo
the general linear group (see, e.g., Chapter 4 of [12]) we deduce thatD[x,y, η, ζ ]GL(d) is
generated by the following operators:

Φ
(
Ea
b

) := φ̄(Eab), 1 � a, b � p+ q, (3.4)

Φ
(
E

p+q+u
p+q+v

) := φ(Euv), 1� u,v � m+ n, (3.5)
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Φ
(
Er
p+q+i

) := d∑
l=1

∂

∂ylr

∂

∂xli

, Φ
(
Er
m+p+q+j

) := d∑
l=1

∂

∂ylr

∂

∂ηlj

,

Φ
(
E

p+s
p+q+i

) := d∑
l=1

∂

∂ζ ls

∂

∂xli

, Φ
(
E

p+s
m+p+q+j

) := d∑
l=1

∂

∂ζ ls

∂

∂ηlj

, (3.6)

Φ
(
E

p+q+i
r

) := − d∑
l=1

xli y
l
r , Φ

(
E

p+q+i
p+s

) := d∑
l=1

xli ζ
l
s ,

Φ
(
E

m+p+q+j
r

) := − d∑
l=1

ηlj y
l
r , Φ

(
E

m+p+q+j
p+s

) := d∑
l=1

ηlj ζ
l
s , (3.7)

where 1� i � m, 1� j � n, 1� r � p, and 1� s � q . It is an easy exercise to show th
the space spanned byΦ(eij ), 1� i, j � d , andΦ(EA

B ), A,B ∈ I is a homomorphic imag
of gld × glm+p|n+q in D[x,y, η, ζ ]. As every Lie superalgebra map uniquely extend
a homomorphism of its universal enveloping algebra, we have an associative super
homomorphism

Φ : U(gld × glm+p|n+q )→D[x,y, η, ζ ].

Now by identifying S(Cd ⊗ Cm|n ⊕ Cd∗ ⊗ Cp|q∗) with the polynomial superalgebr
C[x,y, η, ζ ], we obtain an action ofgld × glm+p|n+q on S(Cd ⊗Cm|n + Cd∗ ⊗Cp|q∗).
It can be extracted from [14] that this action is semi-simple and multiplicity free. We
this as a theorem for convenience of reference.

Theorem 3.1 [14]. The pair (gld , glm+p|n+q ) of Lie (super)algebras forms a dua
reductive pair onC[x,y, η, ζ ].

3.2. Unitarity

We first recall some basic facts about∗-superalgebras and their unitarizable repres
tations. A ∗-superalgebra is an associative superalgebraA together with an anti-linea
anti-involutionω :A→ A. Here we should emphasize that for anya, b ∈ A, we have
ω(ab)= ω(b)ω(a), where no sign factors are involved. A∗-superalgebra homomorphis
f : (A,ω)→ (A′,ω′) is a superalgebra homomorphism obeyingf ◦ω= ω′ ◦f . Let (A,ω)

be a∗-superalgebra, and letV be aZ2-gradedA-module. A Hermitian form〈·| ·〉 onV is
said to be contravariant if〈av| v′〉 = 〈v|ω(a)v′〉, for all a ∈ A, v, v′ ∈ V . An A-module
equipped with a positive definite contravariant Hermitian form is called a unitarizabA-
module. It is clear that any unitarizableA-module is completely reducible.

The oscillator superalgebraD[x,y, η, ζ ] admits the∗-structureω defined by

xli �→
∂

∂xl
,

∂

∂xl
�→ xli , ηlj �→

∂

∂ηl
,

∂

∂ηl
�→ ηlj ,
i i j j
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ylr �→
∂

∂ylr

∂

∂ylr
�→ ylr , ζ ls �→

∂

∂ζ ls
,

∂

∂ζ ls
�→ ζ ls ,

where 1� i � m, 1 � j � n, 1 � r � p, 1� s � q , and 1� l � d . There exits a uniqu
contravariant Hermitian form〈·|·〉 on C[x,y, η, ζ ] with 〈1|1〉 = 1. By using the ‘particle
number’ basis relative to which the operatorsxli ∂/∂x

l
i , η

l
j ∂/∂η

l
j , ylr ∂/∂y

l
r , ζ

l
s ∂/∂ζ

l
s , for

all i, j, r, s, l are simultaneously diagonalizable, one can easily show that the form〈·|·〉 is
positive definite. The polynomial superalgebraC[x,y, η, ζ ] with this inner product (afte
completion) is the Fock space ofd(m + p) bosonic andd(n + q) fermionic quantum
oscillators. Whend = 1, we denote it byFm+p|n+q . Then it is clear that for arbitrar
d we have

C[x,y, η, ζ ] ∼= (Fm+p|n+q)⊗d .

What presented in this paragraph is standard material on Fock spaces, which is pa
basic ingredients of second quantization.

We now consider a∗-structure of U(gld×glm+p|n+q ). We shall regardgld×glm+p|n+q
as embedded in its universal enveloping algebra. Consider the anti-linear anti-involuσ

of U(gld×glm+p|n+q ) defined, for all 1� a, b � p+q ,p+q+1� r, s � p+q+m+n,
and 1� i, j � d , by

Ea
b �→ (−1)[a]+[b]Eb

a, Er
s �→Es

r ,

Ea
s �→ −(−1)[a]Es

a, Er
b �→ −(−1)[b]Eb

r ,

eij �→ eji ,

where

[a] =
{

0, 1 � a � p,

1, 1 � a − p � q.

By direct calculations we can show that this anti-linear map respects the commu
relations (3.1), thus indeed defines an anti-linear anti-involution of U(gld × glm+p|n+q ).
Now σ gives rise to a∗-structure for U(gld × glm+p|n+q ).

Theorem 3.2.

(1) The mapΦ is a ∗-superalgebra homomorphism from(U(gld × glm+p|n+q ), σ ) to the
oscillator superalgebra(D[x,y, η, ζ ],ω).

(2) C[x,y, η, ζ ] is a unitarizable(U(gld × glm+p|n+q ), σ )-module with respect to th
Hermitian form〈 · , · 〉.

Proof. Using Eqs. (3.3)–(3.7), we can show by direct calculations that for allX ∈ gld ×
glm+p|n+q , we haveΦσ(X)= ωΦ(X). This proves part (1). Part (2) immediately follow
from part (1). ✷
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We also have the following result.

Lemma 3.1. All the irreducible gld × glm+p|n+q -submodules ofC[x,y, η, ζ ] are of
highest-weight type with respect to the Borel subalgebrabd ×B.

Proof. Let H be the harmonic subspace ofC[x,y, η, ζ ], i.e., the subspace consisting
such polynomials that are annihilated by all the elementsΦ(EA

B),A � p+q ,B > p+q , of
(3.6). ThenH forms a module of the subalgebragld × glp|q × glm|n spanned by elemen
of (3.3), (3.4) and (3.5). It follows from the(gld , glm|n)-duality on C[x, η] described
in Theorem 2.1 and the(gld , glp|q )-duality on C[y, ζ ] described in Theorem 2.2 th
H decomposes into a direct sum of finite-dimensional irreduciblegld × glp|q × glm|n-
modules.

LetW be an irreduciblegld×glm+p|n+q -submodule ofC[x,y, η, ζ ]. LetHW =W ∩H .
Then HW �= 0, as the lowest-order polynomials ofW are all contained inHW . Now
HW forms a module of the subalgebragld × glp|q × glm|n, which in fact is irreducible
To see this, we note that ifHW were reducible with respect togld × glp|q × glm|n,
then due to complete reducibilityHW would contain more than one linearly independ
gld × glp|q × glm|n highest-weight vectors. However, since they lie inHW , they would
also begld × glm+p|n+q highest-weight vectors with respect tobd ×B, thus contradicting
the irreducibility ofW . ThusW is generated by agld × glm+p|n+q highest-weight vecto
with respect tobd ×B, as claimed. ✷
Remark 3.1. From Theorem 3.1 and the proof of the lemma we can deduce that the
of gld × glp|q × glm|n on the harmonic subspaceH of C[x,y, η, ζ ] is semi-simple and
multiplicity free.

Let gR be the real superspace spanned by{X ∈ (glm+p|n+q )0̄ | σ(X)=−X} ∪√i{X ∈
(glm+p|n+q )1̄ | σ(X) = −X}. Then gR is a real form ofglm+p|n+q , that is,gR forms
a real Lie superalgebra with the complexification beingglm+p|n+q itself. The usua
notation for this real form isu(m,p|n,q). Note that the maximal even subalgebra ofgR

is u(m,p) × u(n, q). Thus every non-trivial unitarizableu(m,p|n,q)-module must be
infinite-dimensional.

3.3. Comments on unitarizable modules

At this point, we should relate to results in the literature. Note that the restric
of σ to the subalgebrasglm|n and glp|q act differently on the odd subspaces. Th
respectively give rise to two different real formsu+(m|n) andu−(p|q) of the subalgebras
Now gR contains the subalgebrau−(p|q) × u+(m|n), which one would like to regar
as the ‘maximal compact subalgebra’. Unfortunately finite-dimensional representati
u+(m|n) andu−(p|q) are not necessarily unitarizable. In fact it has long been known
that the only finite-dimensional unitarizable irreducible representations ofu+(m|n)
(respectivelyu−(p|q)) are the tensor products of the irreducible representations appe
in Theorem 2.1 (respectively Theorem 2.2) with some 1-dimensional representations
restricting modules of the general linear superalgebra to modules of its real form),
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constitute a small class of the finite-dimensional irreducible representations. Th
situation is very different from the case of the compact real Lie algebrau(k).

The intersection ofu(m,p|n,q) with slm+p|n+p gives rise to the real Lie superalgeb
su(m,p|n,q). It was shown in [16] thatsu(m,p|n,q) admits no unitarizable highes
or lowest-weight representations with respect to the standard Borel subalgebra if
integersm, n, p and q are non-zero. Since [16] was only concerned with irreduc
unitarizable highest-weight modules of simple basic classical Lie superalgebras
respect to their standard Borel subalgebras [17], the irreducibleglm+p|n+q -modules
appearing in the decomposition ofC[x,y, η, ζ ] were ignored. In fact, with respect
the standard Borel subalgebra ofglm+p|n+q , the unitarizable irreducible representatio
studied in this paper are neither highest-weight nor lowest-weight type unless some
integersm, n, p andq are zero.

A final comment is that when both of the integersn andq are zero, the general line
superalgebraglm+p|n+q reduces to the ordinary Lie algebraglm+p , andC[x,y, η, ζ ] to
the ordinary polynomial algebraC[x,y] in the two sets of variablesx and y. Then the
irreducibleglm+p-modules appearing inC[x,y] are the unitarizable irreducibleu(m,p)-
modules studied by Kashiwara and Vergne in [18]. It is known [8,18] that the unitari
irreducibleu(m,p)-module at every reduction point [11] is a submodule inC[x,y] for
somed . However, it is not known whether this is still true in the super case.

3.4. The(gld , glm+p|n+q )-duality onC[x,y, η, ζ ]

Each generalized partitionλ = (λ1, · · · , λd) of lengthd can be uniquely expressed
λ= λ+ + λ−, with

λ+ := (max{λ1,0}, . . . ,max{λd,0}
)
, λ− := (min{λ1,0}, . . . ,min{λd,0}

)
.

Note thatλ+ is a partition of lengthd , while λ− is a generalized partition of non-positiv
integers with lengthd , such that(λ−)∗ is a partition. Furthermore,

depth ofλ+ + depth of(λ−)∗ � d, (3.8)

where the depth of a partition is the number of positive integers in it.
The generalized partitionλ = (λ1, . . . , λd) satisfies the conditionsλm+1 � n and

λd−p � −q if and only if λ+m+1 � n and (λ−)∗p+1 � q . Corresponding to each suc
generalized partitionλ, we define

✷λ :=∆∗
λ−∆λ+ . (3.9)

Lemma 3.2. If the generalized partitionλ satisfies the conditionsλm+1 � n andλd−p �
−q , then✷λ is a non-zerogld ×glm+p|n+q highest-weight vector with respect to the Bo
subalgebrabd ×B. Thegld -weight of✷λ is λ, and theglm+p|n+q -weight is given by

Λ(λ) := (−d1+ λ̂−; λ̃+), (3.10)

where the expression on the right-hand side is as explained by(3.2).
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Proof. By construction,✷λ is a highest-weight vector of the subalgebragld × glp|q ×
glm|n with respect to the standard Borel subalgebrabd × bp|q × bm|n. Therefore, we only
need to show that

Φ(Ep+q,p+q+1)=
d∑

k=1

∂

∂ζ kq

∂

∂xk1

annihilates✷λ in order to prove that✷λ is agld × glm+p|n+q highest-weight vector with
respect to the Borel subalgebrabd × B. If Φ(Ep+q,p+q+1)✷λ �= 0, then there must exis
at least one integeri ∈ {1,2, . . . , d} such thatxi1ζ

i
q appears in✷λ. Let ht (λ+) denote

the depth ofλ+, andht ((λ−)∗) denote the depth of(λ−)∗. By examining its explicit
form, we can see that✷λ does not involve any of the variablesxk1, d � k > ht(λ+),
and ζ lq , 1 � l < d + 1− ht ((λ−)∗). Therefore in order forxi1ζ

i
q to appear in✷λ, the

integeri must satisfyd + 1− ht ((λ−)∗) � i � ht (λ+). But this is impossible since (3.8
requiresht (λ+) + ht ((λ−)∗) � d . Therefore,Φ(Ep+q,p+q+1)✷λ = 0, and thus✷λ is a
gld × glm+p|n+q highest-weight vector with respect to the Borel subalgebrabd ×B.

Thegld -weight of✷λ is obviouslyλ. From Lemmas 2.1 and 2.2, we easily see that
glm+p|n+q -weight of✷λ is indeed(−d1+ λ̂−; λ̃+). ✷

We shall denote byWΛ
m+p|n+q the irreducible highest-weightglm+p|n+q -module with

highest weightΛ relative to the non-standard Borel subalgebraB.

Theorem 3.3. Under thegld × glm+p|n+q -actionC[x,y, η, ζ ] decomposes into

C[x,y, η, ζ ] ∼=
∑
λ

V λ
d ⊗W

Λ(λ)
m+p|n+q , (3.11)

whereλ is summed over all generalized partitions of lengthd subject toλm+1 � n and
λd−p � −q . Furthermore, C✷λ is the space of highest-weight vectors of the irreduc

moduleV λ
d ⊗W

Λ(λ)
m+p|n+q .

Proof. Note that every irreduciblegld -submodule ofC[x,y, η, ζ ] is finite-dimensional
Thus it follows from Theorem 3.1 and Lemma 3.1 that the decomposition ofC[x,y, η, ζ ]
undergld × glm+p|n+q has to be of the form (3.11), with the sum inλ ranging over some
subset of generalized partitions of lengthd . (Here ifλ happens to be a generalized partiti
not satisfyingλm+1 � n andλd−p �−q , the expressionΛ(λ) stands for the highest weigh
for glm+p|n+q corresponding toλ under this Howe duality.) In view of Lemma 3.2, we on
need to show that every generalized partitionλ belonging to this subset must satisfy t
conditionsλm+1 � n andλd−p �−q , in order to prove the theorem.

Let µ be a generalized partition of lengthd . Assume that either one or both of t
conditionsµm+1 � n andµd−p �−q are violated. We choose a pair of positive integersp′
andn′ with p′ � p andn′ � n such thatµm+1 � n′ andµd−p′ �−q . Such ann′ is trivial to
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satisfied ifp′ � d . We letC[x, ȳ, η̄, ζ ] denote the polynomial superalgebra generated

xli := el ⊗ ei , ȳlr := el
∗ ⊗ e∗r , η̄lj := el ⊗ fj , ζ ls := el

∗ ⊗ f ∗s ,

for 1 � l � d , 1 � i � m, 1 � j � n′, 1 � r � p′ and 1� s � q . Then C[x,y, η, ζ ]
becomes a subspace ofC[x, ȳ, η̄, ζ ] upon identifying

ylr := ȳlp′−p+r , ζ ls := ζ ls , xli := xli , ηlj := η̄lj , (3.12)

for 1 � l � d , 1� i � m, 1� j � n, 1� r � p, and 1� s � q . We denote this inclusio
by ι :C[x,y, η, ζ ] → C[x, ȳ, η̄, ζ ]. There exist also the surjectionπ :C[x, ȳ, η̄, ζ ] →
C[x,y, η, ζ ] defined by settinḡylr = 0, 1� r � p′ − p, andη̄ls = 0, n < s � n′, for all l,
then making the identification (3.12). Obviously,πι is the identity map onC[x,y, η, ζ ].

Now we turn to thegld × glm+p′|n′+q -action onC[x, ȳ, η̄, ζ ]. Upon choosing the bas
for Cp′|q ⊕ Cm|n′ that is the union of the standard bases ofCp′|q andCm|n′ , the genera
linear superalgebraglm+p′ |n′+q becomes the Lie superalgebra of(m+p′ +n′ +q)× (m+
p′ + n′ + q)-matrices. Consider the subalgebral of glm+p′ |n′+q consisting of matrices o
the form (

D 0 0
0 X 0
0 0 D′

)
,

whereX∈glm+p|n+q , andD andD′ are diagonal matrices of sizes(p′ − p)× (p′ − p)

and(n′ − n)× (n′ − n), respectively. Obviously,l contains theglm+p|n+q subalgebra{(0 0 0
0 X 0
0 0 0

) ∣∣∣∣∣X ∈ glm+p|n+q

}
.

Let p = n + l be a parabolic subalgebra ofglm+p′|n′+q with the Levi factor l and
nilpotent radicaln. We assume thatp contains all the upper triangular matrices. Then th
exists a nilpotent subalgebrān consisting of strictly lower triangular matrices such th
glm+p′|n′+q = p+ n̄. By examining Eqs. (3.3)–(3.7),we can see thatι is agld×glm+p|n+q -
module map. LetV be anygld × glm+p|n+q -submodule ofC[x,y, η, ζ ]. Then ι(V )

is in fact a gld × p-module with n acting by zero. ThusW = Φ(U(n̄))ι(V ) forms a
gld×glm+p′|n′+q -submodule ofC[x, ȳ, η̄, ζ ]. Note thatW is irreducible ifV is irreducible
with respect togld × glm+p|n+q . Again by examining Eqs. (3.3)–(3.7), we can see thaπ

is agld × glm+p|n+q -module map from the restriction ofC[x, ȳ, η̄, ζ ] to C[x,y, η, ζ ], and
satisfiesπ(W) = V . This in particular implies thatπι is the identitygld × glm+p|n+q -
module map onC[x,y, η, ζ ].

Let vµ ∈ C[x,y, η, ζ ] be anygld × glm+p|n+q highest-weight vector with thegld -
weightµ (that violates one or both of the conditionsµm+1 � n andµd−p �−q). Then by
the above discussion,ι(vµ) is agld × l highest-weight vector inC[x, ȳ, η̄, ζ ], which has
the samegld weight, and is also annihilated byn. Therefore,ι(vµ) is agld × glm+p′ |n′+q
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highest-weight vector inC[x, ȳ, η̄, ζ ]. By Theorem 3.1 and Lemma 3.2 (withp replaced
byp′ andn byn′), there exists a unique non-zero✷µ ∈C[x, ȳ, η̄, ζ ] such thatι(vµ)= c✷µ

for some complex numberc.
We claim that every monomial in the polynomial✷µ contains at least one of th

variablesȳlr , η̄
l
s , wherer = 1, . . . , p′ − p, s = n + 1, . . . , n′ and l = 1, . . . , d . This can

be seen from the explicit form (3.9) of✷λ. Consider first the case witht := µm+1 > n.
Then(µ+)′1 >m, and∆µ+ has the factor∆t,(µ+)′t . From (2.7) we see that∆t,(µ+)′t is the

determinant of a matrix with rows(η̄1
t , η̄

2
t , . . . , η̄

(µ+)′t
t ) with Grassmann number entrie

Now consider the case withµd−p < −q . Let γ = (µ−)∗, thenγp+1 > q . Thus we mus
also haveγ1 > q , andu := γ ′q+1 � p + 1. Now∆∗

µ− has the factor∆∗u. From (2.16) we

see that∆∗u is the determinant of a matrix with a column(ȳd
p′+1−u, ȳ

d−1
p′+1−u, . . . , ȳ

d+1−u
p′+1−u).

Note thatp′ + 1− u� p′ − p.
Now it is obvious thatπ(✷µ) = 0, which in turn impliesvµ = 0. Therefore,

the decomposition ofC[x,y, η, ζ ] can not containV µ
d ⊗ W

Λ(µ)
m+p|n+q as an irreducible

submodule ifµ violates any of the conditionsµm+1 � n andµd−p �−q . ✷
By using Theorems 2.1, 2.2 and the decompositionC[x,y, η, ζ ] = C[x, η] ⊗C C[y, ζ ],

we have

C[x,y, η, ζ ] ∼=
∑
λ,µ

V λ
d ⊗ V

µ
d ⊗ V λ̃

m|n⊗ V
−d1+µ̂
p|q ,

where the summation inλ is over all the partitions of lengthd satisfyingλm+1 � n, and
the summation inµ is over all the generalized partitions of non-positive integers of len
d satisfyingµd−p �−q .

The decomposition of the tensor product of any two finite-dimensional irreduciblegld -
modules is described by the Littlewood–Richardson theory. For any generalized par
λ andµ of lengthd ,

V λ
d ⊗ V

µ
d
∼=
∑
ν

Cν
λµV

ν
d , (3.13)

where the non-negative integersCν
λµ are the so-called Littlewood–Richardson coefficien

which give the respective multiplicities of the irreduciblegld -modulesV ν
d appearing in the

tensor product.
Therefore,C[x,y, η, ζ ] decomposes into

C[x,y, η, ζ ] ∼=
∑
ν

V ν
d ⊗

∑
λ,µ

Cν
λµV

λ̃
m|n⊗ V

−d1+µ̂
p|q , (3.14)

where the summation inν is over all the generalized partitions of lengthd . Combining
Theorem 3.3 and (3.14), the Littlewood–Richardson coefficientsCν

λµ appearing in (3.14
may be non-zero only whenν satisfies the conditionsνm+1 � n andνd−p �−q . Now, if we
putp= d −m− 1,n= λm+1 andq =−µd−p, then the conditions becomeνm+1 � λm+1,
andνm+1 � µm+1. Lettingm run from 0 tod − 1, we have the following corollary.
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Corollary 3.1. Assume thatλ is a partition of lengthd andµ is a generalized partition
of non-positive integers of lengthd . If ν is a generalized partition of lengthd satisfying
νm > λm or νm < µm for somem ∈ {1,2, . . . , d}, thenCν

λµ = 0.

Corollary 3.1 translated to ordinary partitions implies the following.

Corollary 3.2. Let λ andµ be two partitions of lengthd . If ν is a partition of lengthd
satisfyingνm > min{µm + λ1, λm + µ1} for somem ∈ {1,2, . . . , d}, then the Littlewood–
Richardson coefficientCν

λµ = 0.

Proof. Let λ = (λ1, λ2, . . . , λd) andµ = (µ1,µ2, . . .µd) be two partitions. Thenµ −
µ11 := (µ1 − µ1,µ2 − µ1, . . .µd − µ1) is a generalized partition. By Corollary 3.
we haveCν

λµ = C
ν−µ11
λ,µ−µ11 = 0 if νm − µ1 > λm for somem ∈ {1,2, . . . , d}. Therefore,

the corollary follows from the symmetry property of the Littlewood–Richardson co
cients. ✷
Remark 3.2. An alternative method to prove Theorem 3.3 is the following. One can
prove Corollary 3.2, using, for example, the celebrated combinatorial algorithm k
as the Littlewood–Richardson rule (see, e.g., [19]). Using Corollary 3.2 it can the
derived that in the tensor product decomposition ofV λ

d ⊗ V
µ
d , with λ a partition of length

d satisfyingλm+1 � n, andµ a generalized partition of non-positive integers of len
d satisfyingµd−p � −q , only gld -modules associated to generalized partitionsν with
νm+1 � n andνd−p �−q can occur. Using this fact together with Lemma 3.2 it is then
difficult to prove Theorem 3.3.

4. Branching rules of unitarizable irreducible glm+p|n+q -modules

As an easy application of Theorem 3.3, we derive theglm+p|n+q → glp|q ×
glm|n branching rule for the infinite-dimensional unitarizable irreducibleglm+p|n+q
representations arising from the decomposition of tensor powers of the Fock space om+p

bosonic andn+ q fermionic quantum oscillators. Results of this section will be impor
for developing a character formula for these unitarizable irreducibleglm+p|n+q -modules.

Let us denote bykC the subalgebraglp|q × glm|n of glm+p|n+q . Recall the decompos

tion of C[x,y, η, ζ ] as agld × kC-module (3.14). Denote byWΛ(ν)
m+p|n+q |kC the restriction

of WΛ(ν)
m+p|n+q to a kC-module. Let us now consider Theorem 3.3 by restricting both s

of Eq. (3.11) togld × kC-modules. Using (3.14) we obtain∑
ν

V ν
d ⊗W

Λ(ν)
m+p|n+q

∣∣
kC
∼=
∑
ν

V ν
d ⊗

∑
λ,µ

Cν
λµV

λ̃
m|n⊗ V

−d1+µ̂
p|q ,

where the summation inν on the left-hand side is over the generalized partitions of len
d satisfying the conditionsνm+1 � n andνd−p � −q . The above equation immediate
leads to the followingglm+p|n+q → glp|q × glm|n branching rule:
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Theorem 4.1. Let ν be a generalized partition of lengthd subject to the condition
νm+1 � n andνd−p �−q . We have

W
Λ(ν)
m+p|n+q

∣∣
glp|q×glm|n

∼=
∑
λ,µ

Cν
λµV

λ̃
m|n ⊗ V

−d1+µ̂
p|q , (4.1)

where the summation inλ is over all the partitions of lengthd satisfyingλm+1 � n, and the
summation inµ is over all the generalized partitions of non-positive integers with len
d satisfyingµd−p �−q .

Recall thatΛ(ν) is defined by (3.10).

5. Character formula for unitarizable irreducible glm+p|n+q -modules

In this section, we shall develop a character formula for the infinite-dimensional u
rizable irreducibleglm+p|n+q -modules appearing in the decomposition ofC[x,y, η, ζ ]. Let
us first present some background material on Schur functions and the so-called hoo
functions of Berele–Regev [1]. A comprehensive reference on Schur functions is [19

5.1. Hook Schur function

Let x = {x1, x2, . . . , xm} be a set ofm variables. To a partitionλ of non-negative
integers we may associate the Schur functionsλ(x1, x2, . . . , xm). We will write sλ(x) for
sλ(x1, x2, . . . , xm). For a partitionµ ⊆ λ, we let sλ/µ(x) denote the corresponding ske
Schur function. Denote byµ′ the conjugate partition of a partitionµ. The hook Schur
function[1] corresponding to a partitionλ is defined by

HSλ(x;y) :=
∑
µ⊂λ

sµ(x)sλ′/µ′(y), (5.1)

where as usualy= {y1, y2, . . . , yn}.
Let λ be a partition andµ ⊆ λ. We fill the boxes inµ with entries from the linearly

ordered set{x1 < x2 < · · ·< xm} so that the resulting tableau is semi-standard. Recall
this means that the rows are non-decreasing, while the columns are strictly incre
Next we fill the skew partitionλ/µ with entries from the linearly ordered set{y1 < y2 <

· · · < yn} so that it is conjugate semi-standard, which means that the rows are s
increasing, while its columns are non-decreasing. We will refer to such a table
an (m|n)-semi-standard tableau(cf. [1]). To each such tableauT we may associate
polynomial(xy)T , which is obtained by taking the products of all the entries inT . Then
we have [1]

HSλ(x;y)=
∑
T

(xy)T , (5.2)

where the summation is over all(m|n)-semi-standard tableaux of shapeλ.
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We recall the following combinatorial identity involving hook Schur functions, tha
of crucial importance in the sequel. Note thatHSλ(x;y) �= 0 iff λm+1 � n.

Proposition 5.1 [2]. Letx= {x1, x2, . . . , xm}, η= {η1, η2, . . . , ηn} be two sets of variable
andz= {z1, z2, . . . , zd} bed variables. Then∏

i,j,k

(1− xizk)
−1(1+ ηj zk)=

∑
λ

HSλ(x;η)sλ(z),

where1 � i � m, 1� j � n, 1� k � d , andλ is summed over all partitions with lengthd
subject toλm+1 � n.

Replacingxi , ηj , and zk in Proposition 5.1 byy−1
i , ζ−1

j , and z−1
k , we obtain the

following result.

Proposition 5.2 [2]. Lety= {y1, y2, . . . , yp}, ζ = {ζ1, ζ2, . . . , ζq}, andz= {z1, z2, . . . , zd}.
Denotey−1 = {y−1

1 , y−1
2 , . . . , y−1

p }, ζ−1 = {ζ−1
1 , ζ−1

2 , . . . , ζ−1
q }, and z−1 = {z−1

1 , z−1
2 ,

. . . , z−1
d }. Then

∏
i,j,k

(
1− y−1

i z−1
k

)−1(1+ ζ−1
j z−1

k

)=∑
λ

HSλ
(
y−1; ζ−1)sλ(z−1),

where1 � k � d , 1 � i � p, and 1 � j � q , and λ is summed over all partitions wit
lengthd subject toλp+1 � q .

We recall the following lemma which plays a crucial role in developing a chara
formula for unitarizable irreducibleglm+p|n+q -modules by using Howe duality. Deno
by ch(V λ

d ) the formal character of the irreduciblegld -moduleV λ
d .

Lemma 5.1 [2]. Let q be an indeterminate and suppose that
∑

λ φλ(q)chV λ
d = 0, where

φλ(q) are power series inq and λ above is summed over all generalized partitions
lengthd . Thenφλ(q)= 0 for all λ.

5.2. Character formula for finite-dimensional modules

Recall from Section 2.1 that̃ε1, . . . , ε̃d , are the weights of the naturalgld -moduleCd ,
andε1, . . . , εm, δ1, . . . , δn are the weights of the naturalglm|n-moduleCm|n. Let e be a
formal indeterminate. Fork = 1, . . . , d , i = 1, . . . ,m, andj = 1, . . . , n, we set

z̄k = eε̃k , x̄i = eεi , η̄j = eδj , (5.3)

and letx̄= {x̄1, x̄2, . . . , x̄m}, η̄= {η̄1, η̄2, . . . , η̄n}, andz̄= {z̄1, z̄2, . . . , z̄d}.



800 S.-J. Cheng et al. / Journal of Algebra 273 (2004) 780–805

g

ll-

of
ConsiderC[x, η] as agld ×glm|n-module. Its formal character ch(C[x, η]) with respect
to the Cartan subalgebra

∑m+n
i=1 CEii ⊕∑d

k=1 Cekk can be easily computed by usin
Eqs. (2.4) and (2.5) to give

ch
(
C[x, η])=∏

i,j,k

(1− x̄i z̄k)
−1(1+ η̄j z̄k), (5.4)

where 1� i � m, 1� j � n, 1� k � d . Thus, by Proposition 5.1,

ch
(
C[x, η])=∑

λ

HSλ(x̄; η̄)sλ(z̄), (5.5)

whereλ is summed over all partitions with lengthd subject toλm+1 � n.
Let us denote by ch(V λ̃

m|n) the formal character of the irreducibleglm|n-module.
Theorem 2.1 leads to

ch
(
C[x, η])=∑

λ

ch
(
V λ
d

)
ch
(
V λ̃
m|n
)
,

where, we recall that, ch(V λ
d )= sλ(z̄). By using Lemma 5.1, we obtain the following we

known result [1].

Theorem 5.1. For each partitionλ of lengthd subject to the conditionλm+1 � n,

chV λ̃
m|n =HSλ(x̄; η̄),

whereλ̃ is defined by(2.2).

Keep the notations of this subsection but replacem by p and n by q . Let x̄−1 =
{x̄−1

1 , x̄−1
2 , . . . , x̄−1

p }, η̄−1 = {η̄−1
1 , η̄−1

2 , . . . , η̄−1
q }, and z̄−1 = {z̄−1

1 , z̄−1
2 , . . . , z̄−1

d }. Using
(2.13) and (2.14), we can easily compute the formal character of thegld × glp|q -module
C[y, ζ ] with respect to the Cartan subalgebra

∑p+q
i=1 CEii ⊕∑d

k=1 Cekk . We have

ch
(
C[y, ζ ])= (x̄1 · · · x̄p)−d(η̄1 · · · η̄q)d

∏
i,j,k

(
1− x̄−1

i z̄−1
k

)−1(1+ η̄−1
j z̄−1

k

)
, (5.6)

where 1� i � p, 1� j � q , and 1� k � d . By Proposition 5.2,

ch
(
C[y, ζ ])= (x̄1 · · · x̄p)−d (η̄1 · · · η̄q)d

∑
λ

HSλ
(
x̄−1; η̄−1)sλ(z̄−1), (5.7)

whereλ is summed over all partitions with lengthd subject toλp+1 � q .
Note that ch(V λ∗

d ) = sλ(z̄−1). Thus the following theorem is a consequence
Theorem 2.2 obtained using Lemma 5.1 and Eq. (5.7).
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Theorem 5.2. For each partitionλ of lengthd subject to the conditionλp+1 � q ,

chV −d1+λ̂∗
p|q = (x̄1 · · · x̄p)−d (η̄1 · · · η̄q)dHSλ

(
x̄−1; η̄−1),

whereλ̂∗ is as given in(2.18).

5.3. Character formulas for unitarizableglm+p|n+q -modules

We keep the notationszi , 1 � i � d , andz, z−1 from the last subsection. Lete be the
formal indeterminate as before. For 1� r � p, 1� s � q , 1� i � m, and 1� j � n, we
define

ȳr = eε̂r , ζ̄s = eε̂s+p , x̄i = eε̂i+p+q , η̄j = eε̂j+m+p+q ,

where we recall that̂εA ∈ h∗m+p|n+q , A ∈ I, are defined bŷεA(EB
B ) = δAB , A,B ∈ I.

Let x̄ = {x̄1, x̄2, . . . , x̄m}, η̄ = {η̄1, η̄2, . . . , η̄n}, ȳ−1 = {ȳ−1
1 , ȳ−1

2 , . . . , ȳ−1
p } and ζ̄−1 =

{ζ̄−1
1 , ζ̄−1

2 , . . . , ζ̄−1
q }. We wish to compute the formal characters ch(W

Λ(λ)
m+p|n+q ) with re-

spect to the Cartan subalgebrahm+p|n+q =∑m+n+p+q
A=1 CEA

A for the unitarizable irre-
ducibleglm+p|n+q -modulesWΛ

m+p|n+q appearing in the decomposition ofC[x,y, η, ζ ].

Theorem 5.3. For each generalized partitionλ of lengthd , subject to the condition
λm+1 � n andλd−p �−q ,

ch
(
W

Λ(λ)
m+p|n+q

)= (ȳ1ȳ2 · · · ȳp)−d (ζ̄1ζ̄2 · · · ζ̄q )d
∑
µ,ν

Cλ
µν∗HSµ(x̄; η̄)HSν

(
ȳ−1; ζ̄−1),

whereµ and ν are summed over all partitions of lengthd subject to the condition
µm+1 � n and νp+1 � q , respectively. TheCλ

µν∗ are the Littlewood–Richardson coef
cients.

Proof. Consider the restriction ofWΛ(λ)
m+p|n+q to a module of the subalgebragld × glm|n×

glp|q . Its formal character with respect to the Cartan subalgebrahd×hp|q×hm|n coincides

with ch(WΛ(λ)
m+p|n+q ). Therefore by Theorem 4.1, we have

ch
(
W

Λ(λ)
m+p|n+q

)=∑
µ,ν

Cλ
µν∗ ch

(
V

µ̃
m|n
)
ch
(
V −d1+ν̂∗
p|q

)
(5.8)

whereµ and ν are summed over all partitions of lengthd subject to the condition
µm+1 � n andνp+1 � q , respectively. Using Theorems 5.1 and 5.2 in this equation
immediately arrive at the claimed result.✷
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6. Tensor product decomposition of unitarizable irreducible glm+p|n+q -modules

As another application of Theorem 3.3, we shall compute the tensor product dec
sition

W
Λ(µ)
m+p|n+q ⊗W

Λ(ν)
m+p|n+q ∼=

∑
λ

aλµνW
Λ(λ)
m+p|n+q , (6.1)

whereµ and ν are generalized partitions of lengthl and r, respectively, satisfying in
addition the conditionsµm+1 � n, νm+1 � n, µl−p �−q , andνr−p �−q . It will follow
easily from our discussion that the summationλ in (6.1) is over all generalized partition
of lengthl+ r and satisfiesλm+1 � n andλl+r−p �−q . We will compute the coefficient
aλµν in terms of the usual Littlewood–Richardson coefficients (see, e.g., [19]).

We have by Theorem 3.3 ford = l, r, andl + r respectively:

S
(
C
l ⊗C

m|n⊕C
l∗ ⊗C

p|q∗)∼=∑
µ

V
µ
l ⊗W

Λ(µ)
m+p|n+q ,

S
(
C
r ⊗C

m|n ⊕C
r∗ ⊗C

p|q∗)∼=∑
ν

V ν
r ⊗W

Λ(ν)
m+p|n+q , and

S
(
C
l+r ⊗C

m|n ⊕C
l+r∗ ⊗C

p|q∗)∼=∑
λ

V λ
l+r ⊗W

Λ(λ)
m+p|n+q ,

whereµ, ν, and λ are generalized partitions satisfying the corresponding condi
described above. The isomorphismS(Cl ⊗Cm|n⊕Cl∗ ⊗Cp|q∗)⊗ S(Cr ⊗Cm|n⊕Cr∗ ⊗
Cp|q∗)∼= S(Cl+r ⊗Cm|n⊕Cl+r∗ ⊗Cp|q∗) gives rise to∑

µ,ν

V
µ
l ⊗ V ν

r ⊗W
Λ(µ)
m+p|n+q ⊗W

Λ(ν)
m+p|n+q ∼=

∑
λ

V λ
l+r ⊗W

Λ(λ)
m+p|n+q . (6.2)

Now suppose thatV λ
l+r , when regarded as agll×glr -module via the obvious embeddin

of gll × glr into gll+r , decomposes as

V λ
l+r ∼=

∑
µ,ν

b
µν
λ V

µ
l ⊗ V ν

r .

This together with (6.1) and (6.2) give

aλµν = b
µν
λ . (6.3)

The duality between the branching coefficients and tensor products of a gener
pair is well known [15]. We recall that in (6.3)µ, ν andλ are generalized partitions subje
to the appropriate constraints.
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Now Theorem 2.1 withn = 0 combined with an analogous argument as the one g
above implies that

Cλ
µν = b

µν
λ , (6.4)

whereµ, ν, λ are partitions of appropriate lengths and theCλ
µν ’s are the usual Littlewood

Richardson coefficients.
Now, for generalized partitionsµ, ν, and λ, subject to appropriate constraints, t

decompositionV λ
l+r ∼=

∑
µ,ν b

µν
λ V ν

l ⊗ V
µ
r implies thatV λ+d1l+r

l+r ∼=∑µ,ν b
µν
λ V

µ+d1l
l ⊗

V
ν+d1r
r , where1k denotes thek-tuple (1,1, . . . ,1) regarded as a partition. Hencebµνλ =

b
µ+d1l,ν+d1r
λ+d1l+r . Now, if we choose a non-negative integerd so thatλ+ d1l+r is a partition,

thenbµ+d1l,ν+d1r
λ+d1l+r = C

λ+d1l+r
µ+d1l ,ν+d1r

and hence by (6.3) and (6.4),

aλµν = C
λ+d1l+r
µ+d1l ,ν+d1r

.

From our discussion above we arrive at the following theorem.

Theorem 6.1. Let µ and ν be generalized partitions of lengthl and r, respectively,
satisfying in addition the conditionsµm+1 � n, νm+1 � n, µl−p � −q , andνr−p � −q .

LetWΛ(µ)
m+p|n+q andWΛ(ν)

m+p|n+q be the corresponding unitarizableglm+p|n+q -modules. We

have the following decomposition ofW
Λ(µ)
m+p|n+q ⊗W

Λ(ν)
m+p|n+q into irreducibleglm+p|n+q -

modules:

W
Λ(µ)
m+p|n+q ⊗W

Λ(ν)
m+p|n+q ∼=

∑
(λ,d)

Cλ
µ+d1l ,ν+d1rW

Λ(λ−d1l+r )
m+p|n+q ,

where the summation above is over all pairs(λ, d) subject to the following four condition:

(i) λ is a partition of lengthl + r andd a non-negative integer;
(ii) (λ− d1l+r )m+1 � n and(λ− d1l+r )l+r−p �−q ;
(iii) µ+ d1l andν + d1r are partitions;
(iv) If d > 0, thenλ is a partition withλl+r = 0.

Here the coefficientsCλ
µ+d1l ,ν+d1r

are determined by the tensor product decompositio
glk-modules

V
µ+d1l
k ⊗ V

ν+d1r
k

∼=
∑
λ

Cλ
µ+d1l ,ν+d1r V

λ
k , wherel + r = k.

Remark 6.1. In the above theorem the coefficientsCλ
µ+d1l ,ν+d1r

are the usual Littlewood
Richardson coefficients associated to partitions, and hence can be computed
Littlewood–Richardson rule.
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Remark 6.2. We finally note the remarkable similarity between the irreducible repres
tions of the so-called superW1+∞, which is the Lie superalgebra of differential operat
on the circle withN = 1 extended symmetry, that appear in the decomposition of te
powers of its natural representation on the infinite-dimensional Fock space [2], a
irreducible unitarizable representations ofglm+p|n+q of this paper. Indeed, the characte
and the tensor product decomposition are virtually identical modulo some modific
necessitated by the infinite-dimensional nature of the superW1+∞. This similarity can be
explained by the existence of a Howe duality between the superW1+∞ andgld on the
d th tensor power of the Fock space generated by infinitely many fermionic and bo
quantum oscillators [5].
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