Tetrameric structure of the nonactivated glucocorticoid receptor in cell extracts and intact cells

Martin Rexin, Willi Busch, Bernd Segnitz and Ulrich Gehring

Institut für Biologische Chemie der Universität, Im Neuenheimer Feld 501, 6900 Heidelberg, FRG

Received 17 October 1988

Mouse lymphoma cells contain a nonactivated glucocorticoid receptor of $M_r \sim 330000$ which is heteromeric in nature and is unable to bind to DNA. Following affinity labeling of the steroid-binding subunit and subsequent cross-linking with dimethyl suberimidate at various times either in cell extracts or in intact cells, a series of labeled bands was detected in SDS gels. From the molecular masses of completely and partially cross-linked complexes we conclude that the large nonactivated receptor is a tetramer composed of two 90 kDa subunits, one 50 kDa polypeptide and one steroid-binding subunit.

Chemical crosslinking; Dexamethasone mesylate; Dimethyl suberimidate; Glucocorticoid receptor; Subunit structure

1. INTRODUCTION

The physiological effects of steroid hormones are mediated by intracellular receptors which may exist in different molecular forms in extracts of target cells (reviews [1,2]). During recent years it became clear that high molecular mass glucocorticoid receptors are unable to interact with DNA or chromatin but become activated to a DNA-binding state upon warming or exposure to high ionic strength: this process involves subunit dissociation [3-6]. The large receptor form of $M_r \sim 330000$ has recently been shown by chemical cross-linking to exist not only in cell extracts but also in intact cells [6]. It contains only one hormone-binding polypeptide of $M_r \sim 100000$ per complex [7,8]. We now know that the heat shock protein hsp90 is a constituent of the heteromeric glucocorticoid receptor structure [4,6,9,10]: it may be present as

Correspondence address: U. Gehring, Institut für Biologische Chemie, Im Neuenheimer Feld 501, 6900 Heidelberg, FRG

a dimer [5,11,12]. The involvement of other molecular components is less clear. A polypeptide of M_r 59000 was detected in association with several steroid hormone receptors [13]. RNA has also been envisaged as part of large glucocorticoid receptors (review [14]). In the present study we investigated high molecular mass glucocorticoid receptors in terms of numbers of macromolecular subunits and used cross-linking with a bifunctional reagent that allows subsequent analysis in SDS gels. The detection of several intermediate forms provides compelling evidence for the high molecular mass receptor being a hetero-tetramer.

2. MATERIALS AND METHODS

2.1. Cell culture and cell extracts

The S49.1 mouse lymphoma sublines S49.1G.3 (wild-type) and S49.1TB.4.143R (nt¹ mutant) were those previously used [15]. Cells were grown and harvested as described [5] and cell pellets were stored frozen. Extracts were prepared from frozen cells [6] and were incubated with 100 nM [³H]dexamethasone mesylate (NEN Research Products; 1.8 TBq/mmol) for 2.5 h at 0°C. Extracts of wild-type cells were then used for cross-linking while those of nt¹ cells were first submitted to gel filtration on Sephacryl S-300 in a buffer containing 20 mM sodium molybdate and 150 mM KCl [5]. Peak fractions corresponding to 70 Å Stokes radius were combined and submitted to cross-

Published by Elsevier Science Publishers B.V. (Biomedical Division) 00145793/88/\$3.50 © 1988 Federation of European Biochemical Societies

Abbreviations: DMS, dimethyl suberimidate; ntⁱ, receptor of 'increased nuclear transfer'; PAGE, polyacrylamide gel electrophoresis

linking. Intact cells were incubated with labeled hormone as previously described [6] except that dexamethasone mesylate was used, extracts were prepared subsequently to cross-linking and extensive washing of cells.

2.2. Chemical cross-linking

Cross-linking with DMS (Pierce Chemical Co.) was carried out according to a protocol described by Arànyi et al. [16]. Reactions were at $6-8^{\circ}$ C for the times given. Intact cells were treated in the same way except that cell suspensions were adjusted to pH 8.0 by KOH. Wild-type receptors were subsequently purified on Sepharose to which the receptor specific antibody mab 49 had been coupled [6]. The eluate with sodium thiocyanate was precipitated with trichloroacetic acid and prepared for SDS-PAGE [6]. Cross-linked nt¹-receptor fractions were passed over Sephadex G-25 in order to remove excess reagent as well as molybdate prior to precipitation with trichloroacetic acid.

2.3. SDS-PAGE

We used polyacrylamide slab gels (1.5 mm thickness) in a continuous buffer system [17]. Gels were prepared from 3.3% acrylamide and 0.11% methylenebisacrylamide in buffer (50 mM Tris phosphate, pH 7.2, 0.1% SDS) and run at a constant voltage of 100 V. Samples of 40 μ l were applied to slots of 1.5 cm. As markers we used rabbit muscle phosphorylase *a* (subunit M_r 97400) which had been incompletely cross-linked with DMS. Gels were stained with Coomassic and dried onto filter paper. Routinely, slices of 2 mm were taken, dissolved in 30% H₂O₂, and radioactivity measured by liquid scintillation counting; in some experiments the gels were cut in slices of about 600 μ m.

3. RESULTS

3.1. Cross-linking in extracts of wild-type cells

The hormone-binding polypeptide of large receptor complexes was labeled covalently with the steroid [³H]dexamethasone mesylate which is known to affinity label glucocorticoid receptors with high yield [18]. Since, however, other cellular material is non-specifically labeled with this reagent [19], a receptor specific purification procedure was necessary. For the wild-type receptor we used immunoaffinity chromatography with the monoclonal antibody mab 49 which recognizes a domain of the steroid-binding polypeptide that

Fig.1. SDS-PAGE of wild-type receptors cross-linked in cell extracts. Cross-linking was for 0 (A), 20 (B), 40 (C) and 60 (D) min. Gels were run for 3.5 h. Multimers of the phosphorylase a subunit are indicated by arrows (1-4).

does not participate in cross-linking [6] and is missing from the ntⁱ mutant receptor [20]. Fig.1 shows a series of SDS gels in which wild-type receptors were cross-linked with DMS for various lengths of time. Starting out with a single labeled peak of M_r ~100000 (fig.1A) increasingly complex patterns were obtained which finally shifted towards a major species of M_r ~350000 (fig.1D). This corresponds to the fully cross-linked receptor previously obtained with other methods [6]. A total of 6 peaks was observed (table 1). Even though forms b and e were less prominent than the other intermediate species c and d they were consistently seen: they became particularly obvious when gels were cut into 600 μ m slices (not shown).

Fig.3. SDS-PAGE of wild-type receptors cross-linked in intact cells. Cross-linking was for 30 (A) and 90 (B) min; other details as in fig.1.

Fig.2. SDS-PAGE of ntⁱ receptors cross-linked in cell extracts. Symbols as in fig.1. Gels were run for 2.5 h.

Table 1

Cross-linking of receptors

Receptor type	Molecular masses of labeled receptor species							
	a	b		d	е	l		
Wild-type	104000 ± 5000 (11)	149000 ± 5000 (4)	194000 ± 10000 (9)	241000 ± 9000 (6)	301000 ± 12000 (5)	349000 ± 8000 (6)		
nt ⁱ mutant	51000 ± 4000 (8)	95000 ± 4000 (5)	136000 ± 7000 (8)	178000 ± 7000 (7)	$\begin{array}{c} 214000 \pm & 6000 \\ (2) \end{array}$	$\frac{264000 \pm 10000}{(7)}$		

Molecular masses were determined in SDS gels. Mean values and ranges are reported (number of experiments in parentheses)

3.2. Cross-linking in extracts of ntⁱ mutant cells

In order to confirm the above data we carried out similar experiments with the ntⁱ receptor which has a glucocorticoid-binding polypeptide of about half the wild-type size [15] and a high molecular mass form of about 290 kDa [5–7]. This receptor form was separated from nonspecifically labeled material by gel filtration in the presence of molybdate [5]. As shown in fig.2 we again observed a series of 6 labeled receptor species. The M_r data are summarized in table 1.

3.3. Receptor cross-linking in intact cells

In other experiments we incubated wild-type cells in the cold with the affinity label and subsequently with DMS. Cells were broken and receptors were immunoaffinity purified and subjected to SDS-PAGE. Fig.3 shows that cross-linking is less efficient than in cell extracts, however, the same labeled receptor species were observed.

4. DISCUSSION

In previous experiments we achieved chemical cross-linking between receptor subunits by using

bifunctional N-hydroxysuccinimide esters [6]. These compounds, however, give rise to covalent links which are unstable under the conditions commonly used for SDS-PAGE. We therefore now turned to bis-imidates like DMS which produce more stable amidine cross-links. With both wildtype and nt¹ receptors we obtained in SDS gels sets of 6 labeled receptor species with varying yields depending largely on the extent of cross-linking. The molecular mass data, compiled in table 1, strongly suggest a tetrameric structure for the high molecular mass forms of both receptor types. Table 2 presents our interpretation of the data. We conclude that the large receptors contain two subunits of $M_{\rm r}$ 90000 and one polypeptide of $M_{\rm r}$ \sim 50000 in association with one steroid-binding subunit of either $M_r \sim 100\,000$ (wild-type) or 50000 (nt¹).

As to the identity of the 90 kDa subunits it is clear that hsp90 is at least one of these components. In fact, Mendel and Orti [12] recently provided evidence for a roughly 1:2 ratio of steroid-binding subunit to hsp90. In contrast, the identity of the subunit of $M_r \sim 50000$ is still unknown. Since the cross-linker DMS has a high

Table 2

Interpretation	of	$M_{\rm r}$	data	
----------------	----	-------------	------	--

Wild-type	nt ⁱ mutant type			
a $M_{\rm r}$ ~105000: R	<i>M</i> _t ~50000: R			
b $M_{\rm r} \sim 150000$: R + p50	$M_{\rm r} \sim 95000$: R + p50			
$c M_r \sim 195000$: R + p90	$M_{\rm r} \sim 135000$: R + p90			
d $M_{\rm r} \sim 240000$: R + p90 + p50	$M_{\rm r} \sim 180000$: R + p90 + p50			
$e M_r \sim 300000: R + p90 + p90$	$M_{\rm r} = -215000$; R + p90 + p90			
f $M_r \sim 350000$: R + p90 + p90 + p50	$M_{\rm r} \sim 265000$: R + p90 + p90 + p50			

R refers to the steroid-binding polypeptides of $M_r \sim 100000$ (wild-type) and 50000 (nt³); p90 and p50 refer to associated polypeptides of M_r 90000 and 50000, respectively. The letters a to f relate to the labeled peaks in figs 1-3

Volume 241, number 1,2

degree of selectivity for amino groups in proteins [21] we assume that all four receptor subunits are of polypeptide nature.

Acknowledgements: We would like to thank Dr P. Arànyi for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft.

REFERENCES

- [1] Sherman, M.R. and Stevens, J. (1984) Annu. Rev. Physiol. 46, 83-105.
- [2] Vedeckis, W.V. (1985) in: Hormonally Responsive Tumors (Hollander, V.P. ed.) pp.3-61, Academic Press, New York.
- [3] Mendel, D.B., Bodwell, J.E., Gametchu, B., Harrison, R.W. and Munck, A. (1986) J. Biol. Chem. 261, 3758-3763.
- [4] Pratt, W.B. (1987) J. Cell. Biochem. 35, 51-68.
- [5] Gehring, U., Mugele, K., Arndt, H. and Busch, W. (1987) Mol. Cell. Endocrinol. 53, 33-44.
- [6] Rexin, M., Busch, W. and Gehring, U. (1988) Biochemistry 27, 5593-5601.
- [7] Gehring, U. and Arndt, H. (1985) FEBS Lett. 179, 138-142.
- [8] Okret, S., Wikström, A.-C. and Gustafsson, J.-A. (1985) Biochemistry 24, 6581-6586.

- [9] Catelli, M.G., Binart, M., Jung-Testas, I., Renoir, J.M., Baulieu, E.-E., Feramisco, J.R. and Welch, W.J. (1985) EMBO J. 4, 3131-3135.
- [10] Toft, D.O., Sullivan, W.P., McCormick, D.J. and Riehl, R.M. (1987) Biochem. Actions Horm. 14, 293–316.
- [11] Denis, M., Wikström, A.-C. and Gustafsson, J.-Å. (1987)
 J. Biol. Chem. 262, 11803–11806.
- [12] Mendel, D.B. and Orti, E. (1988) J. Biol. Chem. 263, 6695-6702.
- [13] Tai, P.-K.K., Maeda, J., Nakao, K., Wakim, N.G., Duhring, J.L. and Faber, L.E. (1986) Biochemistry 25, 5269-5275.
- [14] Webb, M.L. and Litwack, G. (1986) Biochem. Actions Horm. 13, 379-402.
- [15] Gehring, U. and Hotz, A. (1983) Biochemistry 22, 4013-4018.
- [16] Arànyi, P., Radanyi, C., Renoir, M., Devin, J. and Baulieu, E.-E. (1988) Biochemistry 27, 1330–1336.
- [17] Davies, G.E. and Stark, G.R. (1970) Proc. Natl. Acad. Sci. USA 66, 651-656.
- [18] Simons, S.S., Schleenbaker, R.E. and Eisen, H.J. (1983)
 J. Biol. Chem. 258, 2229–2238.
- [19] Eisen, H.J., Schleenbaker, R.E. and Simons, S.S. (1981)
 J. Biol. Chem. 256, 12920–12925.
- [20] Westphal, H.M., Mugele, K., Beato, M. and Gehring, U. (1984) EMBO J. 3, 1493–1498.
- [21] Peters, K. and Richards, F.M. (1977) Annu. Rev. Biochem. 46, 523 551.