
Applied Mathematics Letters 19 (2006) 752–757
www.elsevier.com/locate/aml

Resolution of finite fuzzy relation equations based on strong
pseudo-t-norms✩

Song-Chol Hana,b, Hong-Xing Lia,∗, Jia-Yin Wanga

aSchool of Mathematical Sciences, Beijing Normal University, Beijing 100875, PR China
b Department of Mathematics and Mechanics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

Received 30 December 2004; received in revised form 25 October 2005; accepted 10 November 2005

Abstract

This work studies the problem of solving a sup-T composite finite fuzzy relation equation, whereT is an infinitely distributive
strong pseudo-t-norm. A criterion for the equation to have a solution is given. It is proved that if the equation is solvable then its
solution set is determined by the greatest solution and a finite number of minimal solutions. A necessary and sufficient condition
for the equation to have a unique solution is obtained. Also an algorithm for finding the solution set of the equation is presented.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The resolution of fuzzy relation equations is one of the most important and widely studied problems in the field of
fuzzy sets and fuzzy systems. The majority of fuzzy inference systems can be implemented by using the fuzzy relation
equations [11]. Fuzzy relation equations can also be used for processes of compression/decompression of images and
videos [8].

The sup–inf composite fuzzy relation equation was first proposed by Sanchez in 1976, and since then different
kinds of fuzzy relation equations have been studied by many researchers [2–5,8–13,18]. Recently, Wang and Yu [15]
introduced the notion of pseudo-t-norms. Building on this, Dai and Wang [1,14] considered the fuzzy relation
equations with pseudo-t-norms. Meanwhile, Han and Li [7] introduced the concept of a strong pseudo-t-norm to
correct some incorrect main results in [1,14–16].

In this work, we study in detail the resolution problem of a sup-T composite finite fuzzy relation equation, where
T is an infinitely distributive strong pseudo-t-norm.

Throughout this work,L denotes the real unit interval[0, 1] andJ always stands for any nonempty set of subscripts.
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2. Strong pseudo-t-norm

In this section, we give some definitions.
A binaryoperationT on L is called a pseudo-t-norm [15] if it satisfies the following conditions:

(T1) T(1, a) = a andT(0, a) = 0 for all a ∈ L,
(T2) a, b, c ∈ L andb � c ⇒ T(a, b) � T(a, c).

A pseudo-t-normT on L is said to be infinitely∨-distributive [15] if it satisfies the following condition:

(T∨) a, bj ∈ L( j ∈ J) ⇒ T(a,∨ j ∈J bj ) = ∨ j ∈J T(a, bj ).

A pseudo-t-normT on L is said to be infinitely∧-distributive [16] if it satisfies the following condition:

(T∧) a, bj ∈ L( j ∈ J) ⇒ T(a,∧ j ∈J bj ) = ∧ j ∈J T(a, bj ).

A pseudo-t-normT on L is said to be infinitely distributive [16] if it is both infinitely∨-distributive and infinitely
∧-distributive.

Let A ∈ LL×L . DefineI (A), T(A) ∈ LL×L as follows:

I (A)(a, b) := ∨{u ∈ L | A(a, u) � b},
T(A)(a, b) := ∧{u ∈ L | A(a, u) � b},

wherea, b ∈ L. It is tacitly assumed that∨∅ = 0 and∧∅ = 1.

Theorem 2.1. If T is an infinitely ∨-distributive pseudo-t-norm on L, then the following conditions are equivalent:

(1) T(a, c) � b ⇔ c � I (T)(a, b) for all a, b, c ∈ L;
(2) T(a, 0) = 0 for all a ∈ L.

Proof. (1) ⇒ (2) For anya ∈ L, we have 0� I (T)(a, 0). Using(1), weobtainT(a, 0) � 0, i.e.,T(a, 0) = 0.
(2) ⇒ (1) Let a, b, c ∈ L. If T(a, c) � b, then I (T)(a, b) = ∨{u ∈ L | T(a, u) � b} � c. Conversely, suppose

I (T)(a, b) � c. Using (2), 0 ∈ {u ∈ L | T(a, u) � b} 	= ∅. By (T2) and(T∨), T(a, c) � T(a, I (T)(a, b)) =
T(a,∨{u ∈ L | T(a, u) � b}) = ∨{T(a, u) | T(a, u) � b} � b. �

A pseudo-t-normT on L is said to be strong [7] if it satisfies the following condition:

(T3) T(a, 0) = 0 for all a ∈ L.

It is obvious that t-norms and weak t-norms [6] are the particular cases of strong pseudo-t-norms. And there exists
an infinitely∨-distributive pseudo-t-norm that is not strong (see the pseudo-t-normTM in [15], for instance).

Example 2.1. Put

T(a, b) =




b, a = 1,

0, a = 0,

0, 0 < a < 1, b = 0,

1, 0 < a < 1, b > 0,

wherea, b ∈ L. ThenT is an infinitely∨-distributive strong pseudo-t-norm onL. However, it is not infinitely ∧-
distributive onL, sinceT(a,∧{b ∈ L | b > 0}) = T(a, 0) = 0 	= 1 = ∧{T(a, b) | b > 0} for 0 < a < 1.

Example 2.2 (Wang and Yu [15] ). Let

TW(a, b) =
{

b, a = 1,

0, otherwise,

wherea, b ∈ L. ThenTW is an infinitely distributive strong pseudo-t-norm onL.
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Example 2.3 (Yager [17] ). Let

TY(a, b) =
{

b1/a, a · b > 0,

0, a · b = 0,

wherea, b ∈ L. ThenTY is also an infinitely distributive strong pseudo-t-norm onL. Moreover,

I (TY)(a, b) =



1, a = 0,

0, a > 0, b = 0,

ba, a > 0, b > 0,

T(TY)(a, b) =
{

0, b = 0,

ba, b > 0,

wherea, b ∈ L. Here we notice thatTY(a, 1) ≡ a does not hold.

Fromnow on,T denotes any given infinitely distributive strong pseudo-t-norm onL.

3. Solvability of equation

In this section, we first give a criterionfor the existence of the solution.
We denote byLm×n andLn the set of allm × n matrices overL and the set of all column vectors of ordern over

L, respectively. For any positiveintegern, n always indicates the set{1, 2, . . . , n}.
Given two matricesA = (aik) ∈ Lm×n andB = (bkj ) ∈ Ln×l , the sup-T composition A◦T B ∈ Lm×l of A andB

is defined by

A◦T B := (∨k∈n T(aik, bkj )).

Lemma 3.1. If A ∈ Lm×n and C1, C2 ∈ Ln×l with C1 � C2, then A◦T C1 � A◦T C2.

Proof. It follows immediately from the definitions. �

The present work deals with the fuzzy relation equationA◦T X = B, i.e.,

∨ j ∈n T(ai j , x j ) = bi , i ∈ m, (1)

whereA = (ai j ) ∈ Lm×n andB = (bi ) ∈ Lm are given, butX = (x j ) ∈ Ln is unknown. We denote byX the set of
all solutions of Eq.(1). Eq.(1) is said to besolvable in L whenX 	= ∅.

Put X = (x j ) ∈ Ln, where

x j = ∧i∈m I (T)(ai j , bi ), j ∈ n. (2)

Theorem 3.1. If Eq. (1) is solvable in L, thenX is thegreatestsolution of it.

Proof. If X 	= ∅ and X = (x j ) ∈ X , then for any i ∈ m and j ∈ n we haveT(ai j , x j ) � bi . Hence,
x j � I (T)(ai j , bi ), and sox j � ∧i∈m I (T)(ai j , bi ) = x j . By Theorem 2.1, T(ai j , x j ) � T(ai j , x j ) �
T(ai j , I (T)(ai j , bi )) � bi . Thusbi = ∨ j ∈n T(ai j , x j ) � ∨ j ∈n T(ai j , x j ) � bi , i.e.,∨ j ∈n T(ai j , x j ) = bi . Therefore,
X is the greatest element ofX . �

Theorem 3.1gives anecessary and sufficient condition for the existence of the solution of Eq.(1). AndTheorem 3.1
also holds for any infinitely∨-distributive strong pseudo-t-normT .

We next consider the solution set of Eq.(1) in the case thatm = n = 1.

Theorem 3.2. Let a, b ∈ L. If the equation T(a, x) = b is solvable in L, then itssolution set is the interval
[T(T)(a, b), I (T)(a, b)] in L.

Proof. By Theorem 3.1, I (T)(a, b) is the greatest solution. Ifx ∈ L is a solution, thenx ∈ {u ∈ L | T(a, u) �
b} 	= ∅. Hence,T(T)(a, b) � x. By (T∧), b = T(a, x) � T(a, T(T)(a, b)) = T(a,∧{u ∈ L | T(a, u) � b}) =
∧{T(a, u) ∈ L | T(a, u) � b} � b, i.e., T(a, T(T)(a, b)) = b. ThusT(T)(a, b) is the least solution. ByLemma 3.1,
we can see that the interval[T(T)(a, b), I (T)(a, b)] in L is the solution set of the equation. �
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4. Solution set of equation

In this section, we assume that Eq.(1) is solvable, and show that the solution set is represented by the greatest
solution and a finite number of minimal solutions.

Given a solutionX = (x j ) ∈ X of Eq.(1), weput

Ji (X) := { j ∈ n | T(ai j , x j ) = bi }, i ∈ m, (3)

J(X) := J1(X) × J2(X) × · · · × Jm(X). (4)

ThenJi (X) 	= ∅ for all i ∈ m, and soJ(X) 	= ∅.
For every f = ( fi ) ∈ J(X) and for everyj ∈ n, weput

I ( f )
j := {i ∈ m | fi = j }, (5)

x( f )
j :=




∨
i∈I ( f )

j
T(T)(ai j , bi ), I ( f )

j 	= ∅,

0, I ( f )
j = ∅.

(6)

Thus we can make a vectorX( f ) := (x( f )
j ) ∈ Ln. Finally, we construct a finite poset

F(X) := {X( f ) | f ∈ J(X)}. (7)

Lemma 4.1. If X ∈ X and f ∈ J(X), then X( f ) � X.

Proof. SupposeX( f ) � X. Then there exists a j ∈ n such that x( f )
j � x j . Hence, x( f )

j 	= 0 and so

∨
i∈I ( f )

j
T(T)(ai j , bi ) � x j with I ( f )

j 	= ∅. There is ani ∈ I ( f )
j suchthat T(T)(ai j , bi ) � x j . On theother hand,

i ∈ I ( f )
j implies that j ∈ Ji (X) andT(ai j , x j ) = bi . Therefore,T(T)(ai j , bi ) � x j , which isa contradiction. �

Lemma 4.2. If X ∈ X , thenF(X) ⊆ X .

Proof. Let f ∈ J(X). By Lemmas 3.1and 4.1, A◦T X( f ) � A◦T X = B. It suffices toverify A◦T X( f ) �
B. AssumeA◦T X( f ) � B. Then there is ak ∈ m such that ∨ j ∈n T(akj , x( f )

j ) � bk. On the other hand,

∨ j ∈n T(akj , x j ) = bk andT(akl , xl ) = bk for l = fk. Hence,k ∈ I ( f )
l 	= ∅. Sincex( f )

l = ∨
i∈I ( f )

l
T(T)(ail , bi ) �

T(T)(akl , bk), by Theorem 3.2we haveT(akl , x( f )
l ) � T(akl , T(T)(akl , bk)) = bk. Thus∨ j ∈n T(akj , x( f )

j ) � bk,
which is acontradiction. �

Lemma 4.3. If X, Y ∈ X with X � Y and X( f ) ∈ F(X), then X( f ) = Y( f ) ∈ F(Y).

Proof. Let Y = (yj ). If f = ( fi ) ∈ J(X), then for any i ∈ m, bi = T(ai fi , x fi ) � T(ai fi , yfi ) � bi , i.e.,
T(ai fi , yfi ) = bi . Hence, fi ∈ Ji (Y) and f = ( fi ) ∈ J(Y). Therefore, X( f ) = Y( f ) ∈ F(Y). �

For anyposetP, we denote byP0 the set of all minimal elements inP.

Lemma 4.4 ([12, Lemma 2.2]). Let Q be a nonempty subset of a poset P. If for every p∈ P there exists a q∈ Q
with q � p, then P0 = Q0.

Theorem 4.1. The solution setX of Eq. (1) and the finite posetF(X) contain the same minimal elements, i.e.,
X0 = F(X)0 	= ∅.

Proof. By Lemma 4.2, F(X) ⊆ X . If X ∈ X , thenX � X by Theorem 3.1. By Lemma 4.3, X( f ) ∈ F(X) implies

X( f ) = X
( f ) ∈ F(X). Again by Lemma 4.1, X( f ) � X. Hence,X0 = F(X)0 by Lemma 4.4. Moreover,F(X)0 	= ∅

sinceF(X) is a nonempty finite set. �

With respect to the solution setX of Eq.(1), weobtain the following representation theorem.
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Theorem 4.2. The solution setX of Eq.(1) is the union of a finite number of intervals in Ln:

X =
⋃

X∧∈F(X)0

[X∧, X], (8)

where[X∧, X] = {X ∈ Ln | X∧ � X � X } for any X∧ ∈ F(X)0.

Proof. If X ∈ X , then it follows from the proof ofTheorem 4.1that there exists aY ∈ F(X) with Y � X. Since
F(X) is a finite poset, there is anX∧ ∈ F(X)0 with X∧ � Y. Hence, X∧ � Y � X � X by Theorem 3.1, and so
X ∈ [X∧, X]. Therefore,X ⊆ ⋃

X∧∈F(X)0
[X∧, X]. The converse inclusion follows fromLemmas 4.2and3.1. �

Now we can derive a criterion for the uniqueness of the solution of Eq.(1).

Theorem 4.3. Eq. (1) has a unique solution if and only ifF(X) = {X}.
Proof. The necessity follows fromTheorem 3.1andLemma 4.2. The sufficiency follows fromTheorem 4.2. �

5. An algorithm for resolution

We first present an algorithm for solving Eq.(1) that is ensured by the preceding theorems:

Step1. ComputeX using(2) and check by the substitution whetherX is a solution of Eq.(1). If no, then putX = ∅
and stop. Otherwise, go to Step 2.

Step2. ConstructJ(X) using(3) and(4).
Step3. DetermineF(X) using(5)–(7).
Step4. FindF(X)0 by pairwise comparison.
Step5. ConstructX using(8).

We next givea numerical example to illustrate the algorithm presented above.

Example 5.1. Let TY be the infinitely distributive strong pseudo-t-norm onL as inExample 2.3. We consider a fuzzy
relation equationA◦TY X = B, where

A =

0.4 0.5 1

0.8 0.5 0.6
0 0.125 0.5


 , B =


 0.2

0.16
0.04


 .

We will use I (TY) andT(TY) in Example 2.3. Using(2), we computeX = (0.160.8, 0.4, 0.2)T. SinceA◦TY X = B,
the equation is solvable andX is the greatest solution. Using(3) and(4), we constructJ(X) : J1(X) = {3}, J2(X) =
{1, 2}, J3(X) = {3}; J(X) = {(3, 1, 3), (3, 2, 3)}. Using (5)–(7), we determineF(X). For f = ( f1, f2, f3) =
(3, 1, 3), we have

I ( f )
1 = {2}, x( f )

1 = T(TY)(0.8, 0.16) = 0.160.8;
I ( f )
2 = ∅, x( f )

2 = 0;
I ( f )
3 = {1, 3}, x( f )

3 = T(TY)(1, 0.2) ∨ T(TY)(0.5, 0.04) = 0.21 ∨ 0.040.5 = 0.2;
X

( f ) = (0.160.8, 0, 0.2)T.

For f = ( f1, f2, f3) = (3, 2, 3), we have

I ( f )
1 = ∅, x( f )

1 = 0;
I ( f )
2 = {2}, x( f )

2 = T(TY)(0.5, 0.16) = 0.160.5 = 0.4;
I ( f )
3 = {1, 3}, x( f )

3 = T(TY)(1, 0.2) ∨ T(TY)(0.5, 0.04) = 0.21 ∨ 0.040.5 = 0.2;
X

( f ) = (0, 0.4, 0.2)T.

ThusF(X) = {(0.160.8, 0, 0.2)T, (0, 0.4, 0.2)T}. The set of minimal solutions isF(X)0 = F(X). Using (8), we
obtain the solution setX = {(0.160.8, [0, 0.4], 0.2)T, ([0, 0.160.8], 0.4, 0.2)T}.
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