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Abstract

This work studies the pblem of solving a suf- composite fiite fuzzy relation equation, whefe is an infinitely distributive
strong pseudo-t-norm. A criterion for the equation to have a solution is given. It is proved that if the equation is solvable then its
solution set is determined by the greatest solution and a finite number of minimal solutions. A necessary and sufficient conditiot
for the gyuation to have a unique solution is obtained. Also an algorithm for finding the solution set of the equation is presented.
(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The resolution of fuzzy relation equations is one of the most important and widely studied problems in the field of
fuzzy sets and fuzzy systems. The méjoof fuzzy inference systems can be implemented by using the fuzzy relation
equations11]. Fuzzy relation equations can also be used for processes of compression/decompression of images al
videos BJ.

The sup—inf composite fuzzy relation equation was first proposed by Sanchez in 1976, and since then differer
kinds of fuzzy relation equations have been studied by many resear2h&&-{1318]. Recently, Wang and Yulf]
introduced the notion of pseudo-t-norms. Building on this, Dai and W[ considered the uzzy rdation
equations with pseudo-t-norms. Meanwhile, Han and7liiptroduced the concept of a strong pseudo-t-norm to
correct some incorrect main results ihJ4-14.

In this work, we study in detail th resolition problem of a sug- composite finite fuzzy relation equation, where
T is an infinitely distributive strong pseudo-t-norm.

Throughoutthis workl. denotes the real unitintervid, 1] andJ always stands for any nonempty set of subscripts.
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2. Strong pseudo-t-norm

In this section, we give some definitions.
A binary operationT onL is called a pseudo-t-norni § if it satisfies the followng conditions:

(T1) T(1,a) =aandT(0,a) =O0forallac L,
(T2) a,b,ceLandb<c= T(a,b) < T(a,c).

A psaudo-t-normT on L is said to be infinitely/-distributive [15] if it satisfies the follaving condition:
(Tv) a,bj e L(j € )= T(@, Vjeabj) = Vjea T(a, bj).

A psaudo-t-normT on L is said to be infinitelyn-distributive [16] if it satisfies the follaving condition:
(Th) a,bj e L(j € 3) = T(@, Ajea b)) = Ajea T(a, bj).

A psaudo-t-normT on L is said to be infinitely distributivellg] if it is both infinitely v-distributive and infinitely
A-distributive.
Let A € L%t Definel (A), T(A) € LL*L as follows:

I (A)@,b):=v{uelL | A@,u) <b},
T(A)(a,b) =A{lue L | A, u) > b},

wherea, b € L. Itis tacitly assumed that¥ = 0 andAy = 1.

Theorem 2.1. If T is an infinitdy v-distributive pseudo-t-norm on L, then the following conditions are equivalent:

D T@c<bsc<I(M@b)foralla,b,ceL;
(2) T(a,0) =0foralla e L.

Proof. (1) = (2) For anya € L, we have 0< | (T)(a, 0). Using(1), weobtainT(a, 0) < 0, i.e.,T(a,0) = 0.

(2) = (1) Leta,b,ce L.If T(a,c) < b,thenl(T)(a,b) = v{ue L | T(a,u) < b} > c. Conversely, suppose
[(T)y(@ b) > c. Using(2,0e {ue L | T(au) <b} #@ By(T2) and(Ty), T(a,c) < T(a, 1 (T)(a, b)) =
T@viuelL|T@u<b)=Vv{T@u |T(@u <b}<b. O

A psaudo-t-normT on L is said to be strong/] if it satisfies the follaving condition:
(T3) T(a,0) =0foralla e L.

It is obvious that t-norms and weak t-norn@ ére the particular cases of strong pseudo-t-norms. And there exists
an infinitely v-distributive pseudo-t-norm that is not strong (see the pseudo-t-igrin [15], for instance).

Example2.1. Put

b, a=1,
0, a=0,
T@b =15 g_a<1b=o

1, O<a<1lb>0,

wherea, b € L. ThenT is an infinitely v-distributive strong pseudo-t-norm dn However, it 5 not infinitely A-
distributive onL, sinceT(a,A{fbe L |[b>0})=T(@,00=0#1=A{T(a,b)|b>0}forO<a < 1.

Example 2.2 (Wang and Yu19]). Let

b, a=1,
Tw(@. b) = {O, otherwise

wherea, b € L. ThenTy is an infinitely distributive strong pseudo-t-norm an
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Example 2.3 (Yager [17]). Let

b2, a.b>0,
TY(a,b)—{O, a'b=0,
wherea, b € L. ThenTy is also an infinitely distributive strong pseudo-t-normlonMoreover,

1, a=0,
I (Ty)@b)y=10, a>0b=0,
b?, a>0,b>0,
0, b=0,
T(To)@.b) = {ba p=0

wherea, b € L. Here we ntice thatTy(a, 1) = a does not hold.

Fromnow on,T denotes any given infinitely distributive strong pseudo-t-nornh.on
3. Solvability of equation

In this section, we first give a criteridior the existence of the solution.

We denote byL™ " andL" the set of allm x n matices overL and the set of all column vectors of ordeover
L, respectively. Formay positiveintegern, n always indicates the s¢t, 2, ..., n}.

Given two matricesA = (ajk) € L™" andB = (bj) € L™, the 2ip-T conpostion Aot B € L™! of AandB
is defired by

Aot B := (Vken T (aik, byj)).

Lemma3.1. If Ae L™Mand G, C, € L™! with C; < Cy, then Aot C1 < Aot Co.
Proof. It follows immediately from the definitions. O

The present work deals with the fuzzy relation equathorr X = B, i.e,,
Vien T (&j, Xj) = bi, i em, (1)

whereA = (aj) € L™" andB = (bj) € L™ are given, buX = (xj) € L" is unknown. We denote by the set of
all solutions of Eq(1). Eq.(1) is said to besohablein L whenX' # ¢.
PutX = (Xj) € L", where

Xj = Aiem | (T)(aj, bi), jen. (2

Theorem 3.1. If Eq. (1) is solvablen L, thenX is thegreatestsolution of it.

Proof. If X # #and X = (xj) € X, then br anyi € mandj e n we haveT(gj,Xj) < bi. Herce,
Xj < I(M@j,bi), and soxj < Ajem | (T)(&@j, b)) = Xj. By Theorem 2.1 T(ajj, xj) < T(&j,Xj) <
T(@j, 1 (T)(@j, bi)) < bj. Thusbi = Vjen T (@i, Xj) < Vjen T (&j,Xj) < bj,i.e.,Vjen T(@j, Xj) = bj. Therdore,
X is the greatest element 4f. O

Theorem 3.3ives anecessary and sufficient condition for the existence of the solution dfilizd\nd Theorem 3.1
also holds for any infinitely/-distributive strong pseudo-t-norin
We net consider the solution set of E€]L) in the case thah =n = 1.

Theorem 3.2. Let a,b € L. If the guation T(a, X) = b is sohable in L, then itssolution set is the interval
[T(T)(a,b), I (T)(a, b)linL.

Proof. By Theorem 3.11 (T)(a, b) is the greatest solution. K € L is a soltion, thenx € {u e L | T(a,u) >
b} #£ . Herce, T(T)(a,b) < X.By (TA),b=T@ x) > T@ T(T)(@, b)) =T@A{uelL | T@u) >hb}) =
AMT(@,u)elL|T(@u) >b}>b,ie,T(a T(T)(a b)) =b. ThusT(T)(a, b) is the least solution. Byemma 3.1
we can see that the inter@ (T)(a, b), | (T)(a, b)] in L is the solution set of the equation. O
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4. Solution set of equation

In this section, we assume that H4) is solvable, and show that the solution set is represented by the greatest
solution and a finite number of minimal solutions.
Given a solutionX = (xj) € X of Eq. (1), weput
J(X):={j en| T(&j,Xj) =bi}, iem, 3)
J(X) = I(X) x B(X) x --- x Jm(X). (4)

ThenJ,(X) # @ foralli € m, and soJ(X) # @.
For everyf = (fj) € J(X) and for everyj € n, we put

Ij(f);z{iem|fi=j}, ]

| Viao Tty 17 0,

e (6)
b J — )

Thus we can make a vectd( ") = (xj(f)) € L". Findly, we construct a finite poset
FXO) = (XD feIX). )
Lemmad4.l. If X e X and f e J(X), then XV < X.

Proof. Suppose X" £ X. Then here eists aj € n suchthat xjm £ Xj. Herce, xjm # 0 and so

Vi T(M(@ij, bi) £ xj with Ij(f) # (. Thereis an € Ij(f) suchthat T(T)(ajj, b)) £ Xj. On theother hand,
]

i € Ij(f) implies thatj e J(X) andT (aj, Xj) = bj. Therdore, T(T)(ajj, bj) < Xj, which isa contradiction. O

Lemma4.2. If X € X, thenF(X) C X.
Proof. Let f € J(X). By Lemmas 3.1and 4.1, Aot X(P) < Aot X = B. It sufiices toverify Aot X(P) >

B. AssumeAot X(P # B. Then here is ak € m SUChthathenT(akj,XJ(f)) # bk. On theother hand,

Vien T(akj, Xj) = bk andT (aki, x) = by for| = fx. Herce,k Il(f) % 0. Sincexl(f) = Vigh T(M(ay, bi) >
- |

T(T)(ax, bk), by Theorem 3.2ve haveT(ak|,x|(f)) > T(aw, T(T)(ax, bk)) = bk. ThusvjeﬂT(akj,x}f)) > by,
which is acontradiction. 0O

Lemma4.3. If X,Y e X with X <Y and X(P) € F(X), then X =Y ¢ F(Y).

Proof. LetY = (yj). If f = (fj) € J(X), then branyi € m, b = T(ay,x5) < T@f,ys) < b, ie,
T(aif;, yr,) = bi. Herce, fi € J(Y) and f = (fi) € J(Y). Therdore, X(" =Y(" ¢ F(Y). O

For anyposetP, we denote byPy the set of all minimal elements iR.

Lemma4.4 ([12 Lemma 22]). Let Q be a nonempty subset of a poset P. If for every P there eistsage Q
with g < p, then B = Q.

Theorem 4.1. The solttion setX” of Eq. (1) and the finite posef (X) contain the same minimal elements, i.e.,
Xo=F(X)o # 0.

Proof. By Lemma 4.2 F(X) C X. If X € X, thenX < X by Theorem 3.1By Lemma 4.3 X" ¢ F(X) implies
x(H =X ¢ 7). Again by Lemma 4.1 X(") < X. Herce, Xy = F(X)o by Lemma 4.4 Moreover,F(X)q # ¥
sinceF(X) is anonempty finite set. [

With respect to the solution sét of Eq. (1), we obtain the following representation theorem.
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Theorem 4.2. The solition setX of Eq.(1) is the unon of a finite number of intervals in"L

X = U [XA, X], (8)

X/\E}—(Y)O
where[X,, X] = {X € L" | X, < X < X }forany X, € F(X)o.

Proof. If X € X, then it llows from the proof ofTheorem 4.1that there exists & € F(X) with Y < X. Since
F(X) is a finite poset, there is aXi, € F(X)o with X, < Y. Herce, X, <Y < X < X by Theorem 3.1and so
X € [XA, X]. Therdore, X C UXAE}—(Y)O[X/\’ X]. The conerse inclusion follows frombemmas 4.2nd3.1 O

Now we can derive a criterion fohé uniqueness of the solution of Ea).

Theorem 4.3. Eq.(1) has a unique solution if and only if (X) = {X}.

Proof. The necessity follows frofiheorem 3.JandLemma 4.2 The suffciency follows fromTheorem 4.2 O
5. An algorithm for resolution

We first pregnt an algorithm for solving Eq1) that is ensured by the preceding theorems:

Stepl. ComputeX using(2) and check by the substitution whethéiis a solution of Eq(1). If no, then putt’ = ¢
and stop. Otherwise, go to Step 2.

Step2. Construct] (X) using(3) and(4).

Step3. Detemine F(X) using(5)—(7)

Step4. Find.F(X)o by pairwise comparison.

Step5. Constructt’ using(8).

We next give a numerical example to illustrate the algorithm presented above.

Example5.1. Let Ty be the infinitely distributive strong pseudo-t-normloas inExample 2.3We mnsider a fuzzy

relation equationAot, X = B, where
04 05 1 0.2
=|08 05 06], =1016].
0 0125 Q5 0.04

We will use | (Ty) andT (Ty) in Example 2.3Using(2), we conputeX = (0.16°8,0.4,0.2)". SinceAor, X = B,
the equation isa@vable andX is the greatest solution. Usir{g) and(4), we @nstructd (X) : J1(X) = {3}, h(X) =
(1,2}, (X)) = {3); I(X) = {(3,1,3), (3, 2,3)}. Using (5)—(7), we deermine F(X). For f = (fy1, fp, f3) =
(3,1, 3), we have

17 =2, %P =T(Tv)(08 016 =0.16°;

| (f) =g, Y(f) =0
(” ={1,3, X" =T(Ty)(L 0.2 Vv T(Ty)(05 004 =02 v0.04°° = 0.2;
(” — (0.16°8, 0, 02)T

For f = (fq, o, f3) = (3, 2, 3), we have

1P=9, %" =0

119 =2, xP =T(Tv)(0.5,0.16) = 0.16°% =

|”) (1,3}, —”) = T(Ty)(L, 0.2) v T(Ty)(0.5,0.04) = 0.2 v 0.04°5 = 0.2:

X" = (0,04, 0.2)T.

Thus F(X) = {(0.16°8,0,0.2)T, (0,0.4,0.2)T}. The set of nnimal solutions isF(X)g = F(X). Using (8), we
obtain the solution set’ = {(0.16%8, [0, 0.4],0.2)T, ([0, 0.16°8], 0.4, 0.2)}.
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