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1. Introduction

In this paper we study the following problem

{−M(
∫
Ω

1
p(x) |∇u|p(x) dx)div(|∇u|p(x)−2∇u) = f (x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R
N , p = p(x) ∈ C(Ω) with 1 < p− := infΩ p(x) � p+ := supΩ p(x) < N , M(t) is a

continuous function and f (x, u) :Ω × R → R satisfies Carathéodory condition.
The operator −div(|∇u|p(x)−2∇u) is said to be the p(x)-Laplacian, and becomes p-Laplacian when p(x) ≡ p (a constant).

The p(x)-Laplacian possesses more complicated nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The
study of various mathematical problems with variable exponent growth condition has been received considerable attention
in recent years. These problems are interesting in applications and raise many difficult mathematical problems. One of the
most studied models leading to problem of this type is the model of motion of electrorheological fluids, which are charac-
terized by their ability to drastically change the mechanical properties under the influence of an exterior electromagnetic
field [26,31]. Problems with variable exponent growth conditions also appear in the mathematical modeling of stationary
thermo-rheological viscous flows of non-Newtonian fluids and in the mathematical description of the processes filtration
of an ideal barotropic gas through a porous medium [1,2]. Another field of application of equations with variable exponent
growth conditions is image processing [7]. The variable nonlinearity is used to outline the borders of the true image and
to eliminate possible noise. We refer the reader to [13,22,27,29,30] for an overview of and references on this subject, and
to [8–12,15–21] for the study of the p(x)-Laplacian equations and the corresponding variational problems.
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The problem (1.1) is a generalization of a model introduced by Kirchhoff [24]. More precisely, Kirchhoff proposed a model
given by the equation

ρ
∂2u

∂t2
−

(
ρ0

h
+ E

2L

L∫
0

∣∣∣∣∂u

∂x

∣∣∣∣2

dx

)
∂2u

∂x2
= 0, (1.2)

where ρ,ρ0,h, E, L are constants, which extends the classical D’Alembert’s wave equation, by considering the effects of the
changes in the length of the strings during the vibrations. The equation{

−(a + b
∫
Ω

|∇u|2 dx)�u = f (x, u) in Ω,

u = 0 on ∂Ω
(1.3)

is related to the stationary analogue of Eq. (1.2). Eq. (1.3) received much attention only after Lions [25] proposed an abstract
framework to the problem. Some important and interesting results can be found, for example, in [3–6,14,23].

In [6], the authors present several sufficient conditions for the existence of positive solutions to a class of nonlocal
boundary value problems of the p-Kirchhoff type equation. Fan and Zhang in [18] studied p(x)-Laplacian equation with
f (x, u) satisfying Ambrosetti–Rabinowitz condition. Motivated by above, we consider the case of the p(x)-Laplacian, instead
of the Laplacian and p-Laplacian. The p(x)-Laplacian possesses more complex nonlinearities, which raises some of the
essential difficulties. We establish conditions ensuring the existence and multiplicity of solutions for the problem. To the
best of our knowledge, this is the first or second paper that discusses the p(x)-Kirchhoff-type equation via variational
method.

This paper is organized as follows. In Section 2, we present some necessary preliminary knowledge on variable exponent
Sobolev spaces. In Section 3, we give some existence results of weak solutions of problem (1.1). In Section 4, we give some
corollaries for a special problem, i.e., taking M(t) = a + bt in (1.1).

2. Preliminaries

In order to discuss problem (1.1), we need some theories on W 1,p(x)
0 (Ω) which we call variable exponent Sobolev space.

Firstly we state some basic properties of spaces W 1,p(x)
0 (Ω) which will be used later (for details, see [20]). Denote by S(Ω)

the set of all measurable real functions defined on Ω . Two functions in S(Ω) are considered as the same element of S(Ω)

when they are equal almost everywhere.
Write

C+(Ω) = {
h: h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
,

h+ = max
Ω

h(x), h− = min
Ω

h(x) for any h ∈ C(Ω)

and

L p(x)(Ω) =
{

u ∈ S(Ω):
∫
Ω

∣∣u(x)
∣∣p(x)

dx < +∞
}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0:

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx � 1

}
,

and

W 1,p(x)(Ω) = {
u ∈ L p(x)(Ω): |∇u| ∈ L p(x)(Ω)

}
with the norm

‖u‖ = ‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Denote by W 1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1. (See [20].) The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Proposition 2.2. (See [20].) Set ρ(u) = ∫
Ω

|u(x)|p(x) dx. For any u ∈ L p(x)(Ω), then

(1) For u 	= 0, |u|p(x) = λ ⇔ ρ( u
λ
) = 1;

(2) |u|p(x) < 1 (= 1;> 1) ⇔ ρ(u) < 1 (= 1;> 1);
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(3) If |u|p(x) > 1, then |u|p−
p(x) � ρ(u) � |u|p+

p(x);

(4) If |u|p(x) < 1, then |u|p+
p(x) � ρ(u) � |u|p−

p(x);
(5) limk→+∞ |uk|p(x) = 0 ⇔ limk→+∞ ρ(uk) = 0;
(6) limk→+∞ |uk|p(x) = +∞ ⇔ limk→+∞ ρ(uk) = +∞.

Proposition 2.3. (See [20].) In W 1,p(x)
0 (Ω) the Poincaré inequality holds, that is, there exists a positive constant C such that

|u|Lp(x)(Ω) � C |∇u|Lp(x)(Ω), ∀u ∈ W 1,p(x)
0 (Ω).

So, |∇u|Lp(x)(Ω) is a norm equivalent to the norm ‖u‖ in the space W 1,p(x)
0 (Ω). We will use the equivalent norm in the

following discussion and write ‖u‖ = |∇u|Lp(x)(Ω) for simplicity.

Proposition 2.4. (See [17,20].) Assume that the boundary of Ω possesses the cone property and p ∈ C(Ω) with p(x) < N. If q ∈ C(Ω)

and 1 � q(x) � p∗(x) (1 � q(x) < p∗(x)) for x ∈ Ω , then there is a continuous (compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω), where
p∗ = Np

N−p .

We write

J (u) =
∫
Ω

1

p(x)
|∇u|p(x) dx.

Proposition 2.5. (See [18].) The functional J : X → R is convex. The mapping J ′ : X → X∗ is a strictly monotone, bounded homeo-
morphism, and is of (S+) type, namely

un ⇀ u and limn→∞ J ′(un)(un − u) � 0 implies un → u,

where X = W 1,p(x)
0 (Ω).

Proposition 2.6. (See [18,20].) The conjugate space of L p(x)(Ω) is Lq(x)(Ω), where 1
q(x) + 1

p(x) = 1. For any u ∈ L p(x)(Ω) and v ∈
Lq(x)(Ω), we have the following Hölder-type inequality∣∣∣∣ ∫

Ω

uv dx

∣∣∣∣ �
(

1

p− + 1

q−

)
|u|p(x)|v|q(x).

3. Existence of solutions

In this section we will discuss the existence of weak solutions of (1.1). For simplicity we write X = W 1,p(x)
0 (Ω), denote

by c the general positive constant (the exact value may change from line to line).

Definition 3.1. We say that u ∈ X is a weak solution of (1.1), if

M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇u|p(x)−2∇u∇ϕ dx =
∫
Ω

f (x, u)ϕ dx, (3.1)

where ϕ ∈ X .

Define

Φ(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
, Ψ (u) =

∫
Ω

F (x, u)dx, (3.2)

where M̂(t) = ∫ t
0 M(s)ds, F (x, u) = ∫ u

0 f (x, t)dt . The energy functional I = Φ(u) − Ψ (u) : X → R associated with prob-
lem (1.1) is well defined. Then it is easy to see that I ∈ C1(X,R) is weakly lower semi-continuous and u ∈ X is a weak
solution of (1.1) if and only if u is a critical point of I . Moreover, we have

I ′(u)v = M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇u|p(x)−2∇u∇v dx −
∫
Ω

f (x, u)v dx

= Φ ′(u)v − Ψ ′(u), for all v ∈ X .

Hereafter, f (x, t) and M(t) are always supposed to verify the following assumption:
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( f0) f :Ω × R → R satisfies Carathéodory condition and∣∣ f (x, t)
∣∣ � c

(
1 + |t|α(x)−1), (3.3)

where α ∈ C+(Ω) and α(x) < p∗(x) for all x ∈ Ω .
(M0) ∃m0 > 0 such that

M(t) � m0. (3.4)

(M1) ∃0 < μ < 1 such that

M̂(t) � (1 − μ)M(t)t. (3.5)

Remark 3.1. Even under the constant exponent case, our condition (M1) is weaker than condition (2.2) in [6]. It forces us
to deal with more potential functions than [6]; for example, we can deal with increasing function M(t) = a + bt . For details,
see Section 4.

Remark 3.2. From (M0) and Proposition 2.5 we can easily see that Φ ′ is of (S+) type. It is clear that Ψ ′ is weak-strong
continuous. So I ′ is of (S+) type.

Theorem 3.1. If M satisfies (M0) and∣∣ f (x, t)
∣∣ � c

(
1 + |t|β−1), (3.6)

where 1 � β < p− , then (1.1) has a weak solution.

Proof. From (3.4), (3.6) we have |F (x, t)| � c(|t| + |t|β) and M̂(t) � m0t . We have

I(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
−

∫
Ω

F (x, u)dx

� m0

∫
Ω

1

p(x)
|∇u|p(x) dx − c

∫
Ω

|u|β dx − c

∫
Ω

|u|dx

� m0

p+ ‖u‖p− − c‖u‖β − c‖u‖ → +∞, as ‖u‖ → +∞. (3.7)

Since I is weakly lower semi-continuous, I has a minimum point u in X , and u is a weak solution of (1.1). The proof is
completed. �
Remark 3.3. We do not need condition (M1) in the proof of Theorem 3.1.

Definition 3.2. We say that I satisfies (PS) condition in X , if any sequence {un} ⊂ X such that {I(un)} is bounded and
I ′(un) → 0 as n → ∞, has a convergent subsequence, where (PS) means Palais–Smale.

Lemma 3.1. If M(t) satisfies (M0) and (M1), f satisfies ( f0) and A.R. condition, i.e.,

( f1) ∃T > 0, θ >
p+

1−μ such that

0 < θ F (x, t) � t f (x, t), |t| � T , a.e. x ∈ Ω, (3.8)

then I satisfies (PS) condition.

Proof. Suppose that {un} ⊂ X , |I(un)| � c and I ′(un) → 0. Then

c + ‖un‖ � I(un) − 1

θ
I ′(un)un

= M̂

(∫
Ω

1

p(x)
|∇un|p(x) dx

)
−

∫
Ω

F (x, un)dx

− 1

θ
M

(∫
Ω

1

p(x)
|∇u|p(x) dx

)∫
Ω

|∇un|p(x) dx +
∫
Ω

1

θ
f (x, un)un dx

�
(

1 − μ

p+ − 1

θ

)
M

(∫
1

p(x)
|∇un|p(x) dx

)∫
|∇un|p(x) dx +

∫ [
1

θ
f (x, un)un − F (x, un)

]
dx
Ω Ω Ω
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�
(

1 − μ

p+ − 1

θ

)
m0‖un‖p− − c. (3.9)

Hence, {‖un‖} is bounded. Without loss of generality, we assume that un ⇀ u, then I ′(un)(un − u) → 0. Thus, we have

I ′(un)(un − u) = M

(∫
Ω

1

p(x)
|∇un|p(x) dx

)∫
Ω

|∇un|p(x)−2∇un(∇un − ∇u)dx −
∫
Ω

f (x, un)(un − u)dx

→ 0. (3.10)

From ( f0), Propositions 2.4 and 2.6, we can easily get that
∫
Ω

f (x, un)(un − u)dx → 0. Therefore, we have

M

(∫
Ω

1

p(x)
|∇un|p(x) dx

)∫
Ω

|∇un|p(x)−2∇un(∇un − ∇u)dx → 0.

In view of (M0), we have∫
Ω

|∇un|p(x)−2∇un(∇un − ∇u)dx → 0.

Using Proposition 2.5, we have un → u. �
Theorem 3.2. If M satisfies (M0), (M1), and f satisfies ( f0), ( f1) and the following condition

( f2) f (x, t) = o(|t|p+−1), t → 0, for x ∈ Ω uniformly,

where α− > p+ , then (1.1) has a nontrivial solution.

Proof. Let us show that I satisfies the conditions of Mountain Pass Theorem (see Theorem 2.10 of [28]). By Lemma 3.1,
I satisfies (PS) condition in X . Since p+ < α− � α(x) < p∗(x), X ↪→ L p+

(Ω), then there exists c > 0 such that

|u|p+ � c‖u‖, u ∈ X . (3.11)

Let ε > 0 be small enough such that εcp+ � m0
2p+ . By the assumptions ( f0) and ( f2), we have

F (x, t) � ε|t|p+ + c|t|α(x) (x, t) ∈ Ω × R. (3.12)

In view of (M0) and (3.12), we have

I(u) � m0

p+

∫
Ω

|∇u|p(x) dx − ε

∫
Ω

|u|p+
dx − c

∫
Ω

|u|α(x) dx

� m0

p+ ‖u‖p+ − εcp+‖u‖p+ − c‖u‖α−

� m0

2p+ ‖u‖p+ − c‖u‖α−
when ‖u‖ � 1. (3.13)

Therefore, there exist r > 0, δ > 0 such that I(u) � δ > 0 for every ‖u‖ = r.
From ( f1) it follows that

F (x, t) � c|t|θ x ∈ Ω, |t| � T . (3.14)

When t > t0, from (M1) we can easily obtain that

M̂(t) � M̂(t0)

t
1

1−μ

0

t
1

1−μ = ct
1

1−μ , (3.15)

where t0 is an arbitrarily positive constant.
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For w ∈ X \ {0} and t > 1, we have

I(t w) = M̂

(∫
Ω

1

p(x)
|t∇w|p(x) dx

)
−

∫
Ω

F (x, t w)dx

� c

(∫
Ω

|t∇w|p(x) dx

) 1
1−μ

− ctθ

∫
Ω

|w|θ dx − c

� ct
p+

1−μ

(∫
Ω

|∇w|p(x) dx

) 1
1−μ

− ctθ

∫
Ω

|w|θ dx − c

→ −∞, as t → +∞, (3.16)

due to θ >
p+

1−μ . Since I(0) = 0, I satisfies the conditions of Mountain Pass Theorem. So I admits at least one nontrivial
critical point. �
Theorem 3.3. Assume that the conditions (M0), (M1), ( f0) and ( f1) hold, and f satisfies:

( f3) f (x,−t) = − f (x, t), x ∈ Ω , t ∈ R.

Then Eq. (1.1) has a sequence of solutions {±uk}∞k=1 such that I(±uk) → +∞ as k → +∞.

Theorem 3.4. Assume that the conditions (M0), (M1), ( f0), ( f2), ( f3) hold, and f satisfies:

( f4) f (x, t) � c|t|γ (x)−1 , t → 0, where γ ∈ C+(Ω), p+ < γ − � γ + <
p−

1−μ for a.e. x ∈ Ω .

Then Eq. (1.1) has a sequence of solutions {±vk}∞k=1 such that I(±vk) < 0, I(±vk) → +∞ as k → 0.

Remark 3.4. Conditions ( f4) and ( f2) can be compatible with each other if and only if p+ <
p−

1−μ , which is rather harsh. It
does not hold when μ ≡ 0. Therefore, condition (M1) is necessary in guaranteeing our main results.

We will use the following “Fountain theorem” and the “Dual fountain theorem” to prove Theorem 3.3 and Theorem 3.4,
respectively.

Because X is a reflexive and separable Banach space, there exist {e j} ⊂ X and {e∗
j } ⊂ X∗ such that

X = span{e j: j = 1,2, . . .}, X∗ = span
{

e∗
j : j = 1,2, . . .

}
,

and 〈
ei, e∗

j

〉 = {
1, i = j,
0, i 	= j.

For convenience, we write X j = span{e j}, Yk = ⊕k
j=1 X j , Zk = ⊕∞

j=k X j .

Lemma 3.2. (See [18].) If α ∈ C+(Ω), α(x) < p∗(x) for any x ∈ Ω , denote

βk = sup
{|u|α(x): ‖u‖ = 1, u ∈ Zk

}
, (3.17)

then limk→+∞ βk = 0.

Lemma 3.3 (Fountain theorem). (See [28].) Assume

(A1) X is a Banach space, I ∈ C1(X,R) is an even functional.

If for each k = 1,2, . . . there exist ρk > rk > 0 such that

(A2) infu∈Zk,‖u‖=rk I(u) → +∞ as k → +∞,
(A3) maxu∈Yk,‖u‖=ρk I(u) � 0,
(A4) I satisfies (PS) condition for every c > 0,

then I has a sequence of critical values tending to +∞.
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Lemma 3.4 (Dual fountain theorem). (See [28].) Assume (A1) is satisfied and there is k0 > 0 so that, for each k � k0 , there exist
ρk > γk > 0 such that

(B1) infu∈Zk,‖u‖=ρk I(u) � 0.
(B2) bk := maxu∈Yk,‖u‖=rk I(u) < 0.
(B3) dk := infu∈Zk,‖u‖�ρk I(u) → 0 as k → +∞.
(B4) I satisfies (PS)∗c condition for every c ∈ [dk0 ,0).

Then I has a sequence of negative critical values converging to 0.

Definition 3.3. We say that I satisfies the (PS)∗c condition (with respect to (Yn)), if any sequence {un j } ⊂ X such that
n j → +∞, un j ∈ Yn j , I(un j ) → c and (I|Yn j

)′(un j ) → 0, contains a subsequence converging to a critical point of I .

Lemma 3.5. Assume that the conditions (M0), (M1), ( f0) and ( f1) hold, then I satisfies the (PS)∗c condition.

Proof. Suppose {un j } ⊂ X such that n j → +∞, un j ∈ Yn j , I(un j ) → c and (I|Yn j
)′(un j ) → 0. Similar to the process of verifying

the (PS) condition in the proof of Lemma 3.1, we can get the boundedness of ‖un j ‖. Going, if necessary, to a subsequence,

we can assume that un j ⇀ u in X . As X = ⋃
n j

Yn j , we can choose vn j ∈ Yn j such that vn j → u. Hence

lim
n j→+∞ I ′(un j )(un j − u) = lim

n j→+∞ I ′(un j )(un j − vn j ) + lim
n j→+∞ I ′(un j )(vn j − u)

= lim
n j→+∞(I|Yn j

)′(un j )(un j − vn j )

= 0. (3.18)

As I ′ is of (S+) type, we can conclude un j → u, furthermore we have I ′(un j ) → I ′(u).
Let us prove I ′(u) = 0 below. Taking arbitrarily wk ∈ Yk , notice that when n j � k we have

I ′(u)wk = (
I ′(u) − I ′(un j )

)
wk + I ′(un j )wk

= (
I ′(u) − I ′(un j )

)
wk + (I|Yn j

)′(un j )wk.

Going to limit in the right side of above equation reaches

I ′(u)wk = 0, ∀wk ∈ Yk, (3.19)

so I ′(u) = 0, this shows I satisfies the (PS)∗c condition for every c ∈ R. �
Proof of Theorem 3.3. According to ( f3) and Lemma 3.1, I is an even functional and satisfies (PS) condition. We will prove
that if k is large enough, then there exist ρk > γk > 0 such that (A2) and (A3) hold. Thus, the assertion of conclusion can
be obtained from Fountain theorem.

(A2) For any u ∈ Zk , ‖u‖ = γk = (cα+βα+
k m−1

0 )
1

p−−α+ , we have

I(u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
−

∫
Ω

F (x, u)dx

� m0

∫
Ω

1

p(x)
|∇u|p(x) dx −

∫
Ω

F (x, u)dx

� m0

p+

∫
Ω

|∇u|p(x) dx − c

∫
Ω

|u|α(x) dx − c

∫
Ω

|u|dx

� m0

p+ ‖u‖p− − c|u|α(ξ)

α(x) − c‖u‖, where ξ ∈ Ω

�
{ m0

p+ ‖u‖p− − c − c‖u‖ if |u|α(x) � 1,

m0
p+ ‖u‖p− − cβα+

k ‖u‖α+ − c‖u‖ if |u|α(x) > 1

� m0

p+ ‖u‖p− − cβα+
k ‖u‖α+ − c‖u‖ − c

= m0
+

(
cα+βα+

k m−1
0

) p−
p−−α+ − cβα+

k

(
cα+βα+

k m−1
0

) α+
p−−α+ − c‖u‖ − c
p
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= m0

(
1

p+ − 1

α+

)(
cα+βα+

k m−1
0

) p−
p−−α+ − c

(
cα+βα+

k m−1
0

) 1
p−−α+ − c

→ +∞, as k → +∞,

because of p+ < α+ , p− > 1 and βk → 0.
(A3) From ( f1), we have F (x, t) � c|t|θ − c. Therefore, for any w ∈ Yk with ‖w‖ = 1 and 1 < t = ρk , we have

I(t w) = M̂

(∫
Ω

1

p(x)
|t∇w|p(x) dx

)
−

∫
Ω

F (x, t w)dx

� c

(∫
Ω

|t∇w|p(x) dx

) 1
1−μ

− ctθ

∫
Ω

|w|θ dx − c

� cρ
p+

1−μ

k

(∫
Ω

|∇w|p(x) dx

) 1
1−μ

− cρθ
k

∫
Ω

|w|θ dx − c. (3.20)

By θ >
p+

1−μ and dim Yk = k, it is easy to see that I(u) → −∞ as ‖u‖ → +∞ for u ∈ Yk .
Conclusion of Theorem 3.3 is reached by the Fountain theorem. �

Proof of Theorem 3.4. From ( f3) and Lemma 3.5, we know that I satisfies (A1) and (B4), the assertion of conclusion can be
obtained from Dual fountain theorem.

(B1): For any v ∈ Zk , ‖v‖ = 1 and 0 < t < 1, we have

I(tv) = M̂

(∫
Ω

1

p(x)
|∇tv|p(x) dx

)
−

∫
Ω

F (x, tv)dx

� m0

∫
Ω

1

p(x)
|∇tv|p(x) dx −

∫
Ω

F (x, tv)dx

� m0

p+ t p+
∫
Ω

|∇v|p(x) dx − εt p+
∫
Ω

|v|p+
dx − ctα

−
∫
Ω

|v|α(x) dx

�
(

m0

p+ − εcp+
)

‖v‖p+
t p+ −

{
cβα−

k tα
−‖v‖α−

if |u|α(x) � 1,

cβα+
k tα

−‖v‖α+
if |u|α(x) > 1

� m0

2p+ t p+ −
{

cβα−
k tα

−
if |u|α(x) � 1,

cβα+
k tα

−
if |u|α(x) > 1.

(3.21)

Since α− > p+ , taking ρk = t small enough and sufficiently large k, for v ∈ Zk with ‖v‖ = 1, we have I(tv) � 0. So for
sufficiently large k,

inf
u∈Zk,‖u‖=ρk

I(u) � 0, (3.22)

i.e., (B1) is satisfied.
(B2): For v ∈ Yk , ‖v‖ = 1 and 0 < t < ρk < 1, we have

I(tv) = M̂

(∫
Ω

1

p(x)
|t∇v|p(x) dx

)
−

∫
Ω

F (x, tv)dx

� c

(∫
Ω

|t∇v|p(x) dx

) 1
1−μ

− c

∫
Ω

|tv|γ (x)
dx

� ct
p−

1−μ

(∫
Ω

|∇v|p(x) dx

) 1
1−μ

− ctγ
+

∫
Ω

|v|γ (x) dx.

Condition γ + <
p−

1−μ implies that there exists a rk ∈ (0,ρk) such that I(tv) < 0 when t = rk . Hence we get

bk := max
u∈Yk,‖u‖=rk

I(u) < 0,

so (B2) is satisfied.
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(B3): Because Yk ∩ Zk 	= ∅ and rk < ρk , we have

dk := inf
u∈Zk,‖u‖�ρk

I(u) � bk := max
u∈Yk,‖u‖=rk

I(u) < 0.

From (3.21), for v ∈ Zk , ‖v‖ = 1, 0 � t � ρk and u = tv , we have

I(u) = I(tv) � m0

2p+ t p+ −
{

cβα−
k tα

−
if |u|α(x) � 1,

cβα+
k tα

−
if |u|α(x) > 1

� −
{

cβα−
k tα

−
if |u|α(x) � 1,

cβα+
k tα

−
if |u|α(x) > 1,

hence dk → 0, i.e., (B3) is satisfied.
Conclusion of Theorem 3.4 is reached by the Dual fountain theorem. �

4. Corollaries for a special problem

In this section we will give some typical consequences of Theorems 3.1–3.4. We consider the following special problem{
−(a + b

∫
Ω

1
p(x) |∇u|p(x) dx)div(|∇u|p(x)−2∇u) = f (x, u) in Ω,

u = 0 on ∂Ω,
(4.1)

where a,b are two positive constants.
Let M(t) = a + bt with t = ∫

Ω
1

p(x) |∇u|p(x) dx. It is clear that

M(t) � a > 0. (4.2)

Taking μ = 1
2 , we have

M̂(t) =
t∫

0

M(s)ds = at + 1

2
bt2 � 1

2
(a + bt)t = (1 − μ)M(t)t. (4.3)

So the conditions (M0), (M1) are satisfied. Therefore, corresponding to Theorems 3.1–3.4, we have the following corollaries.

Corollary 4.1. If M satisfies (M0) and∣∣ f (x, t)
∣∣ � C1 + C2|t|β−1, (4.4)

where 1 � β < p− , then (4.1) has a weak solution.

Corollary 4.2. If M satisfies (M0), (M1), and f satisfies ( f0), ( f1) and ( f2), where α− > p+ , then (4.1) has a nontrivial solution.

Corollary 4.3. Assume that the conditions (M0), (M1), ( f0), ( f1) and ( f3) hold. Then Eq. (4.1) has a sequence of solutions {±uk}∞k=1
such that I(±uk) → +∞ as k → +∞.

Corollary 4.4. Assume that the conditions (M0), (M1), ( f0), ( f2), ( f3) and ( f4) hold. Then Eq. (4.1) has a sequence of solutions
{±uk}∞k=1 such that I(±uk) → +∞ as k → +∞.
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