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We prove that semisimple algebras containing some algebraic
element whose centralizer is semiperfect are artinian. As a con-
sequence, semisimple complex Banach algebras containing some
element whose centralizer is algebraic are finite-dimensional. This
answers affirmatively a question raised in Burgos et al. (2006) [4],
and is applied to show that an element a in a semisimple complex
Banach algebra A does not perturb the descent spectrum of every
element commuting with a if and only if some of power of a lies
in the socle of A. This becomes a Banach algebra version of a
theorem in Burgos et al. (2006) [4], Kaashoek and Lay (1972) [9]
for bounded linear operators on complex Banach spaces.
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1. Introduction

Let T be a linear operator on a vector space X over a field K . The descent d(T ) of T is defined by
the equality

d(T ) := min
{
n ∈ N ∪ {0}: R

(
T n) = R

(
T n+1)},
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with the convention that min∅ = ∞. Here R(·) denotes the range. The descent spectrum of T is the
set

σdesc(T ) := {
λ ∈ K : d(T − λ) = ∞}

.

We note that σdesc(T ) is a subset of the usual spectrum

σ(T ) := {λ ∈ K : T − λ is not bijective}.
As a consequence of a theorem of M.A. Kaashoek and D.C. Lay in perturbation theory [9, Theorem 2.2],
we are provided with the following

Theorem 1.1. Let T be a linear operator on a vector space X over a field K . If , T m has finite rank for some
m ∈ N, then we have

σdesc(T + S) = σdesc(S)

for every linear operator S on X commuting with T .

By putting together Theorem 1.1 and [4, Theorem 3.1], we are provided also with the following.

Theorem 1.2. Let X be a complex Banach space, and let T be a bounded linear operator on X. Then some
power of T has finite rank if and only if the equality σdesc(T + S) = σdesc(S) holds for every bounded linear
operator S on X commuting with T .

As main result, we prove in the present paper a variant of Theorem 1.2, where an arbitrary
semisimple complex Banach algebra A replaces the algebra BL(X) of all bounded linear operators
on the complex Banach space X , the socle of A replaces the ideal of all finite-rank bounded linear
operators on X , and the descent spectrum of an element a ∈ A (denoted by σdesc(a, A)) is defined as
the descent spectrum of the operator of left multiplication by a on A (see Theorem 3.6). Essentially,
the “only if” part of Theorem 3.6 just reviewed is of a purely algebraic nature, since socles of com-
plex Banach algebras are algebraic, and we prove that, if some power of an element a in an arbitrary
algebra A lies in the socle of A, and if the socle of A is algebraic, then a does not perturb the de-
scent spectrum of any element of A commuting with a (Corollary 3.5). This last result becomes in
fact a wide generalization of Theorem 1.1, since it is easily realized that, for a linear operator T on an
arbitrary vector space X , we have σdesc(T ) = σdesc(T , L(X)), where L(X) stand for the algebra of all
linear operators on X (Proposition 3.7).

The key tool in the proof of (the “if part” of) Theorem 3.6 is the affirmative answer to [4, Ques-
tion 2] provided by Theorem 2.3. Indeed, we prove in that theorem that, if a semisimple complex
Banach algebra A contains an element whose centralizer is algebraic, then A is finite-dimensional.
Again, most ingredients in the proof of Theorem 2.3 are of a purely algebraic nature. Indeed, Theo-
rem 2.3 follows quickly from the fact that, if A is a semisimple algebra over a field of characteristic
zero, and if A contains an algebraic element whose centralizer is semiperfect, then A is artinian (The-
orem 2.2). This result follows the line of some classical papers (see [5,8]), where their authors study
the structure of centralizers and the information that they can provide on the whole algebra.

2. Centralizers in semisimple algebras

For algebraic background, one may consult standard books on ring theory [2,6] or [12].
Throughout this paper, all algebras will be assumed to be associative and to have a unit element.

Let A be an algebra over a field K . We denote by J (A) its Jacobson radical, and we say that A is
semisimple if J (A) = 0. We say that A is local if the set of all noninvertible elements of A is an ideal
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of A or, equivalently, if for every x ∈ A, either x or 1 − x is invertible [12, Theorem 19.1]. A is called
semiperfect if A/ J (A) is artinian and the idempotents of A/ J (A) can by lifted to A or, equivalently,
if A contains a finite set of pairwise orthogonal idempotents e1, . . . , en such that e1 + · · · + en = 1,
and ei Aei is a local algebra for every i = 1, . . . ,n [12, Theorem 23.6]. An element a of A is called
algebraic if there exists a nonzero polynomial f ∈ K [X], such that f (a) = 0. The monic polynomial
of smallest degree with this property is called the minimum polynomial of a, and shall be denoted
by φa . A subset of A is said to be algebraic if all its elements are algebraic. The centralizer of an
element a ∈ A is the subalgebra CentA(a) = {x ∈ A: xa = ax}. When no confusion is possible, we write
Cent(a) instead of CentA(a).

Some authors (see [5,8]) have studied the structure of centralizers and the information that they
can provide on the whole algebra. In [5, Theorem 2.4.], it is shown that, if A is semiprime and
has an algebraic element a such that Cent(a) is semisimple artinian, then A is semisimple artinian.
Theorem 2.2 below becomes a result in this direction. For the proof, we need the following result on
nilpotent endomorphisms.

Lemma 2.1. Let M be a semisimple module over a ring R, let T be a nilpotent endomorphism of index k of M,
and put Ni = ker T i . Then there exists a family V 1, V 2, . . . , Vk of nonzero submodules of M such that:

(1) V 1 = N1 , and V i is contained in Ni for i = 2, . . . ,k.
(2) For i = 2, . . . ,k, T (V i) ⊂ V i−1 , and the restriction of T to V i is injective.
(3) M = V 1 ⊕ V 2 ⊕ · · · ⊕ Vk.

If in addition ker T is of finite length (i.e., has a finite number of simple components), then so is M.

Proof. The proof is an adaptation of the Jordan reduction of a nilpotent endomorphism in a vector
space. First take Vk a submodule of M such that Vk ⊕ Nk−1 = M (the existence is ensured by the
semisimplicity of M). The restriction of T to Vk is injective and T (Vk) ∩ Nk−2 = {0}, so we can find a
submodule Vk−1 of Nk−1 containing T (Vk) and such that Vk−1 ⊕Nk−2 = Nk−1. The process is repeated
analogously for k − 2,k − 3, . . . ,1, until we get the desired family Vk, Vk−1, . . . , V 1.

Suppose now that ker T = V 1 has finite length. Since the restrictions T |V i : V i → V i−1 are injective,
we deduce that each V i has finite length, and consequently M has finite length. �

We come now to a theorem on centralizers.

Theorem 2.2. Let A be a semisimple algebra over a field K of characteristic zero, and let a be an algebraic
element of A. If the centralizer of a is semiperfect, then A is artinian.

Proof. In a first step, we assume that the minimum polynomial φa of a splits over K and that A is
not artinian, and we prove that in such a case Cent(a) is not a local algebra.

Put φa(X) = ∏m
i=1(X − λi)

ki . If m > 1, then there exists two coprime non-constant polynomials f
and g such that φa = f g , and therefore we have

K [a] ∼= K [X]
(φa)

∼= K [X]
( f )

× K [X]
(g)

.

Since the last algebra in the above chain of isomorphisms contains a nontrivial idempotent, K [a] also
contains a nontrivial idempotent. It follows from the inclusion K [a] ⊂ Cent(a) that Cent(a) contains a
nontrivial idempotent, which implies that it is not a local algebra.

Now assume that m = 1, that is φa(X) = (X − λ)k . Since Cent(a) = Cent(a − λ), we may suppose
that a is nilpotent of index k. For every x ∈ A, put Ta(x) = ∑k−1

i=0 ai xak−i−1. It is easy to see that
Ta(x) ∈ Cent(a).

Let P denote the set of those primitive ideals P of A such that ak−1 /∈ P . Since A is semisimple,
and ak−1 �= 0, the set P is nonempty.
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We shall distinguish two cases:

Case one. There exists some P ∈ P such that A/P is not artinian. Take a simple A-module S with
P = Ann(S), and put D = EndA(S). If S were finite-dimensional over D , then, by the Jacobson density
theorem (see for example [2, 14.49]), A/P would be isomorphic to a matrix algebra over the division
ring D (a nice example of an artinian ring), arriving thus in a contradiction. Therefore S is infinite-
dimensional over D . Consider the map La : S → S defined by La(x) = ax. Then La ∈ EndD(S) and,
since ak = 0 and ak−1 S �= 0, La is nilpotent of index k. Since S is a semisimple D-module (because D
is a division ring), we can use the results of Lemma 2.1. Take Vk, Vk−1, . . . , V 1 as in that lemma and
u ∈ Vk nonzero. We have aiu = Li

a(u) ∈ Vk−i . Consequently u,au . . . ,ak−1u are linearly independent
over D . On the other hand, since S has not finite length over D , we can choose an element v of V 1
D-linearly independent of ak−1u. We obtain finally a family u,au, . . . ,ak−1u, v of D-linearly indepen-
dent vectors such that av = 0. Now, by the Jacobson density theorem, there exists x ∈ A such that
xak−1u = u, xaiu = 0 for every i = 0,1, . . . ,k − 2, and xv = 0. Therefore we have that Ta(x)u = u and
Ta(x)v = 0. Putting b := Ta(x), we realize that b ∈ Cent(a) and that neither b nor 1 − b is invertible.
This implies that Cent(a) is not a local algebra.

Case two. For every P ∈ P , A/P is artinian (which implies that all elements of P are maximal ideals
of A). Let us fix P ∈ P . Assume that for all primitive ideals Q of A we have Q + P �= A. Then for
such a primitive ideal Q we have Q + P = P (by the maximality of P ) or, equivalently, Q ⊂ P , which
implies that Q belongs to P (and hence is a maximal ideal of A), and then that P = Q . Thus P
is the unique primitive ideal of A which equals its Jacobson radical J (A). Since A is semisimple,
J (A) = 0 and A is artinian, which is a contradiction. In this way we have proved that there exists
some primitive ideal Q of A satisfying Q + P = A. Take S a simple A-module such that Ann(S) = P ,
and u ∈ S such that ak−1u, . . . ,au, u are linearly independent. Again by the Jacobson density theorem,
there exists x ∈ A such that xak−1u = u and xaiu = 0 for all i = 0, . . . ,k − 2. Then Ta(x)u = u. Now
x = x1 + x2 where x1 ∈ Q and x2 ∈ P , hence

Ta(x1 + x2)u = (
Ta(x1) + Ta(x2)

)
u = Ta(x1)u = u,

since Ta(x2) ∈ P and P S = 0. If we put b = Ta(x1), then bu = u and b ∈ Q . Thus 1 − b and b are not
invertible.

Now that the first step in the proof is concluded, assume that B := Cent(a) is semiperfect and that
the minimum polynomial φa of a splits over K . Let e1, . . . , en be a finite set of pairwise orthogonal
idempotents of B such that e1 + · · · + en = 1, and ei Aei is a local algebra for every i = 1, . . . ,n. Then
one can see that the centralizer of eiaei = aei in ei Aei is equal to ei Bei which is local. Moreover, the
minimum polynomial of aei relative to ei Aei splits over K because it is a divisor of φa . It follows
from the first step in the proof that ei Aei is semisimple artinian for all i = 1, . . . ,n. Consequently,
A is artinian.

Finally, remove the assumption above that φa splits over K . Take a splitting field L of this poly-
nomial over K . We consider the tensor product R = A ⊗K L. It is easy to see that CentR(a ⊗ 1) =
CentA(a) ⊗ L. Since CentA(a) is semiperfect, so is CentA(a) ⊗ L [10]. Hence R is artinian. A is then
artinian. �

We are now ready to answer Question 2 of [4].

Theorem 2.3. Let A be a semisimple complex Banach algebra containing an element a such that Cent(a) is
algebraic. Then A is finite-dimensional.

Proof. Since Cent(a) is an algebraic Banach algebra, J (Cent(a)) is nil [12, Corollary 4.19] and
Cent(a)/ J (Cent(a)) is finite-dimensional [3, Theorem 5.4.2]. Therefore, by [12, Theorem 21.28], Cent(a)

is semiperfect. By Theorem 2.2, A is artinian. But artinian semisimple complex Banach algebras are
finite-dimensional (see for example [1, Corollary 4]). �
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Let X be a complex Banach space, and let BL(X) stand for the complex Banach algebra of all
bounded linear operators on X . Since BL(X) is semisimple, Theorem 2.3 applies, giving that X is finite-
dimensional whenever there exists T ∈ BL(X) whose centralizer in BL(X) is algebraic. In this way, we
rediscover [4, Proposition 3.3]. As another consequence of Theorem 2.3, we have the following.

Corollary 2.4. The centralizer of every element of an infinite-dimensional C∗-algebra with identity contains a
non-algebraic element.

Proof. It is well known that every C∗-algebra is semisimple. �
One may ask if a complex normed algebra A is algebraic whenever Cent(a) is algebraic for some

a ∈ A, and A is complete (possibly non-semisimple) or semisimple (possibly non-complete). The an-
swer is negative in the two cases, as the following examples show.

Example 2.5. Let R be any non-algebraic complex Banach algebra. Consider the algebra A = ( R R
0 C

)
which can be endowed with a complete algebra norm. If we take a = ( 0 1

0 0

)
, then a ∈ J (A) and

Cent(a) = C + ( 0 R
0 0

)
which is algebraic, but A is not.

Example 2.6. Let X be any infinite-dimensional complex normed space. Denote by R the algebra of
all bounded linear operator on X , and by F the ideal of all bounded linear operators of finite rank.
Let S = C + F . Define A = ( R R

F S

)
and a = ( 0 1

0 0

)
. Then

Cent(a) =
{(

λ + u v
0 λ + u

)
∈ A: λ ∈ C, u ∈ F , v ∈ R

}
.

Let b = ( λ+u v
0 λ+u

) ∈ Cent(a). Since u is of finite rank, u is algebraic. Thus λ+u is algebraic. If φ stands

for the minimum polynomial of λ + u, then φ(b) is in the form
( 0 x

0 0

)
, and hence (φ(b))2 = 0. This

means that b is algebraic. Hence Cent(a) is algebraic. On the other hand, A is primitive because it is
isomorphic to a subalgebra of BL(X ⊕ X) containing all finite rank operators.

Despite the above examples, we are going to prove in Theorem 2.8 below a purely algebraic result
in the spirit of Theorem 2.3.

Lemma 2.7. Let X be a vector space over a field K , and let T be an algebraic linear operator on X. If T is
injective or surjective, then T is actually bijective.

Proof. Let φ denote the minimum polynomial of T , and write φ(X) = λ + Xψ(X) with λ ∈ K and
ψ ∈ K [X]. If λ = 0, then we have T ψ(T ) = 0 with ψ(T ) �= 0 (which implies that T is not injective)
and ψ(T )T = 0 with ψ(T ) �= 0 (which implies that T is not surjective). Therefore, if T is injective or
surjective, then we have λ �= 0, so that, by putting F = −λ−1ψ(T ), we obtain T F = F T = 1, and T
becomes bijective. �
Theorem 2.8. Let X be a vector space over a field K , and let L(X) stand for the algebra of all linear operators
on X. Then the following assertions are equivalent:

(1) L(X) contains an element whose centralizer is algebraic.
(2) X is finite-dimensional.

Proof. We need only to show that (1) ⇒ (2). Let T be in L(X) such that Cent(T ) is algebraic, and
put R := K [T ]. Since T is algebraic, we have R ∼= K [X]/(φ), where φ stands for the minimum poly-
nomial of T . On the other hand, X can be naturally regarded as an R-module in such a way that
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EndR(X) = Cent(T ). Since Cent(T ) is algebraic, it follows from Lemma 2.7 that X is hopfian and co-
hopfian as an R-module (i.e., every injective or surjective endomorphism is an isomorphism). Since R
is a commutative artinian principal ideal ring, [11, Theorem 9] applies, giving us that the R-module
X is noetherian, and hence finitely generated over R . Since R is finitely generated over K , we finally
deduce that X is finite-dimensional. �
3. Application to perturbations

In this section, we shall prove a variant of Theorem 1.2 for semisimple complex Banach algebras.
We recall the notion of descent spectrum of an element of an algebra, as introduced in [4]. Let A be
an algebra over a field K , and let a be in A. The descent d(a, A) of a is defined by the equality

d(a, A) := min
{
n ∈ N ∪ {0}: an ∈ an+1 A

}
,

with the convention that min ∅ = ∞. The descent spectrum of a is the set

σdesc(a, A) := {
λ ∈ K : d(a − λ, A) = ∞}

.

It is easily seen that d(a, A) = d(La), and consequently that σdesc(a, A) = σdesc(La), where La stands
for the operator of left multiplication by a on A (see [4, Remark 2.1.(i)]). The next result follows
from the observation just done and Theorem 1.1. Nevertheless, we include a proof for the sake of
self-containment.

Lemma 3.1. Let A be an algebra over a field K , let a be a nilpotent element of A, and let b be in Cent(a). Then
we have

σdesc(a + b, A) = σdesc(b, A).

Proof. It is enough to show that, if d(b, A) is finite, then so is d(a + b, A). Let k be in N ∪ {0} such
that ak = 0. Then, for all x ∈ Cent(a) and n ∈ N ∪ {0} we have

(a + x)n+k =
n+k∑
i=0

(
n + k

i

)
xian+k−i =

n+k∑
i=n+1

(
n + k

i

)
xian+k−i ∈ xn A.

Now assume that m := d(b, A) < ∞. By choosing successively in the above fact (x,n) = (b,m) and
(x,n) = (−(a + b),m + k + 1), it follows that

(a + b)m+k ∈ bm A = bm+2k+1 A = [
a − (a + b)

]m+2k+1
A ⊆ (a + b)m+k+1 A,

and hence that d(a + b) � m + k < ∞. �
Lemma 3.2. Let A be an algebra over a field K , and let a be an algebraic element of A. Then we have:

(1) There exists an idempotent e ∈ K [a] such that a(1 − e) is nilpotent, and ae is invertible in K [a]e.
(2) σdesc(a, A) = ∅.

Proof. Let φa stand for the minimum polynomial of a, and write φa(X) = Xkψ(X) where k ∈ N ∪ {0}
and ψ ∈ K [X] with ψ(0) �= 0. Then we have a natural isomorphism

K [a] ∼= K [X]
k

× K [X]

(X ) (ψ)
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which provides us with an idempotent e ∈ K [a] such that ψ(ae) = 0 in K [a]e, and (a(1 − e))k = 0.
Therefore, to conclude the proof of (1), it is enough to show that ae is invertible in K [a]e. But, since
ψ(ae) = 0 and ψ(0) �= 0, we can argue as in the conclusion of the proof of Lemma 2.7 to obtain that
ae is invertible in K [a]e.

Let b denote the inverse of ae in K [a]. Then, since

ak(1 − e) = (
a(1 − e)

)k = 0,

we have that ak = ak+1b, and hence that d(a, A) is finite. By replacing a with a − λ, with λ arbitrarily
in K , we deduce that σdesc(a, A) = ∅. �

We shall need also the following result.

Proposition 3.3. Let A be an algebra over a field K , let a be in A, and let e be an idempotent of A commuting
with a. Then we have

σdesc(ae, e Ae) = σdesc(ae, A). (3.1)

As a consequence, the equality

σdesc(a, A) = σdesc(ae, A) ∪ σdesc
(
a(1 − e), A

)
(3.2)

holds.

Proof. Let λ be in K \ σdesc(ae, A). Then we have

(ae − λ)n+1c = (ae − λ)n

for some c ∈ A and n ∈ N ∪ {0}. Therefore we have

(ae − λe)n+1ece = (ae − λe)n,

which implies that λ is not in σdesc(ae, e Ae). Conversely, let λ be in K \ σdesc(ae, e Ae). Then we have
(ae − λe)n+1c = (ae − λe)n for some c ∈ e Ae and n ∈ N ∪ {0}. Take μ ∈ K such that λn+1μe′ = λne′ ,
where e′ = 1 − e. Then we may write

(ae − λ)n = (
ae − λe + λe′)n = (ae − λe)n + λne′

= (ae − λe)n+1c + λn+1μe′ = (ae − λ)n+1(c + μe′),
which implies that λ is not in σdesc(ae, A). Now, equality (3.1) has been proved.

If λ is in K \ σdesc(a, A), then we have (a − λ)n+1c = (a − λ)n for some c ∈ A and n ∈ N ∪ {0},
so (ae − λe)n+1ece = (ae − λe)n , and so λ is not in σdesc(ae, e Ae) = σdesc(ae, A). Therefore we
have σdesc(ae, A) ⊆ σdesc(a, A), and analogously σdesc(ae′, A) ⊆ σdesc(a, A). Now let λ be in K \
[σdesc(ae, A) ∪ σdesc(ae′, A)]. Since σdesc(ae, A) = σdesc(ae, e Ae) and σdesc(ae′, A) = σdesc(ae′, e′ Ae′),
there exist b ∈ e Ae, c ∈ e′ Ae′ , and n ∈ N ∪ {0} such that

(ae − λe)n+1b = (ae − λe)n and
(
ae′ − λe′)n+1

c = (
ae′ − λe′)n

.

Therefore we have (a − λ)n+1(b + c) = (a − λ)n , which implies that λ is not in σdesc(a, A). �
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Theorem 3.4. Let A be an algebra over a field K , and let a be in A such that there exists n ∈ N in such a way
that Aan is an algebraic subset of A. Then we have that σdesc(a + b, A) = σdesc(b, A) for every b ∈ Cent(a).

Proof. Put I := Aan , which is an algebraic left ideal of A. Since an ∈ I , and I is algebraic, a is algebraic.
Let e be the idempotent in K [a] given by Lemma 3.2(1), so that a(1 − e) is nilpotent. Since ae is
invertible in K [a]e, we deduce that ane = (ae)n is invertible in K [a]e, and hence that, for some c ∈
K [a]e, we have e = can ∈ cI ⊆ I . Now, let b be in Cent(a). Then, by (3.2), we have

σdesc(a + b, A) = σdesc
(
(a + b)e, A

) ∪ σdesc
(
(a + b)(1 − e), A

)
= σdesc

(
(a + b)e, A

) ∪ σdesc
(
b(1 − e), A

)
,

the last equality being true because a(1 − e) is nilpotent, and Lemma 3.1 applies. On the other hand,
σdesc((a + b)e, A) = ∅ because (a + b)e ∈ I , I is algebraic, and Lemma 3.2(2) applies. It follows that

σdesc(a + b, A) = σdesc
(
b(1 − e), A

)
.

But, again by (3.2) and Lemma 3.2(2), we have σdesc(b(1 − e), A) = σdesc(b, A). �
Theorem 3.4 remains true if the requirement that Aan is algebraic is relaxed to the one that

Cent(A)an is algebraic.
We recall that the socle of an algebra A (denoted by Soc(A)) is defined as the sum of all minimal

left ideals of A. If A is semiprime, then Soc(A) coincides with the sum of all minimal right ideals
of A, and is indeed an ideal of A. The next corollary follows straightforwardly from Theorem 3.4.

Corollary 3.5. Let A be an algebra over a field K such that Soc(A) is algebraic, and let a be in A such that
an ∈ Soc(A) for some n ∈ N. Then we have that σdesc(a + b, A) = σdesc(b, A) for every b ∈ Cent(a).

Now we are ready to state and prove the desired variant of Theorem 1.2.

Theorem 3.6. Let A be a semisimple complex Banach algebra, and let a be in A. Then the following assertions
are equivalent:

(1) The equality σdesc(a + b, A) = σdesc(b, A) holds for every b ∈ Cent(a).
(2) There exists an idempotent e ∈ C[a] ∩ Soc(A) such that a(1 − e) is nilpotent.
(3) There exists an idempotent e ∈ C[a] such that ae belongs to Soc(A) and a(1 − e) is nilpotent.
(4) There exists c ∈ A such that ac belongs to Soc(A) and a(1 − c) is nilpotent.
(5) There exist c ∈ A and n ∈ N such that both ac and (a(1 − c))n belong to Soc(A).
(6) There exists n ∈ N such that an ∈ Soc(A).

Proof. (1) ⇒ (2). Taking b = 0 in the assumption (1), we obtain that σdesc(a, A) = ∅, and hence (as
a consequence of [4, Theorem 1.5]) that a is algebraic. Let φa(X) = ∏m

i=1(X − λi)
ki be the minimum

polynomial of a. Then we have a natural isomorphism

C[a] ∼= C[X]
((X − λ1)k1)

× · · · × C[X]
((X − λm)km )

which provides us with a set {e1, e2, . . . , em} of pairwise orthogonal idempotents of C[a] such that 1 =∑m
i=1 ei and (a − λi)ei is nilpotent for every i = 1, . . . ,m. Let e denote the sum of those ei such that

λi �= 0. Then, clearly, e is an idempotent in C[a] such that a(1 − e) is nilpotent. Therefore, to conclude
the proof of the present implication, it is enough to show that e lies in Soc(A). To this end, we argue
by contradiction, and hence we assume that there exists p := ei such that λ := λi �= 0 and p /∈ Soc(A)
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(equivalently, p Ap is infinite-dimensional [13]). Then, by Theorem 2.3, Centp Ap(ap) contains a non-
algebraic element b. Again by [4, Theorem 1.5], that means that σdesc(b, p Ap) is nonempty. Since
b ∈ Centp Ap(ap), we have also that b ∈ CentA(a), and then, by applying again the assumption (1), that

σdesc(b, A) = σdesc(a + b, A) = σdesc(ap + b, A) ∪ σdesc
(
a(1 − p), A

)
,

the last equality being true by Proposition 3.3. But

σdesc(ap + b, A) = σdesc
(
λp + (a − λ)p + b, A

) = σdesc(λp + b, A)

because (a − λ)p is nilpotent, and Lemma 3.1 applies. By applying again Proposition 3.3, it follows
that

λ + σdesc(b, p Ap) = σdesc(λp + b, p Ap)

= σdesc(λp + b, A) ⊆ σdesc(b, A) = σdesc(b, p Ap),

which is a contradiction because λ �= 0 and σdesc(b, p Ap) is bounded and nonempty.
The implications (2) ⇒ (3), (3) ⇒ (4), and (4) ⇒ (5) are clear.
(5) ⇒ (6). Let c and n be the elements of A and N, respectively, whose existence is assumed

in (5). Let π : A → A/Soc(A) stand for the natural homomorphism. Since both ac and (a(1 − c))n lie
in Soc(A), we have

0 = π
((

a(1 − c)
)n) = (

π
(
a(1 − c)

))n = (
π(a)

)n = π
(
an).

(6) ⇒ (1). By Corollary 3.5 (since the socle of any semisimple complex Banach algebra is algebraic
[13, Theorem 3.2]). �

Given a linear operator T on a vector space X , we can consider the descent spectrum of T as an
operator on X , σdesc(T ), as well as its descent spectrum σdesc(T , L(X)) as an element of the algebra
L(X) (of all linear operators on X ). Actually, we have the following.

Proposition 3.7. Let T be a linear operator on vector space X over a field K . Then we have σdesc(T ) =
σdesc(T , L(X)).

Proof. The inclusion σdesc(T ) ⊆ σdesc(T , L(X)) is clear. To show the converse inclusion, we recall that,
given F , G ∈ L(X) with R(F ) ⊆ R(G), there exists S ∈ L(X) such that F = G S . Indeed, taking a sub-
space N of X such that X = ker G ⊕ N , and denoting by p the projection from X onto N corresponding
to the decomposition X = ker G ⊕ N , for x ∈ X , the set Ŝ(x) := {y ∈ X: F (x) = G(y)} becomes an el-
ement of X/ker G , and the set p(̂S(x)) reduces to a singleton (say S(x) ∈ Ŝ(x)), so that the mapping
S : x → S(x) becomes a linear operator on X satisfying F = G S . Now, let λ be in K \ σdesc(T ). Then
we have R((T − λ)n+1) = R((T − λ)n) for some n ∈ N ∪ {0}. By the above, there exists S ∈ L(X) such
that

(T − λ)n+1 S = (T − λ)n,

which implies that λ does not belong to σdesc(T , L(X)). �
Let X be a vector space over a field K . Then Soc(L(X)) is precisely the ideal of all finite-rank

linear operators on X , and hence is algebraic. It follows from Corollary 3.5 and Proposition 3.7 that, if
T is a linear operator on X some power of which has a finite rank, then we have
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σdesc(T + S) = σdesc(S)

for every linear operator S on X commuting with T . Thus our results contain Theorem 1.1, and hence
also the “only if” part of Theorem 1.2.

Now, let X be a complex Banach space, and let BL(X) stand for the Banach algebra of all bounded
linear operators on X . Then Soc(BL(X)) is precisely the ideal of all finite-rank bounded linear op-
erators on X . Therefore, since BL(X) is semisimple (it is in fact primitive), we can apply Theo-
rem 3.6 to obtain that, given T ∈ BL(X), some power of T has finite rank if and only if the equality
σdesc(T + S,BL(X)) = σdesc(S,BL(X)) holds for every bounded linear operator S on X commuting
with T . Although this result mimics Theorem 1.2, both results would read identically if and only if
the equality σdesc(T ) = σdesc(T ,BL(X)) were true for every T ∈ BL(X). As we show in [7], this hap-
pens for many Banach spaces X (including �1 and all Hilbert spaces), but, for suitable choices of X
(including the one X = �p , for 1 < p � ∞ with p �= 2), the above equality fails for some T . Thus,
Theorems 3.6 and 1.2 seem to be independent results. Anyway, as a byproduct of our discussion, we
have the following.

Corollary 3.8. Let X be a complex Banach space, and let T and F be in BL(X) such that F commutes with T ,
and F n has a finite rank for some n ∈ N. Then σdesc(T ) = σdesc(T ,BL(X)) if and only if σdesc(F + T ) =
σdesc(F + T ,BL(X)).

Proof. By Theorem 1.1, we have σdesc(T ) = σdesc(F + T ), whereas the equality σdesc(T ,BL(X)) =
σdesc(F + T ,BL(X)) follows from Theorem 3.6. By putting together these equalities, the result fol-
lows. �
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