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a b s t r a c t

In this paper, we introduce a new class of accretive operators—(H(·, ·), η)-accretive
operators, which generalize many existing monotone or accretive operators. The resolvent
operator associated with an (H(·, ·), η)-accretive operator is defined and its Lipschitz
continuity is presented. By using the new resolvent operator technique, we also introduce
and study a new class of set-valued variational inclusions involving (H(·, ·), η)-accretive
operators and construct a new algorithm for solving this class of set-valued variational
inclusions. These results are new, and improve and generalize many known corresponding
results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The resolvent operator method is an important and useful tool for studying the approximation solvability of nonlinear
variational inequalities and variational inclusions, which are providing mathematical models to some problems arising in
optimization and control, economics and engineering science. In order to study various variational inequalities and vari-
ational inclusions, Ding [1], Huang and Fang [2], Fang and Huang [3], Fang et al. [4], Verma [5,6], Zhang [7], Sun et al. [8],
Fang and Huang [9], Huang and Fang [10], Kazmi and Khan [11], Lan et al. [12] and Zou and Huang [13] have introduced
the concepts of η-subdifferential operators, maximal η-monotone operators, H-monotone operators, (H, η)-monotone op-
erators, A-monotone operators, (A, η)-monotone operators, G-η-monotone operators, M-monotone operators in Hilbert
spaces, H-accretive operators, generalized m-accretive mappings, P-η-accretive operators, (A, η)-accretive mappings and
H(·, ·)-accretive operators in Banach spaces and their resolvent operators, respectively. Further, by using the resolvent op-
erator technique, a number of nonlinear variational inclusions and many systems of variational inequalities and variational
inclusions have been studied by some authors in recent years; see, for example, [14–21].
Motivated and inspired by the above works, we introduce a new class of accretive operators: (H(·, ·), η)-accretive

operators, which provide a unifying framework for maximal monotone operators [22], η-subdifferential operators [1],
maximal η-monotone operators [2], H-monotone operators [3], (H, η)-monotone operators [4], A-monotone mappings [5],
(A, η)-monotone operators [6], G-η-monotone operators [7], M-monotone operators [8], H-accretive operators [9],
generalized m-accretive mappings [10], P-η-accretive operators [11], (A, η)-accretive mappings [12] and H(·, ·)-accretive
operators [13]. The resolvent operator associated with an (H(·, ·), η)-accretive operator is defined and its Lipschitz
continuity is presented. By using the new resolvent operator technique, we also introduce and study a new class of set-
valued variational inclusions involving (H(·, ·), η)-accretive operators and construct a new algorithm for solving this class
of set-valued variational inclusions. These results are new, and improve and generalize many known corresponding results.
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2. Preliminaries

Let E be a real Banach space with dual space E∗, and the norm and the dual pair between E and E∗ are denoted by ‖ · ‖
and 〈·, ·〉 respectively. CB(E) denote the family of all the nonempty closed and bounded subsets of E and 2E is the power set
of E. H̃ (·, ·) be the Hausdorff metric on CB(E) defined by

H̃(A, B) = max{sup
x∈A
d(x, B), sup

y∈B
d(A, y)}, ∀A, B ∈ CB(E).

The generalized duality mapping Jq : E → 2E
∗

is defined by

Jq(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖f ∗‖‖x‖, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is known that, in general, Jq(x) =
‖x‖q−2J(x), for all x 6= 0, and Jq is single-valued if E∗ is strictly convex.
The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup
{
1
2
(‖x+ y‖ + ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth if

lim
t→0

ρE(t)
t
= 0.

E is called q-uniformly smooth if there exists a constant c > 0, such that

ρE(t) ≤ ctq, q > 1.

Note that Jq is single-valued if E is uniformly smooth.

Lemma 2.1 ([23]). Let E be a real uniformly smooth Banach space. Then E is q-uniformly smooth if and only if there exists a
constant cq > 0, such that for all x, y ∈ E,

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖q.

Throughout the rest of the paper, unless otherwise stated, we assume that E is q-uniformly smooth.

Definition 2.1. Let A, B, T : E → E and H, η : E × E → E be five single-valued mappings.
(1) A is said to be η-accretive if 〈A(x)− A(y), Jq(η(x, y))〉 ≥ 0;
(2) A is said to be strictly η-accretive if A is η-accretive and

〈A(x)− A(y), Jq(η(x, y))〉 = 0

if and only if x = y;
(3) H(A, ·) is said to be α-strongly η-accretive with respect to A if there exists a constant α > 0 such that

〈H(Ax, u)− H(Ay, u), Jq(η(x, y))〉 ≥ α‖x− y‖q, ∀x, y, u ∈ E;

(4) H(·, B) is said to be β-relaxed η-accretive with respect to B if there exists a constant β > 0 such that

〈H(u, Bx)− H(u, By), Jq(η(x, y))〉 ≥ −β‖x− y‖q, ∀x, y, u ∈ E;

(5) H(·, ·) is said to be λ-Lipschitz continuous with respect to A if there exists a constant λ > 0 such that

‖H(Ax, u)− H(Ay, u)‖ ≤ λ‖x− y‖, ∀x, y, u ∈ E;

(6) A is said to be ε-Lipschitz continuous if there exists a constant ε > 0 such that

‖A(x)− A(y)‖ ≤ ε‖x− y‖, ∀x, y ∈ E;

(7) η is said to be τ -Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ E.

Remark 2.1. If η(x, y) = x−y,∀x, y ∈ E, then (1)–(4) of Definition 2.1 reduce to (1)–(4) of Definition 2.1 in [13], respectively.

Definition 2.2 ([12]). Let M : E → 2E be a multi-valued mapping, A,H : E → E and η : E × E → E be single-valued
mappings.M is said to be
(1) accretive if 〈x− y, jq(u− v)〉 ≥ 0,∀u, v ∈ E, x ∈ M(u), y ∈ M(v);
(2) η-accretive if 〈x− y, jq(η(u, v))〉 ≥ 0,∀u, v ∈ E, x ∈ M(u), y ∈ M(v);
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(3) strictly η-accretive ifM is η-accretive and equality holds if and only if x = y;
(4) r-strongly η-accretive if there exists a constant r > 0 such that

〈x− y, Jq(η(u, v))〉 ≥ r‖u− v‖q, ∀u, v ∈ E, x ∈ M(u), y ∈ M(v);

(5)m-relaxed η-accretive if there exists a constantm > 0 such that

〈x− y, η(u, v)〉 ≥ −m‖u− v‖q, ∀u, v ∈ E, x ∈ M(u), y ∈ M(v);

(6)m-accretive ifM is accretive and (I + ρM)(E) = E for all ρ > 0, where I denotes the identity operator on E;
(7) generalizedm-accretive ifM is η-accretive and (I + ρM)(E) = E for all ρ > 0, where I denotes the identity operator

on E;
(8) H-accretive ifM is accretive and (H + ρM)E = E for all ρ > 0;
(9) (H, η)-accretive ifM is η-accretive and (H + ρM)E = E for all ρ > 0;
(10) (A, η)-accretive ifM ism-η-relaxed accretive and (A+ ρM)E = E for all ρ > 0.

Definition 2.3. Let T , S : E → 2E be set-valued mapping, A, B : E → E and H, F : E × E → E be single-valued mappings.
(1) F is said to be ᾱ-strongly accretive with respect to S and H(A, B) in the first argument if there exists a constant ᾱ > 0

such that

〈F(w1, ·)− F(w2, ·), Jq(H(Au, Bu)− H(Av, Bv))〉 ≥ ᾱ‖H(Au, Bu)− H(Av, Bv)‖q

∀u, v ∈ E, w1 ∈ S(u), w2 ∈ S(v);

(2) F is said to be β̄-strongly accretive with respect to T and H(A, B) in the second argument if there exists a constant
β̄ > 0 such that

〈F(·, w1)− F(·, w2), Jq(H(Au, Bu)− H(Av, Bv))〉 ≥ β̄‖H(Au, Bu)− H(Av, Bv)‖q

∀u, v ∈ E, w1 ∈ T (u), w2 ∈ T (v);

(3) F is said to be ξ1-Lipschitz in the first argument if there exists a constant ξ1 > 0 such that

‖F(u1, v′)− F(u2, v′)‖ ≤ ξ1‖u1 − u2‖, ∀u1, u2, v′ ∈ E.

Remark 2.2. If H(Ax, Bx) = Ax, ∀ x ∈ E, then (1) of Definition 2.3 reduces to (3) of Definition 2.4 in [24].

3. (H(·, ·), η)-accretive operator

In this section, we shall introduce a new class of set-valued accretive operators—(H(·, ·), η)-accretive operators and
discuss some properties of this class of operators

Definition 3.1. Let H, η : E × E → E, A, B : E → E be four single-valued mappings. Then the set-valued mapping
M : E → 2E is said to be (H(·, ·), η)-accretive with respect to mappings A and B (or simply (H(·, ·), η)-accretive in the
sequel), ifM ism-relaxed η-accretive and (H(A, B)+ ρM)(E) = E for all ρ > 0.

Remark 3.1. (1) When m = 0 and η(x, y) = x − y, ∀ x, y ∈ E, Definition 3.1 reduces to the definition of H(·, ·)-accretive
operators [13].
(2) If H(Au, Bu) = Au, ∀ u ∈ E, then Definition 3.1 reduces to the definition of (A, η)-accretive operators [12,25].

Hence, the class of (H(·, ·), η)-accretive operators in Banach spaces provides a unifying framework for the classes of
maximalmonotone operators, η-subdifferential operators, maximal η-monotone operators,H-monotone operators, (H, η)-
monotone operators, A-monotone mappings, (A, η)-monotone operators, G-η-monotone operators, H-accretive operators,
generalizedm-accretive mappings, P-η-accretive operators. For details, see [1–7,9–12,22,25,15].
(3) If E = H is a Hilbert space, m = 0 and η(x, y) = x − y,∀x, y ∈ H , then Definition 3.1 reduces to the definition of

M-monotone operators [8].
(4) A maximal monotone operator need not be H(·, ·)-accretive operators, see Example 3.1 given in [13].

Theorem 3.1. Let η : E × E → E be a single-valued mapping and H(A, B) be α-strongly η-accretive with respect to A,
β-relaxed η-accretive with respect to B and α > β . Let M : E → 2E be an (H(·, ·), η)-accretive operator with respect to A
and B. If 〈x − y, jq(η(u, v))〉 ≥ 0 holds for all (v, y) ∈ Graph(M), where Graph(M) = {(a, b) ∈ E × E : b ∈ M(a)}, then
(u, x) ∈ Graph(M).

Proof. Since M is (H(·, ·), η)-accretive with respect to A and B, we know that (H(A, B) + ρM)(E) = E holds for all ρ > 0
and so there exists (u1, x1) ∈ Graph(M) such that

H(Au, Bu)+ ρx = H(Au1, Bu1)+ ρx1. (3.1)
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Since H(A, B) is α-strongly η-accretive with respect to A, β-relaxed accretive with respect to B and α > β , we have

0 ≤ ρ〈x− x1, jq(η(u, u1))〉
= −〈H(Au, Bu)− H(Au1, Bu1), jq(η(u, u1))〉
= −〈H(Au, Bu)− H(Au1, Bu), jq(η(u, u1))〉 − 〈H(Au1, Bu)− H(Au1, Bu1), jq(η(u, u1))〉
≤ −(α − β)‖u− u1‖q ≤ 0.

This implies that u = u1. From (3.1), we know that x = x1. Thus (u, x) = (u1, x1) ∈ Graph(M). This completes the proof. �

Remark 3.2. Theorem 3.1 generalizes and improves Theorem 3.1 of [12,13], Proposition 2.1 of [8] (1) of Theorem 2.1 of [2],
Proposition 2.1 of [3], Theorem 2.1 of [7,9] and (a) of Theorem 3.1 of [11].

Theorem 3.2. Let η : E×E → E be a single-valued mapping and H(A, B) be α-strongly η-accretive with respect to A, β-relaxed
η-accretive with respect to B and α > β . Let M : E → 2E be an (H(·, ·), η)-accretive operator with respect to A and B. Then the
operator (H(A, B)+ ρM)−1 is single-valued for 0 < ρ < r

m , where r = α − β .

Proof. For any given u∗ ∈ E, let ∀u, v ∈ (H(A, B)+ ρM)−1(u∗). It follows that

−H(A(u), B(u))+ u∗ ∈ ρM(u) and − H(A(v), B(v))+ u∗ ∈ ρM(v).

Since M : E → 2E is an (H(·, ·), η)-accretive operator with respect to A and B and H(A, B) is α-strongly η-accretive with
respect to A, β-relaxed η-accretive with respect to B and α > β , we have

−m‖u− v‖q ≤
1
ρ
〈(−H(Au, Bu)+ u∗)− (−H(Av, Bv)+ u∗), Jq(η(u, v))〉

= −
1
ρ
〈H(Au, Bu)− H(Av, Bv), Jq(η(u, v))〉

= −
1
ρ
〈H(Au, Bu)− H(Av, Bu), Jq(η(u, v))〉 −

1
ρ
〈H(Av, Bu)− H(Av, Bv), Jq(η(u, v))〉

≤ −
1
ρ
(α − β)‖u− v‖q = −

r
ρ
‖u− v‖q.

This show that

mρ‖u− v‖q ≥ r‖u− v‖q.

If u 6= v, then ρ ≥ r
m contradicts with 0 < ρ < r

m . Thus u = v, that is, (H(A, B) + ρm)−1 is singe-valued. The proof is
completed. �

Remark 3.3. Theorem 3.2 generalizes and improves Theorem 3.2 of [12], Theorem 3.3 of [13], Theorem 2.1 of [8], (2) of
Theorem 2.1 of [2], Theorem 2.1 of [3], Theorem 2.2 of [7,9] and (b) of Theorem 3.1 of [11].
Base on Theorem 3.2, we can define the generalized resolvent operator RM,ηH(·,·),ρ associated with an (H(·, ·), η)-accretive

mappingM as follows.

Definition 3.2. Let η : E × E → E be a single-valued mapping and H(A, B) be α-strongly η-accretive with respect to A,
β-relaxed η-accretive with respect to B and α > β . Let M : E → 2E be an (H(·, ·), η)-accretive operator with respect to A
and B. Then the general resolvent operator RM,ηH(·,·),ρ : E → E is defined by

RM,ηH(·,·),ρ(u) = (H(A, B)+ ρM)
−1(u), ∀u ∈ E. (3.2)

Remark 3.4. The general resolvent operators associated with (H(·, ·), η)-accretive operators include as special cases the
corresponding resolvent operators associated with maximal monotone operators [22], η-subdifferential operators [1],
maximal η-monotone operators [2], H-monotone operators [3], (H, η)-monotone operators [4], A-monotone mappings [5],
(A, η)-monotone operators [6], G-η-monotone operators [7], M-monotone operators [8], H-accretive operators [9],
generalized m-accretive mappings [10], P-η-accretive operators [11], (A, η)-accretive mappings [12] and H(·, ·)-accretive
operators [13].

Theorem 3.3. Let η : E × E → E be τ -Lipschitz continuous and H(A, B) be α-strongly η-accretive with respect to A, β-relaxed
η-accretive with respect to B and α > β . Let M : E → 2E be an (H(·, ·), η)-accretive operator with respect to A and B. Then the
resolvent operator RM,ηH(·,·),ρ : E → E is τ q−1

r−ρm -Lipschitz continuous for 0 < ρ < r
m , where r = α − β , that is,

‖RM,ηH(·,·),ρ(u)− R
M,η
H(·,·),ρ(v)‖ ≤

τ q−1

r − ρm
‖u− v‖, ∀u, v ∈ E.
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Proof. Let u, v ∈ H be any given points, it follows from (3.2) that

RM,ηH(·,·),ρ(u) = (H(A, B)+ ρM)
−1(u)

and

RM,ηH(·,·),ρ(v) = (H(A, B)+ ρM)
−1(v).

This implies that

1
ρ
(u− H(A(RM,ηH(·,·),ρ(u)), B(R

M,η
H(·,·),ρ(u)))) ∈ M(R

M,η
H(·,·),ρ(u)),

1
ρ
(v − H(A(RM,ηH(·,·),ρ(v)), B(R

M,η
H(·,·),ρ(v)))) ∈ M(R

M,η
H(·,·),ρ(v)).

For the sake of brevity, let z1 = R
M,η
H(·,·),ρ(u) and z2 = R

M,η
H(·,·),ρ(v).

SinceM ism-relaxed η-accretive, we get

−m‖z1 − z2‖q ≤
1
ρ
〈u− H(Az1, Bz1)− (v − H(Az2, Bz2)), Jq(η(z1, z2))〉

=
1
ρ
〈u− v − (H(Az1, Bz1)− H(Az2, Bz2)), Jq(η(z1, z2))〉.

From the above inequality and the conditions in the Theorem 3.3, we have

τ q−1‖u− v‖ · ‖z1 − z2‖q−1 ≥ ‖u− v‖ · ‖η(z1, z2)‖q−1 ≥ 〈u− v, Jq(η(z1, z2))〉
≥ 〈H(Az1, Bz1)− H(Az2, Bz2), Jq(η(z1, z2))〉 − ρm‖z1 − z2‖q

≥ 〈H(Az1, Bz1)− H(Az2, Bz1), Jq(η(z1, z2))〉
+ 〈H(Az2, Bz1)− H(Az2, Bz2), Jq(η(z1, z2))〉 − ρm‖z1 − z2‖q

≥ (α − β − ρm)‖z1 − z2‖q = (r − ρm)‖z1 − z2‖q.

Hence

‖RM,ηH(·,·),ρ(u)− R
M,η
H(·,·),ρ(v)‖ ≤

τ q−1

r − ρm
‖u− v‖, ∀u, v ∈ E.

This completes the proof. �

Remark 3.5. Theorem 3.2 generalizes and improves Theorem 3.3 of [12], Theorem 3.4 of [13], Theorem 2.2 of [8], Theorem
2.2 of [2,3], Theorem 2.3 of [7,9] and Theorem 3.2 of [11].

4. An application for solving set-valued variational inclusions

In this section, we shall study a new class of set-valued variational inclusions involving (H(·, ·), η)-accretive operators
in Banach spaces and construct an iterative algorithm for approximating the solution of this class of variational inclusions
by using the resolvent operator technique.
Let F : E× E → E be a single-valued mapping, S, T : E → CB(E) andM : E → 2E be set-valued mappings. For any given

a ∈ E, we consider the following set-valued variational inclusion problem: find x ∈ E,w ∈ S(x), v ∈ T (x) such that

a ∈ F(w, v)+M(x). (4.1)

Special cases of the problem (4.1):
(1) If S, T : E → E be single-valued mappings and M(x) = λN(x), where λ > 0 is a constant, then the problem (4.1)

reduces to the following problem: find x ∈ E such that

a ∈ F(S(x), T (x))+ λN(x). (4.2)

IfM is an (A, η)-accretive mapping, then the problem (4.2) was introduced and studied by Lan et al. [12].
(2) If λ = 1, a = 0 and F(S(x), T (x)) = T (x) for all x ∈ E, where T : E → E is a single-valued mapping, then the problem

(4.2) reduces to the following problem: find x ∈ E such that

0 ∈ T (x)+ N(x). (4.3)

If N is an H(·, ·)-accretive mapping, then the problem (4.3) was studied by Zou and Huang [13]; If N is a generalized
m-accretive mapping was studied by Bi et al. [26].
(3) When E = H is a Hilbert space and N is an H-monotone operators, then the problem (4.3) was introduced and

studied by Fang and Huang [3] and includes many variational inequalities (inclusions) and complementarity problems as
special cases. For example, see [27,28].
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Definition 4.1. A set-valued mapping A : E → CB(E) is said to be H̃-Lipschitz continuous if there exists a constant L > 0
such that

H̃(A(x), A(y)) ≤ L‖x− y‖, ∀x, y ∈ E.

From Definition 3.2, we can obtain the following conclusion.

Lemma 4.1. Let η : E × E → E be a single-valued mapping and H(A, B) be α-strongly η-accretive with respect to A, β-relaxed
η-accretive with respect to B and α > β . Let M : E → 2E be an (H(·, ·), η)-accretive operator with respect to A and B. Then
x ∈ E, w ∈ S(x), v ∈ T (x) is a solution of the set-valued variational inclusion (4.1) if and only if x ∈ E, w ∈ S(x), v ∈ T (x)
satisfies

x = RM,ηH(·,·),ρ(H(Ax, Bx)− ρF(w, v)+ ρa), (4.4)

where RM,ηH(·,·),ρ(u) = (H(A, B)+ ρM)
−1(u),∀u ∈ E and ρ > 0 is a constant.

Remark 4.1. The equality (4.4) can be written as

z = H(Ax, Bx)− ρF(w, v)+ ρa, x = RM,ηH(·,·),ρ(z),

where a ∈ E is any given element and ρ > 0 is a constant. By Nadler [29], we know that this fixed point formulation enables
us to suggest the following iterative algorithm.

Algorithm 4.1. For any given z0 ∈ B, we can choose x0 ∈ B such that sequences {xn}, {wn} and {vn} satisfy

xn = R
M,η
H(·,·),ρ(zn),

wn ∈ S(xn), ‖wn − wn+1‖ ≤

(
1+

1
n+ 1

)
H̃(S(xn), S(xn+1)),

vn ∈ T (xn), ‖vn − vn+1‖ ≤

(
1+

1
n+ 1

)
H̃(T (xn), T (xn+1)),

zn+1 = H(Axn, Bxn)− ρF(wn, vn)+ ρa+ en,
∞∑
j=1

‖ej − ej−1‖$−j <∞, ∀$ ∈ (0, 1), limn→∞en = 0,

(4.5)

where ρ > 0 is a constant, a ∈ E is any given element and {en} ⊂ E is an error to take into account a possible inexact
computation of the resolvent operator point for all n ≥ 0, and H̃(·, ·) is the Hausdorff metric on CB(E).

Theorem 4.1. Let η : E×E → E be a τ -Lipschitz continuous and H(A, B) be α-strongly η-accretive with respect to A, β-relaxed
η-accretive with respect to B and α > β . Let M : E → 2E be an (H(·, ·), η)-accretive operator with respect to A and B. Suppose
the following conditions are satisfied:
(1) S and T are H̃-Lipschitz continuous with constants σ and δ, respectively;
(2) F is ᾱ-strongly accretive with respect to S and H(A, B) in the first argument and β̄-strongly accretive with respect to T and

H(A, B) in the second argument;
(3) H(A, B) is γ1-Lipschitz continuous with respect to A and γ2-Lipschitz continuous with respect to B, F is ξ1-Lipschitz

continuous in the first argument and ξ2-Lipschitz continuous in the second argument;
In addition, there exist constants 0 < ρ < r

m (r = α − β) such that

τ q−1
q
√
(γ1 + γ2)q + cqρq(ξ1σ + ξ2δ)q − ρq(ᾱ + β̄)(γ1 + γ2)q < r − ρm. (4.6)

Then the iterative sequences {xn}, {wn} and {vn} generated by Algorithm 4.1 converge strongly to {x}, {w} and {v}, respectively,
and (x, w, v) is a solution of the problem (4.1).

Proof. It follows from (4.5) and Theorem 3.3 that

‖xn+1 − xn‖ = ‖R
M,η
H(·,·),ρ(zn+1)− R

M,η
H(·,·),ρ(zn)‖ ≤

τ q−1

r − ρm
‖zn+1 − zn‖. (4.7)

From (4.5), we can get

‖zn+1 − zn‖ = ‖H(Axn, Bxn)− ρF(wn, vn)+ ρa+ en
− (H(Axn−1, Bxn−1)− ρF(wn−1, vn−1)+ ρa+ en−1)‖

≤ ‖H(Axn, Bxn)− H(Axn−1, Bxn−1)− (ρF(wn, vn)− ρF(wn−1, vn−1))‖ + ‖en − en−1‖. (4.8)
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By Lemma 2.1, we have

‖H(Axn, Bxn)− H(Axn−1, Bxn−1)− ρ(F(wn, vn)− F(wn−1, vn−1))‖q

≤ ‖H(Axn, Bxn)− H(Axn−1, Bxn−1)‖q + cqρq‖F(wn, vn)− F(wn−1, vn−1)‖q

− ρq〈F(wn, vn)− F(wn−1, vn−1), Jq(H(Axn, Bxn)− H(Axn−1, Bxn−1))〉. (4.9)

From (4.5) and the conditions (1) and (3), we have

‖H(Axn, Bxn)− H(Axn−1, Bxn−1)‖ ≤ ‖H(Axn, Bxn)− H(Axn−1, Bxn)‖ + ‖H(Axn−1, Bxn)− H(Axn−1, Bxn−1)‖

≤ (γ1 + γ2)‖xn − xn−1‖ (4.10)

and

‖F(wn, vn)− F(wn−1, vn−1)‖ ≤ ‖F(wn, vn)− F(wn−1, vn)‖ + ‖F(wn−1, vn)− F(wn−1, vn−1)‖
≤ ξ1‖wn − wn−1‖ + ξ2‖vn − vn−1‖

≤ ξ1

(
1+

1
n

)
H̃(S(xn), S(xn−1))+ ξ2

(
1+

1
n

)
H̃(T (xn), T (xn−1))

≤

(
ξ1

(
1+

1
n

)
σ + ξ2

(
1+

1
n

)
δ

)
‖xn − xn−1‖. (4.11)

By the conditions (2) and (3), we have

− 〈F(wn, vn)− F(wn−1, vn−1), Jq(H(Axn, Bxn)− H(Axn−1, Bxn−1))〉
= −[〈F(wn, vn)− F(wn−1, vn), Jq(H(Axn, Bxn)− H(Axn−1, Bxn−1))〉
+ 〈F(wn−1, vn)− F(wn−1, vn−1), Jq(H(Axn, Bxn)− H(Axn−1, Bxn−1))〉]

≤ −(ᾱ + β̄)‖H(Axn, Bxn)− H(Axn−1, Bxn−1)‖q

≤ −(ᾱ + β̄)(γ1 + γ2)
q
‖xn − xn−1‖q. (4.12)

From (4.9)–(4.12), it follows that

‖H(Axn, Bxn)− H(Axn−1, Bxn−1)− ρ(F(wn, vn)− F(wn−1, vn−1))‖

≤
q

√
(γ1 + γ2)q + cqρq

(
ξ1

(
1+

1
n

)
σ + ξ2

(
1+

1
n

)
δ

)q
− ρq(ᾱ + β̄)(γ1 + γ2)q · ‖xn − xn−1‖. (4.13)

Combining (4.7), (4.8) and (4.13), we have

‖xn+1 − xn‖ ≤
τ q−1

r − ρm
‖zn+1 − zn‖

≤ θn‖xn − xn−1‖ +
τ q−1

r − ρm
‖en − en−1‖, (4.14)

where

θn =
τ q−1

r − ρm
q

√
(γ1 + γ2)q + cqρq(ξ1

(
1+

1
n

)
σ + ξ2

(
1+

1
n

)
δ)q − ρq(ᾱ + β̄)(γ1 + γ2)q.

Let

θ =
τ q−1

r − ρm
q
√
(γ1 + γ2)q + cqρq(ξ1σ + ξ2δ)q − ρq(ᾱ + β̄)(γ1 + γ2)q.

Then we know that θn → θ as n→∞.
By (4.6), we know that 0 < θ < 1 and hence there exist n0 > 0 and θ0 ∈ (0, 1) such that θn ≤ θ0 for all n ≥ n0.

Therefore, by (4.14), we have

‖xn+1 − xn‖ ≤ θ0‖xn − xn−1‖ +
τ q−1

r − ρm
‖en − en−1‖, ∀n ≥ n0. (4.15)

(4.15) implies that

‖xn+1 − xn‖ ≤ θ
n−n0
0 ‖xn0+1 − xn0‖ +

τ q−1

r − ρm

n−n0∑
j=1

θ
j−1
0 tn−(j−1), (4.16)



1566 Z.B. Wang, X.P. Ding / Computers and Mathematics with Applications 59 (2010) 1559–1567

where tn = ‖en − en−1‖ for all n ≥ n0. Hence, for anym ≥ n > n0, we have

‖xm − xn‖ ≤
m−1∑
k=n

‖xk+1 − xk‖

≤

m−1∑
k=n

θ
k−n0
0 ‖xn0+1 − xn0‖ +

τ q−1

r − ρm

m−1∑
k=n

θ k0

[
k−n0∑
j=1

tk−(j−1)
θ
k−(j−1)
0

]
. (4.17)

Since
∑
∞

j=1 ‖ej − ej−1‖$
−j <∞,∀$ ∈ (0, 1) and 0 < θ0 < 1, it follows that ‖xm − xn‖ → 0 as n→∞, and so {xn} is a

Cauchy sequence in E. Thus, there exists x ∈ E such that xn → x as n→∞. By Algorithm 4.1 and the H̃-Lipschitz continuity
of S and T , we get

‖wn − wn+1‖ ≤

(
1+

1
n+ 1

)
H̃(S(xn), S(xn+1)) ≤

(
1+

1
n+ 1

)
σ‖xn+1 − xn‖,

‖vn − vn+1‖ ≤

(
1+

1
n+ 1

)
H̃(T (xn), T (xn+1)) ≤

(
1+

1
n+ 1

)
δ‖xn+1 − xn‖.

(4.18)

It follows that {wn} and {vn} are also Cauchy sequences. Thus, there existw and v such thatwn → w and vn → v, as n→∞.
In the sequel, we will show thatw ∈ S(x). Notingwn ∈ S(xn), we have

d(w, S(x)) ≤ ‖w − wn‖ + d(wn, S(x))

≤ ‖w − wn‖ + H̃(S(xn), S(x))
≤ ‖w − wn‖ + σ‖xn − x‖ → 0, (n→∞).

Since S(x) is closed, it impliesw ∈ S(x). Similarly, one can show that v ∈ T (x).
By continuity, we know that x,w, v satisfy

x = RM,ηH(·,·),ρ(H(Ax, Bx)− ρF(w, v)+ ρa). (4.19)

By Lemma 4.1, (x, w, v) is a solution of the problem (4.1). This completes the proof. �

Remark 4.2. (1) Theorem 4.1 unifies, improves and extends the results of [3,12,13] in several aspects.
(2) By Algorithm 4.1 and Theorem 4.1, it is easy to obtain the convergence results for iterative algorithms for special

cases of problem (4.1) with (H(·, ·), η)-accretive operators. We omit them here.
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