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SUMMARY

Brown fat cells are specialized to dissipate en-
ergy and can counteract obesity; however, the
transcriptional basis of their determination is
largely unknown. We show here that the zinc-
finger protein PRDM16 is highly enriched in
brown fat cells compared to white fat cells.
When expressed in white fat cell progenitors,
PRDM16 activates a robust brown fat pheno-
type including induction of PGC-1a, UCP1, and
type 2 deiodinase (Dio2) expression and
a remarkable increase in uncoupled respiration.
Transgenic expression of PRDM16 at physio-
logical levels in white fat depots stimulates
the formation of brown fat cells. Depletion of
PRDM16 through shRNA expression in brown
fat cells causes a near total loss of the brown
characteristics. PRDM16 activates brown fat
cell identity at least in part by simultaneously
activatingPGC-1aandPGC-1b throughdirectpro-
tein binding. These data indicate that PRDM16
can control the determination of brown fat fate.

INTRODUCTION

Adipose cells and tissue are of great interest in view of the

worldwide epidemic of obesity and its associated meta-

bolic disorders, such as insulin resistance, diabetes, dys-

lipidemia, and hypertension. Fat cells occur in two distinct

subtypes: white fat cells, which function primarily to store

energy in the form of triglycerides, and brown fat cells,

which oxidize fuels and dissipate energy in the form of

heat. Brown adipose tissue (BAT) is important for small

mammals such as mice to defend against the cold. In hu-

mans, brown fat is abundant at birth but is rapidly replaced

by white adipose tissue (WAT) and is relatively scarce in

the adult as an identifiable tissue (Lean and James, 1986).

On the other hand, several reports indicate that brown fat
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cells are interspersed within WAT of rodents and humans

(Cousin et al., 1992; Garruti and Ricquier, 1992; Guerra

et al., 1998; Lean et al., 1986; Oberkofler et al., 1997;

Xue et al., 2007). Identifying the mechanisms that stimu-

late the development and/or function of human BAT could,

therefore, provide new therapeutic avenues to reduce

obesity and its associated diseases.

Brown fat cells are characterized by densely packed mi-

tochondria that contain uncoupling protein-1 (UCP1) in

their inner mitochondrial membrane. UCP1, almost exclu-

sive to brown fat cells, is a proton transporter that allows

protons to leak across the mitochondrial inner membrane,

thereby dissipating the electrochemical gradient normally

used for ATP synthesis (reviewed by Klingenberg [1999]).

The thermogenic capacity of brown fat cells, in which over

50% of cellular respiration is uncoupled from ATP synthe-

sis, is unique among mammalian cell types (Nedergaard

et al., 1977; Prusiner et al., 1968; Reed and Fain, 1968).

Brown fat cells also depend upon an extensive vascular

bed and a high degree of sympathetic innervation to pro-

duce and distribute heat. Cold, sensed in the central ner-

vous system, causes sympathetic nerves to release cate-

cholamines, which, through the b-adrenergic receptors,

increase cyclic AMP (cAMP) levels in brown fat cells

(reviewed by Cannon and Nedergaard [2004]). cAMP is a

critical second messenger in the function of brown fat,

stimulating the levels of key thermogenic factors such as

PGC-1a, type 2 deiodinase (Dio2), and UCP1. Chronic

adrenergic stimulation can also cause a proliferation of

brown adipose preadipocytes and the emergence of

pockets of brown fat cells in white fat depots (Bronnikov

et al., 1992; Cannon and Nedergaard, 2004; Ghorbani

and Himms-Hagen, 1997; Himms-Hagen et al., 2000;

Nedergaard et al., 1994).

As noted above, a small number of brown adipocytes

and detectable levels of UCP1 mRNA are found in white

fat of adult humans (Garruti and Ricquier, 1992; Oberkofler

et al., 1997). Indeed, BAT and oxidative activity can be

increased by chronic cold exposure in humans (Huttunen

et al., 1981). A reemergence of BAT is also observed inadult

humans with pheochromocytoma, where neuroendocrine
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tumors cause excessive catecholamine secretion (Ricqu-

ier et al., 1982). Experiments in rodents have also demon-

strated that chronic cold exposure or b3-adrenergic stim-

ulation induces the expression of UCP1 in classic white fat

depots (Himms-Hagen et al., 2000). Interestingly, particu-

lar mouse strains have more brown adipose cells in their

white fat depots, which correlates with a lower susceptibil-

ity to obesity and diabetes (Guerra et al., 1998). Moreover,

ectopic deposits of BAT in mouse skeletal muscle protect

against diet-induced obesity (Almind et al., 2007).

The extent to which BAT functions in the regulation of

energy balance has been well studied in rodents. Over-

feeding activates BAT thermogenesis through the stimula-

tion of sympathetic nerves (Cannon and Nedergaard,

2004; Lupien et al., 1985; Rothwell and Stock, 1979). In-

creased UCP1 expression in mouse fat promotes energy

expenditure, reduces adiposity, and protects animals

from diet-induced and genetic forms of obesity (Ceder-

berg et al., 2001; Ghorbani et al., 1997; Ghorbani and

Himms-Hagen, 1997; Guerra et al., 1998; Kopecky et al.,

1995, 1996; Tsukiyama-Kohara et al., 2001). Furthermore,

specific ablation of brown fat through expression of a

toxigene leads to reduced whole-body energy expendi-

ture and increased obesity (Hamann et al., 1996; Lowell

et al., 1993).

The developmental origin of fat, either brown or white,

has not been fully elucidated; however, much is known

about the process of adipogenic differentiation from prea-

dipocytes. Extensive studies in cultured cell and mouse

models have revealed the central role of PPARg in the dif-

ferentiation of both brown and white adipose cells (Barak

et al., 1999; Kubota et al., 1999; Nedergaard et al., 2005;

Rosen et al., 1999, 2002; Tontonoz et al., 1994). Thus,

PPARg is apparently not the primary determinant of

whether a fat cell assumes a brown versus white pheno-

type. In fact, brown and white preadipocytes appear to

be fully ‘‘committed’’ at that stage since fibroblastic cells

cultured from brown depots differentiate as brown fat cells

whereas those from white fat tissue differentiate as white

adipocytes (Klaus, 1997; Klaus et al., 1995; Kozak and

Kozak, 1994). The cold-induced emergence of brown

adipocytes in WAT and the replacement of BAT with

WAT in newborn humans and obese rodents do suggest

some degree of plasticity, at least at the tissue level. How-

ever, whether mature adipocytes can ‘‘interconvert’’ or

whether separate pools of white and brown precursors

mediate ‘‘transdifferentiation’’ of these tissues has not

been resolved.

The influence of brown fat on energy balance has thus

motivated strong interest in finding a dominant regulator

of brown fat cell determination. To date, a master regula-

tor of brown fat has not been found, in terms of a single,

tissue-selective factor that can positively regulate the en-

tire program of brown fat in a cell-autonomous manner

and is required for the brown fat cell phenotype. Several

transcription-related factors have, however, been shown

to influence the brown fat cellular phenotype. Notably, the

transcriptional coactivator PGC-1a is highly expressed in

brown fat compared to white fat and can activate the
adaptive thermogenic gene program when expressed in

white fat cells (Puigserver et al., 1998; Tiraby et al., 2003).

However, genetic experiments in cultured brown fat cells

and mice have clearly indicated that PGC-1a, while critical

for cAMP-dependent thermogenic aspects of the brown

fat program, does not give cells their essential brown fat

identity (Lin et al., 2004; Uldry et al., 2006).

In addition to PGC-1a, other factors have been shown

to selectively influence the function of brown versus white

fat. FOXC2, when expressed by transgenesis in WAT,

induces many features of BAT tissue (Cederberg et al.,

2001). However, FOXC2 is not expressed preferentially

in BAT versus WAT, and its role in this interconversion

between tissues is probably linked to its stimulation of ad-

renergic signaling when it is overexpressed in vivo (Dahle

et al., 2002; Gronning et al., 2006). A cell-autonomous role

for FOXC2 in white-to-brown fat cell conversion has not

been shown. Other factors, such as Rb (retinoblastoma),

p107, and RIP140 have been shown to suppress the

brown fat phenotype in white fat cells or tissue (Christian

et al., 2005; Hansen et al., 2004; Leonardsson et al.,

2004; Powelka et al., 2006; Scime et al., 2005). Quantita-

tive increases in the levels of Rb, p107, or RIP140 have

not, however, been demonstrated to preferentially favor

the differentiation of white fat adipocytes. These data sug-

gest that while each of these factors may participate to

various degrees in the formation and/or function of brown

fat cells, none of them is likely to be the central factor that

determines an adipocyte to specifically commit to a brown

adipose fate.

Using global expression analysis of murine transcrip-

tional components, we found a very small number of fac-

tors that are selectively expressed in brown versus white

fat cells. One of these was PRDM16, a 140 kDa PR

(PRD1-BF1-RIZ1 homologous)-domain-containing pro-

tein that was first identified at a chromosomal breakpoint

in myeloid leukemia (Nishikata et al., 2003). We show here

that PRDM16 activates a broad program of brown fat

differentiation when expressed in cultured white fat prea-

dipocytes or in white fat depots in vivo. Uncoupled respi-

ration accounts for the majority of the very high oxygen

consumption of PRDM16-expressing cells, a classic hall-

mark of brown fat. Furthermore, shRNA-mediated knock-

down of PRDM16 in bona fide brown fat preadipocytes

allows normal differentiation into fat cells but results in a

total loss of the brown fat character. Our experiments

thus reveal a dominant regulatory function for PRDM16

in the brown fat lineage.

RESULTS

PRDM16 Is Expressed Selectively in Brown

Adipocytes

With the goal of identifying transcriptional components

that regulate the development and function of brown adi-

pocytes, we performed a global expression screen of all

genes known to be involved in transcription and those

having a molecular signature suggestive of transcriptional

function. White and brown fat tissue RNA samples from
Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc. 39
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Figure 1. PRDM16 Is Expressed Selec-

tively in Brown Fat Cells

(A) Real-time PCR analysis of PRDM16 mRNA

expression in BAT relative to WAT, and its ex-

pression in the adipocyte fraction (Adip.) com-

pared to the stromal-vascular fraction (SV) of

BAT (n = 6). In this and all other figures, error

bars represent ±SD unless otherwise indi-

cated.

(B) PRDM16 mRNA expression in adipocytes

from immortalized BAT cell lines (BAT1 and

BAT2) and three WAT cell lines (3T3-F442A,

3T3-L1, and C3H-10T1/2) (n = 3–5 samples

per cell line).

(C) PRDM16 mRNA levels during the differenti-

ation of immortalized BAT cell lines (n = 3 for

each of two separate cell lines).

(D) Northern blot analysis of PRDM16 mRNA

and control 36B4 mRNA in adult mouse

tissues.

(E) Expression of PRDM16, UCP1, PGC-1a,

and Adiponectin in BAT after cold exposure

(4�C) of mice for 4 hr (n = 5 mice per group).

rt = room temperature. *p < 0.05; **p < 0.01.
C57BL/6 mice (n = 5) at 10–12 weeks of age were exam-

ined by RT-PCR using primer sets corresponding to all

transcription-related mouse genes (Gray et al., 2004).

Genes differentially regulated in these tissues were then

assayed for their expression in cultured white and brown

fat cells from established cell lines. Three genes, Lhx8,

Zic1, and PRDM16, ultimately met the criteria of being

preferentially expressed in brown versus white fat and

having elevated (>5-fold) mRNA expression levels in im-

mortalized brown fat cells (Uldry et al., 2006) compared

to any of three immortalized white fat cell lines (3T3-L1,

3T3-F442A, and C3H-10T1/2) (data not shown). As de-

scribed in detail below, ectopic expression demonstrated

a function for PRDM16 in stimulating the brown fat pheno-

type.

Quantitative analyses of PRDM16 expression at the

mRNA level showed a 15-fold enrichment in BAT relative

to WAT (n = 6) (Figure 1A). Fractionation of BAT showed

that PRDM16 was mainly expressed in mature brown
40 Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc.
adipocytes as compared to the stromal-vascular fraction

that contains preadipocytes and other cell types (Fig-

ure 1A). Importantly, PRDM16 was selectively expressed

in adipocytes from two immortalized brown fat cell lines

(Uldry et al., 2006) as compared to its expression in white

fat cells from 3T3-F442A, 3T3-L1, and C3H-10T1/2 fibro-

blasts (Figure 1B). Moreover, PRDM16 mRNA expression

increased 20-fold during the differentiation of brown fat

cells in culture (Figure 1C). Northern blot analysis indi-

cated that PRDM16 was expressed at its highest levels

in BAT and was virtually undetectable in WAT (Figure 1D).

PRDM16 transcripts were also detected in heart, lung,

kidney, and brain. Acute cold exposure of mice (4�C for

4 hr) activated the thermogenic program of BAT without

any significant regulation of PRDM16 mRNA expression

(p = 0.13) (Figure 1E). Similarly, PRDM16 expression was

not affected by cAMP treatment of cultured cells (data not

shown). These results suggest that PRDM16 expression in

brown fat is linked to determination or differentiation, but
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Figure 2. PRDM16 Expression Induces the Gene Program of Brown Fat Cells

Oil red O staining ([A], left) of mature adipocytes (day 6) from PPARg-deficient cells expressing retroviral PPARg2 and either retroviral PRDM16

or vector control (ctl). These adipocyte cultures were analyzed by real-time PCR for their expression of differentiation markers common to

WAT and BAT (A), brown fat-selective genes (as indicated) (B), brown fat thermogenic genes (UCP1, type 2 deiodinase [Dio2], and PGC-1a) with

and without cAMP treatment (C), mitochondrial components (as indicated) (D), and white fat-selective markers (Psat1, Serpin3ak, and Resistin)

(E). (n = 3.) *p < 0.05; **p < 0.01.
not to adaptive thermogenesis. Collectively, these data

identify PRDM16 as a gene that is very selectively ex-

pressed in brown versus white adipocytes but is not en-

tirely specific to brown fat tissue.

PRDM16 Drives the Molecular Phenotype

of Brown Fat Cells

To study its role in brown fat cells, we first expressed

PRDM16 in cells with no preadipose (white or brown) char-

acter whatsoever, using fibroblasts genetically deficient in

PPARg (Rosen et al., 2002). A retroviral vector expressing

PRDM16 or control vector was introduced together with

a PPARg2-expressing retroviral vector into subconfluent

fibroblasts and selected for stable viral integration. Cells

transduced with retroviral PRDM16 expressed mRNA

levels that were 4- to 6-fold higher than its endogenous

expression in cultured brown fat cells. These cell cultures

were grown to confluence and stimulated to undergo

adipogenic differentiation driven by the ectopic PPARg2.

At day 6 of differentiation, cultures expressing PPARg2

were composed mainly of adipocytes whether or not they

also expressed PRDM16; ectopic PRDM16 appeared to

neither promote nor inhibit cellular differentiation per se

(Figure 2A). At the molecular level, expression of genes
common to both white and brown fat lineages was either

not affected (PPARg and Adiponectin) or moderately ele-

vated (aP2) by PRDM16 expression (Figure 2A).

To analyze the molecular phenotype of mature fat cells

from PRDM16-expressing cultures in detail, we first per-

formed global, unbiased expression analyses to develop

a more complete set of brown versus white fat-selective

genes. To this end, brown and white fat tissues from three

adult C57BL/6 mice were expression profiled using Affy-

metrix microarrays. The mRNA levels for the 40 most

highly enriched genes in both brown and white fat tissue

were analyzed by qPCR in samples from three indepen-

dent mice to validate the microarray data. These genes

were then assayed for their expression in mature fat cells

from three white (3T3-L1, 3T3-F442A, and C3H-10T1/2)

and two brown fat cell lines. Altogether, we identified 19

BAT-selective and 9 WAT-selective genes whose expres-

sion correlated completely (by all pairwise comparisons)

with the BAT or WAT adipocyte phenotype in tissue and

in cultured cells (see Table S1 in the Supplemental Data

available with this article online).

Strikingly, most brown fat-selective mRNAs were spe-

cifically induced in adipocytes from PRDM16-express-

ing cells. For example, Elovl3 (previously called Cig30), a
Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc. 41
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very long-chain fatty acid elongase expressed in brown

but not white fat and implicated in brown fat hyperplasia

(Tvrdik et al., 1997; Westerberg et al., 2006), was induced

6-fold by PRDM16 expression (Figure 2B). Cidea, a gene

predominantly expressed in brown fat, where it is thought

to regulate UCP1 activity (Zhou et al., 2003), was induced

430-fold by PRDM16 (Figure 2B). PRDM16 also elevated

expression of PPARa, a brown fat-selective gene and an

important regulator of fatty acid oxidation (Barbera et al.,

2001; Braissant et al., 1996), 5-fold (Figure 2B). In addition,

several genes not previously known to be expressed

selectively in brown versus white adipocytes, such as oto-

petrin 1 (Otop1), epithelial-like antigen-1 (Eva1), and neu-

rotrophic tyrosine kinase receptor type 3 (Ntrk3), were sig-

nificantly increased by PRDM16-expression (Figure 2B).

Moreover, PRDM16-transduced cells expressed several

of the important thermogenic genes in a cAMP-dependent

manner, similar to bona fide brown fat cells in culture and

in vivo. The mRNA levels of UCP1, Dio2, and PGC-1a were

increased by PRDM16 in unstimulated fat cells and in-

duced to very high levels by PRDM16 in response to cAMP

(Figure 2C). UCP1, for instance, was elevated 20-fold

by cAMP in PRDM16-expressing cells, compared to

only a 3-fold increase in control cells. PRDM16 expression

also elevated the mRNA levels for many genes of mito-

chondrial oxidative phosphorylation that are known to be

enriched in brown fat cells and tissue, such as cytochrome

c (Cyc), Cox4i1, and Cox5b (Figure 2D). In particular,

Cox8b, a highly brown fat-selective mitochondrial gene

(see Table S1), was expressed at 134-fold higher levels

in PRDM16-expressing cultures compared to control

adipocyte cultures.

Interestingly, the mRNA levels of several genes that are

preferentially expressed in white relative to brown fat cells

were significantly repressed by PRDM16 expression, in-

cluding Psat1, Serpin3ak, and Resistin (Figure 2E). In par-

ticular, Resistin, which encodes a WAT-secreted protein

in mice that promotes insulin resistance (Steppan et al.,

2001), was reduced by 60% at the mRNA level as a result

of PRDM16 expression. Altogether, 20 of 28 (71%) of the

brown/white fat-selective genes that we identified in an

unbiased global expression analysis were regulated in a

brown fat-specific manner by PRDM16 (Table S1). A ro-

bust regulation of brown fat-selective genes by PRDM16

was observed in other cellular models, including 3T3-

F442A white preadipocytes and immortalized brown pre-

adipocytes (Figures S1A and S1B). In particular, PRDM16

increased the mRNA levels of UCP1 and Cidea by almost

200-fold and repressed Resistin expression by 70% in

3T3-F442A adipocytes (Figure S1A). These data demon-

strate that the action of PRDM16 in activating brown fat

gene expression is not unique to PPARg�/� fibroblasts

and also is not dependent on exogenous PPARg expres-

sion. Moreover, PRDM16 dramatically induced the ex-

pression of the key brown fat genes UCP1 and PGC-1a,

but not Cidea or mitochondrial components in the genetic

absence of PPARg (Figure S1C). These results show that

certain genes characteristic of the brown fat gene pro-

gram do not absolutely require the fat cell environment
42 Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc.
and/or PPARg function. Altogether, these data strongly

suggest a role for PRDM16 as a positive regulator of the

brown fat gene program.

An important question is whether PRDM16 can stimu-

late the transdifferentiation of mature white fat cells into

brown fat. This was addressed by analyzing the effect of

PRDM16 expression in stromal-vascular cells and mature

adipocytes from the same white fat tissue. When PRDM16

was expressed in stromal-vascular cells prior to differenti-

ation, this factor efficiently activated the brown fat gene

program in differentiated cultures, including an induction

of UCP1 mRNA by more than 200-fold (Figure S2A). How-

ever, expression of PRDM16 using adenovirus in mature

white fat cells failed to elicit a significant induction of brown

fat marker genes despite robust expression of PRDM16

(Figure S2B). Importantly, PRDM16 protein expressed by

adenovirus was able to induce BAT-related genes when

introduced into cells before their differentiation (data not

shown). Altogether, the induction of brown fat genes in

adipocytes from PRDM16-expressing primary stromal-

vascular cells and lack of any effect in mature cells from

the same tissue strongly suggest that PRDM16 function

is required before and/or during adipogenic differentiation

to promote brown fat cell character.

PRDM16 Stimulates Mitochondrial Biogenesis

and Uncoupled Cellular Respiration

A defining feature of brown fat cells is their abundant

mitochondria and associated high rates of cellular respira-

tion, particularly uncoupled respiration. To assay the

functional consequences of PRDM16 action in fat cells,

PPARg�/� cells transduced with PRDM16 or vector con-

trol together with PPARg2 were induced to differentiate

into adipocytes. Representative electron micrographs of

control and PRDM16-expressing cells before and after

adipogenic differentiation showed a very significant eleva-

tion of mitochondrial density by PRDM16 only in differen-

tiated fat cells (Figure 3A). Quantitative analysis of these

data revealed a 2-fold increased mitochondrial volume

in PRDM16-expressing adipocytes compared to control

cultures (p < 0.001) (Figure 3B). Oxygen consumption

was measured in adipocytes using an oxygen-sensitive

electrode to calculate relative rates of respiration. These

experiments revealed a remarkable effect of PRDM16 on

the levels of both total and uncoupled cellular respiration.

Specifically, adipocytes from PRDM16-expressing cells

displayed a 40% increase in total respiration and a 2-fold

increase in uncoupled respiration relative to control cul-

tures (n = 4) (Figure 3C). After 12 hr treatment with cAMP,

PRDM16-expressing adipocytes displayed a 70% in-

crease in total respiration relative to control cells, and

>60% of their respiration was uncoupled from ATP pro-

duction (Figure 3D). PRDM16 expression, therefore,

induced mitochondrial biogenesis and uncoupled respira-

tion to levels characteristic of brown fat cells (Uldry et al.,

2006) but not other mammalian cell types. These results

demonstrate that PRDM16 expression enables fat cells

to develop the respiratory activity characteristic of brown

adipocytes.
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Figure 3. PRDM16 Stimulates Mitochon-

drial Biogenesis and Uncoupled Respira-

tion

(A) Representative transmission electron

micrographs of fibroblasts and mature adipo-

cytes (day 6) from PPARg-deficient cells

expressing retroviral PPARg2 and either retro-

viral PRDM16 or vector control (ctl). L = lipid

droplet.

(B) Comparison of mitochondrial volume den-

sities from cells depicted in (A) (n > 20 micro-

graphs per group).

(C and D) Total mitochondrial oxygen con-

sumption and uncoupled respiration in mature

adipocytes expressing PRDM16 or control

vector under basal conditions (n = 4) (C) or after

stimulation with a cAMP analog for 12 hr (n = 4)

(D). *p < 0.05; **p < 0.01.
In Vivo Differentiation of PRDM16-Expressing

Fibroblasts into ‘‘Brown’’ Fat

Since the environmental cues that stimulate adipocyte

differentiation in cell culture and in vivo are presumably

different, we sought a more physiological setting in which

to study PRDM16 action. To this end, we utilized trans-

plantation studies in mice. Specifically, 107 PPARg�/� fi-

broblasts expressing PPARg2 and PRDM16 or PPARg2

alone were implanted subcutaneously into nude mice. As

shown originally by Green and Kehinde (1979), implanted

fibroblasts were able to differentiate into fat tissue.

PRDM16- and vector-expressing cells formed equiva-

lently sized ectopic fat pads after 6–8 weeks (data not

shown). Histological analysis showed no obvious differ-

ences in the morphology and appearance of the tissues

derived from control or PRDM16-expressing cells, with

both fat pads containing largely unilocular adipocytes
(Figure 4A). Importantly, fat pads from PRDM16-express-

ing cells displayed an average 16-fold increase in PRDM16

mRNA compared to control fat pads (Figure 4B), well

matched to the �15-fold enrichment in brown relative to

white fat tissue (Figure 1A). Immunohistochemical analy-

sis showed that only fat tissue from PRDM16-expressing

cells and endogenous BAT contained easily detectable

levels of the brown fat-specific Cidea protein (brown stain-

ing in Figure 4A). PRDM16 did not influence the tissue

expression of the general adipogenic markers PPARg or

Adiponectin (Figure 4C). However, the brown fat-selective

genes UCP1, Cidea, PGC-1a, Elovl3, and PPARa were all

induced by at least 5-fold in fat pads from PRDM16-trans-

duced cells relative to control fat pads (Figure 4D). Inter-

estingly, PRDM16 also induced the expression of the

endogenous PRDM16 gene (PRDM16-30UTR), suggesting

that PRDM16 regulates itself in a positive feedback loop
Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc. 43
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Figure 4. Differentiation of PRDM16-

Expressing Cells into Brown Fat In Vivo

(A) Immunohistochemistry for Cidea protein

expression in endogenous WAT and BAT and

in ectopic subcutaneous fat pads formed

from fibroblasts expressing PPARg2 and either

vector control (ctl) or PRDM16.

(B–D) Eight weeks after transplantation, ec-

topic fat pads were analyzed by real-time

PCR for expression of PRDM16 (B); differentia-

tion markers common to white and brown fat

(PPARg and Adiponectin) (C); and brown fat-

selective genes (UCP1, Cidea, PGC-1a, Elovl3,

PPARa, and endogenous PRDM16 (-30UTR))

and the white fat-selective marker Resistin

(D). (n = 10 mice per cell line; error bars in

[B]–[D] represent ±SEM.) *p < 0.05; **p < 0.01.
(Figure 4D). Of note, the mRNA levels of Resistin, a white

fat-selective gene, were reduced by 90% in PRDM16-

expressing tissue relative to control tissue (Figure 4D).

These data demonstrate that a physiological level of

PRDM16 expression induces the gene expression pro-

gram, but not the multilocular appearance, of BAT. This

is as expected since the morphology of BAT is not cell

autonomous and depends on a high degree of sympa-

thetic innervation (Minokoshi et al., 1986; Rothwell and

Stock, 1984), which presumably could not take place

during the time frame of these experiments.

PRDM16 Functions as a Coregulator to Activate

PGC-1a and PGC-1b

Since PGC-1a has a prominent role as a regulator of brown

fat thermogenic function and its mRNA is induced by the

action of PRDM16, we studied PRDM16 function on this

gene promoter. The expression of PRDM16 enhanced the

activity of the �2 kb PGC-1a promoter, but only in the

presence of differentiation-inducing cocktail (Figure 5A).

Additional experiments showed that activation of the

PGC-1a promoter by PRDM16 required a cAMP stimulus,

either by adding IBMX or forskolin (data not shown).

PRDM16 similarly activated the �4 kb upstream region

of the UCP1 gene in forskolin-treated cells (data not

shown). Since PGC-1a is known to potently regulate its

own expression in a feedback loop (Handschin et al.,

2003), we asked whether PGC-1a is required for the action
44 Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc.
of PRDM16 on the PGC-1a promoter. In PGC-1a-deficient

brown preadipocytes, the PGC-1a reporter gene was only

activated by PRDM16 after re-expression of PGC-1a (Fig-

ure 5B). These data reveal a requirement for PGC-1a pro-

tein in the activation of the �2 kb PGC-1a promoter by

PRDM16.

Previous studies showed that cells lacking PGC-1a and

PGC-1b lose brown fat character (Uldry et al., 2006), so we

investigated whether PRDM16 could enhance the tran-

scriptional activity of PGC-1a and PGC-1b. To do this,

PGC-1a, PGC-1b, PRC, SRC1, and VP16 were expressed

as fusion proteins covalently bound to the Gal4 DNA-bind-

ing domain (DBD) together with either PRDM16 or control

vector. The transcriptional activity of Gal4 fusions was

assayed using a reporter gene driven by the Gal1-UAS

sequence. In these assays, PRDM16 robustly activated

both PGC-1a and PGC-1b but did not activate the related

coactivator protein PRC (Figure 5C) or the unrelated coac-

tivators SRC1 and VP16 (data not shown).

We then assessed whether the enhancement of PGC-

1a and PGC-1b activity by PRDM16 was linked to a phys-

ical interaction between these proteins. Using coimmuno-

precipitation assays in brown adipocytes, endogenous

PGC-1a and PGC-1b proteins were detected in a complex

with PRDM16 protein (Figure 5D). The PRDM16-PGC-1a

interaction appeared to be direct since purified GST-

PGC-1a fusion protein, but not GST alone, bound to in

vitro-translated PRDM16 (Figure 5E). Domain-mapping
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Figure 5. PRDM16 Activates PGC-1a and PGC-1b via Direct Binding

(A) Transcriptional activity of the �2 kb region of PGC-1a in response to PRDM16 or control vector expression in brown fat preadipocytes (n = 3).

(B) PGC-1a promoter activity in response to PRDM16 or vector expression in PGC-1a-deficient cells (n = 3).

(C) Transcriptional activity of Gal4 DNA-binding domain (DBD) fusion proteins containing PGC-1a, PGC-1b, or PRC in response to PRDM16 or vector

expression (n = 3).

(D) FLAG-PRDM16 and its associated proteins were immunoprecipitated from brown fat preadipocytes and analyzed by western blot to detect

PGC-1a and PGC-1b.

(E) GST fusion proteins containing different regions of PGC-1a were incubated with 35S-labeled PRDM16 protein. ERRa was used to demonstrate

binding to the 1–190 and 200–350 regions of PGC-1a.

(F) PGC-1a and PRDM16 were coprecipitated from COS-7 cells transfected with HA-PGC-1a and either wild-type (WT) or R998Q mutant PRDM16.

The input was 2% of the cell lysate used for immunoprecipitation.

(G) WT or R998Q mutant PRDM16 was expressed with PPARg2 in PPARg�/� fibroblasts. After differentiation into adipocytes (day 6), real-time PCR

was used to measure the mRNA expression of brown fat-selective genes (as indicated) and Resistin, a white fat-selective gene (n = 3). *p < 0.05;

**p < 0.01.
experiments identified two regions in PGC-1a (250–400

and 590–797) that interact with PRDM16. Correct folding

of PGC-1a fragments 1–190 and 200–350 was verified

by their binding to another PGC-1a-interacting protein,

ERRa. Taken together, these data strongly suggest that
PRDM16 directs at least some aspects of brown fat deter-

mination and function through a direct interaction with the

PGC-1a and PGC-1b transcriptional coactivator proteins.

PRDM16 contains two distinct DNA-binding domains

that consist of seven C2H2 repeats at the N terminus and
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Figure 6. Knockdown of PRDM16 in

Brown Fat Cells Ablates Their Brown

Fat Characteristics

(A) PRDM16 mRNA levels in immortalized

brown fat cells expressing shRNA targeted to

PRDM16 or a scrambled (SCR) control shRNA

before (day 0) and after their differentiation (day

5) into adipocytes.

(B) Gene expression in brown fat cells (day 5)

expressing sh-PRDM16 or sh-SCR including

markers common to white and brown fat cells

(aP2, PPARg, and Adiponectin) and Resistin,

a white fat-selective gene.

(C) The differentiation-linked mRNA induction

(day 0 to day 5) of brown fat-selective genes

(as indicated) in sh-PRDM16- and sh-SCR-

expressing cells.

(D–F) Gene expression in adipocytes (day 6)

from sh-PRDM16- and sh-SCR-expressing

primary brown preadipocytes including mRNA

levels of PRDM16 (D); Adiponectin, PPARg,

and Resistin (E); and brown fat-selective genes

(as indicated) (F).

(G) Western blot analysis of UCP1 protein

levels in primary brown fat cells expressing

sh-PRDM16 or sh-SCR control with and with-

out cAMP treatment.

(H) mRNA levels of various mitochondrial com-

ponents in adipocytes from sh-PRDM16- and

sh-SCR-expressing primary brown preadipo-

cytes. (n = 3–5.) *p < 0.05; **p < 0.01.
three repeats at the C terminus. Since previous work has

shown that PRDM16 binds directly to DNA (Nishikata

et al., 2003), we asked whether PRDM16 requires direct

sequence-specific DNA binding to induce the brown fat

gene program. Based on the structural characteristics of

zinc-finger motifs (Pavletich and Pabo, 1991), we created

a series of mutants with point mutations in the conserved

amino acids typically required for DNA binding. Among

them, we found that an R998Q mutant allele completely

loses DNA binding to the known consensus sequences

of PRDM16 (Figure S3A). Importantly, the R998Q mu-

tant allele retains the ability to interact with PGC-1a

(Figure 5F). We next examined whether the R998Q mutant

protein was able to activate the brown fat gene program

when expressed in PPARg�/� cells together with PPARg2.

Importantly, adipocytes from these cultures expressed

equivalent levels of PRDM16 mRNA (Figure S3B). Strik-

ingly, a number of brown fat-selective genes including

Elovl3, Cidea, PGC-1a, and UCP1 were induced to similar

extents by R998Q mutant and wild-type PRDM16 (Fig-

ure 5G). Moreover, Resistin, a WAT-selective gene, was

markedly repressed by both wild-type PRDM16 and the

R998Q allele (Figure 5G). By contrast, wild-type
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PRDM16, but not the R998Q allele, induced the expres-

sion of Otop1 and Ntrk3 (Figure 5G). Taken together, these

results indicate that PRDM16 does not require sequence-

specific DNA binding to activate many, but not all, brown

fat genes and suggest that it functions in BAT determina-

tion at least in part through direct interaction with the

PGC-1s and other proteins.

Knockdown of PRDM16 Ablates the Genetic

Program of Brown Fat

The requirement for PRDM16 in determining the brown fat

phenotype was investigated using siRNA technology to

specifically knock down PRDM16 in the brown fat cell

lineage. To this end, a siRNA sequence was identified

that efficiently depleted PRDM16 mRNA and protein

levels in murine cells (data not shown). Expression of the

corresponding shRNA by retrovirus efficiently reduced

PRDM16 expression in brown fat preadipocytes and

completely blocked the differentiation-linked induction of

PRDM16 mRNA in these cells (Figure 6A). Importantly, de-

pletion of PRDM16 in immortalized brown fat cells did not

suppress morphological differentiation, nor did it impact

the expression of adipocyte markers that are not specific
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for brown fat, such as aP2, Adiponectin, or PPARg (Fig-

ure 6B). Strikingly, however, PRDM16 depletion resulted

in a broad loss of brown fat gene expression, including

severely reduced levels of UCP1, Cidea, PGC-1a, Elovl3,

and PPARa relative to cells infected with a sh-scramble

(SCR) control (Figure 6C). Notably, UCP1 and Cidea,

whose expression defines the identity of brown fat, were

both decreased by 95% in PRDM16-depleted cells (Fig-

ure 6C). Furthermore, some white fat-selective mRNAs,

such as Resistin, were increased in PRDM16-depleted

cells (Figure 6B).

Loss-of-function experiments were also performed in

primary brown preadipocytes immediately after their isola-

tion. Transduction of primary brown preadipocytes with

sh-PRDM16 caused an �70% reduction of PRDM16

mRNA at day 6 of differentiation (Figure 6D). Once again,

this caused no visible decrease in morphological differen-

tiation (data not shown) and no difference in the expression

of mRNAs common to white and brown fat cells, such as

Adiponectin and PPARg (Figure 6E). As in the immortalized

cells, the expression of most, if not all, brown fat-selective

genes, including UCP1, Cidea, Elovl3, and PGC-1a, was

significantly decreased in PRDM16-depleted primary

brown fat cells (Figure 6F). Specifically, loss of PRDM16

caused an 85% reduction in UCP1 and Cidea mRNAs

and a 60% decrease in the expression of PGC-1a. Further-

more, PRDM16-depleted brown fat cells exhibited a close

to complete loss of UCP1 protein expression that was

readily apparent in control cultures after cAMP stimulation

(Figure 6G). Importantly, expression of a broad set of mito-

chondrial genes that are vital to brown fat function was sig-

nificantly reduced by knockdown of PRDM16 in immortal-

ized and primary brown fat cells (Figure 6H). This included

a 70% reduction in the mRNA levels of Cox8b, a highly

brown fat-selective mitochondrial gene (Figure 6H). The ef-

fect of PRDM16 depletion on the expression of the brown

versus white fat-selective gene set in both cellular models

is summarized in Table S1. These data establish a near ab-

solute requirement for PRDM16 in determining the identity

of brown fat cells. PRDM16, however, is not required for

aspects of adipogenesis that are common to brown and

white fat cells.

Transgenic PRDM16 Expression in WAT Stimulates

the Formation of Brown Fat Cells

PRDM16 can drive the transcriptional program of BAT

when expressed in white fat progenitors before differenti-

ation; however, its ability to stimulate BAT cell determina-

tion in a purely in vivo context remained unclear. To

address this, we sought to express PRDM16 in WAT by

transgenesis. Since there are no known fat-selective pro-

moters that express well in preadipose cells, we utilized

the aP2 promoter/enhancer, which is active during fat cell

differentiation (Graves et al., 1992; Ross et al., 1990). We

developed several transgenic mouse strains, and the

two highest expressing strains (aP2-T1 and aP2-T2) had

levels of PRDM16 protein in epididymal WAT that were

equivalent to or somewhat less than its expression in wild-

type interscapular BAT (Figure 7A). PRDM16 is expressed
in wild-type BAT and in one transgenic WAT sample as

a closely spaced doublet of 150–170 kDa; the molecular

basis for this doublet is not known. Notably, transgenic

PRDM16 expression induced a broad set of BAT-selective

genes in epididymal white fat depots from 3- to 4-month

old aP2-PRDM16 (T1) mice (n = 7), as compared to non-

transgenic littermates (n = 10) (Figure 7B). For example,

the mRNA levels of UCP1, Cidea, Cpt1b, and Otop1

were increased by 50-, 20-, 10-, and 20-fold, respectively,

in WAT from aP2-PRDM16 mice relative to nontransgenic

mice. PGC-1a, Cox7a1, and Ntrk3 were also significantly

elevated by transgenic expression of PRDM16. Further-

more, expression of Resistin, a white fat-selective gene,

was slightly decreased (though not statistically signifi-

cantly) in aP2-PRDM16 transgenic fat. These data demon-

strate a robust induction of the genetic program of brown

fat by PRDM16 in a classic white fat depot.

WAT is poorly innervated, at least compared to BAT,

and the action of PRDM16 as a determinant of BAT in

cellular models was enhanced by cAMP treatment, which

mimics sympathetic (adrenergic) input. We therefore

treated wild-type and aP2-PRDM16 mice (aP2-T1 and

aP2-T2) with CL 316243, a selective b3-adrenergic ago-

nist, for 6 days. In wild-type WAT, this treatment increased

PRDM16 mRNA expression by 4-fold (data not shown),

coincident with the emergence of small clusters of brown

fat cells (see below) and increased expression of many

brown fat-selective genes (Figure 7B). However, the in-

duction of these BAT-related genes in WAT was greatly

enhanced in both strains of aP2-PRDM16 mice (Fig-

ure 7B). In particular, UCP1, PGC-1a, and Cidea were ex-

pressed at 5-fold, 4-fold, and 9-fold higher levels, respec-

tively, in the WAT of CL 316243-treated aP2-PRDM16

mice relative to nontransgenic mice (T1, n = 8; T2, n = 6)

(Figure 7B). Importantly, BAT-selective genes were ex-

pressed in WAT of aP2-PRDM16 animals at a significant

fraction of their levels in similarly treated bona fide inter-

scapular BAT. For example, PGC-1a, UCP1, and Cidea

were expressed in transgenic WAT at about 80%, 15%,

and 30% of wild-type BAT levels (data not shown).

The transgenic mice were also investigated for the

morphological emergence of brown fat cells. As shown

in Figure 7C and as demonstrated before (Ghorbani and

Himms-Hagen, 1997; Himms-Hagen et al., 1994), WAT

from CL 316243-treated control animals showed few cells

with a multilocular appearance that also stained positively

for UCP1. In striking contrast, WAT depots from aP2-

PRDM16 mice had a genuine chimeric appearance with

abundant clusters of multilocular BAT-type cells that

stained intensely for UCP1 protein (Figure 7C). Impor-

tantly, all of the multilocular cells in the WAT of aP2-

PRDM16 transgenic mice expressed UCP1 protein, and

all UCP1-expressing cells had a multilocular appearance,

suggesting that these cells are bona fide brown fat cells.

Approximately 10%–20% of all cells in epididymal WAT

depots of aP2-PRDM16 transgenic mice were BAT-type

fat cells, while equivalent depots of the control animals

had less than 1% BAT-type cells. These data show that

PRDM16, when expressed at or below authentic BAT
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Figure 7. Transgenic Expression of PRDM16 in WAT Depots Induces the Formation of BAT Cells

(A) The fat-specific aP2 promoter/enhancer was used to express PRDM16 in WAT depots. Western blot analysis for PRDM16 protein expression in

wild-type (wt) BAT, wt WAT, and WAT from two strains of aP2-PRDM16 transgenic mice (aP2-T1 and aP2-T2) is shown. Pol II protein expression was

used to control for loading.

(B) Expression of BAT-selective genes (as indicated) and Resistin in WAT from wild-type (wt) and aP2-T1 transgenic mice. This gene set was also

measured in WAT from wt, aP2-T1, and aP2-T2 mice that had been treated with CL 316243 (n = 7–10 mice per group; error bars indicate ±SEM).

(C) Immunohistochemistry for UCP1 protein (brown staining) in sections of WAT from wild-type and transgenic mice (aP2-T1 and aP2-T2) after

treatment with CL 316243. *p < 0.05; **p < 0.01.
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levels, can control the determination of brown adipose

cells in a classic white fat depot.

DISCUSSION

A detailed understanding of the brown fat cell and its

unique ability to dissipate chemical energy may offer new

treatment avenues for obesity and associated diseases.

In small mammals that retain distinct brown fat pads as

adults, the heat produced by brown fat is an important

contributor to overall energy balance (Cannon and Neder-

gaard, 2004; Cederberg et al., 2001; Ghorbani et al., 1997;

Ghorbani and Himms-Hagen, 1997; Guerra et al., 1998;

Kopecky et al., 1995, 1996; Lowell et al., 1993; Rothwell

and Stock, 1979; Tsukiyama-Kohara et al., 2001). Although

adult humans do not have distinct brown fat depots, they

do appear to have small numbers of brown adipocytes in

their white fat depots, and these brown cells proliferate

under certain circumstances, such as chronic cold expo-

sure (Garruti and Ricquier, 1992; Huttunen et al., 1981;

Lean et al., 1986; Oberkofler et al., 1997). Thus, the molec-

ular mechanisms that regulate brown fat cell determination

are of significant and escalating biomedical interest.

A great deal is known about the metabolism and func-

tion of mature white and brown adipocytes; however,

the developmental origins of these cell lineages have re-

mained elusive. The majority of brown fat develops prena-

tally and is mature and fully functional at birth, when ther-

mogenic requirements are particularly high (Nedergaard

et al., 1986). Most WAT, on the other hand, develops post-

natally in response to relative nutritional excess. It has

been presumed that white and brown fat cells are closely

related to each other developmentally because they ex-

press many common enzymes and both require PPARg

for their differentiation. Interestingly, recent fate-mapping

experiments in mice show that interscapular brown fat,

but not white fat, arises from a population of Engrailed-

1-expressing cells in the dermomyotome, a structure that

also gives rise to muscle and skin (Atit et al., 2006). These

data suggests that the two types of fat cells may have

quite different origins.

PRDM16 is expressed very selectively in brown fat cells

versus white fat cells and stimulates nearly all of the key

characteristics of authentic brown fat cells when ex-

pressed at or near physiological levels. This includes en-

hanced mitochondrial gene expression and mitochondrial

density, increased expression of PGC-1a and UCP1, and

a very large increase in the uncoupled fraction of respira-

tion. Importantly, the expression of UCP1 and PGC-1a in-

duced by PRDM16 is further enhanced by cAMP, as it is in

authentic brown fat cells. At a global scale, a majority of

genes that are selectively expressed in brown adipocytes

are positively regulated by PRDM16 (Table S1). Con-

versely, PRDM16 expression suppressed the mRNA levels

of several genes that are selectively enriched in white fat

such as Resistin and Serpin3ak. Notably, PRDM16 expres-

sion does not influence the expression of those genes that

are common to both brown and white fat cells. Interest-

ingly, several BAT genes including UCP1 and PGC-1a
were induced by PRDM16 in the genetic absence of

PPARg (and therefore fat cell differentiation). Importantly,

PRDM16 is shown here to activate a brown fat gene pro-

gram in many different kinds of adipocytes as long as it is

introduced before cell differentiation. These results sug-

gest that the mechanism by which PRDM16 determines

brown fat fate is at least partly separable from the adipo-

genic differentiation pathway common to white and brown

fat cells (Figure S4). Why PRDM16 is not effective when

expressed after adipogenic differentiation in these experi-

ments is not known at present.

An effective shRNA directed against PRDM16 allowed

us to ask about the requirement for this factor in the ex-

pression of brown fat-selective genes in established brown

fat cell lines and in primary brown fat cells. The reduction of

PRDM16 levels has no effect on morphological differentia-

tion of these cells but causes an almost complete suppres-

sion of brown fat-selective genes, including UCP1 mRNA

and protein, while leaving intact the expression of genes

common to both white and brown fat cells such as PPARg

and aP2. Clearly, PRDM16 is required for the expression of

the brown fat phenotype in isolated cells. Examination of

this feature will be important in mice ablated for PRDM16

in vivo.

A key question is how PRDM16 stimulates the develop-

ment of a brown fat gene program. This protein is anno-

tated in databases as a potential transcription factor

because it possesses two zinc fingers. However, while

zinc-finger proteins are often DNA-binding factors, it is

also clear that zinc-finger domains can mediate protein-

protein interactions (Leon and Roth, 2000). We have con-

firmed that PRDM16 does indeed bind to DNA in a se-

quence-specific manner but that this is not required for

its regulation of many BAT-selective genes. On the other

hand, it is clear that PRDM16 activates the expression

as well as the transcriptional function of both PGC-1a

and PGC-1b, apparently through direct physical binding.

While functions of PRDM16 in other aspects of brown fat

regulation are by no means ruled out, the PRDM16-stimu-

lated activity of PGC-1a and PGC-1b may explain many

actions of PRDM16 in brown fat determination (Figure S4).

As shown previously, PGC-1a can activate many of the

genes that comprise the thermogenic program of brown

fat, such as UCP1 and Dio2 (Puigserver et al., 1998). On

the other hand, PRDM16 is shown here to have certain ac-

tions that are not consistent with a function solely through

modulation of PGC-1a expression and/or function. In fact,

genetic studies have shown conclusively that mice lacking

PGC-1a retain identifiable, though abnormal, brown fat

tissue (Lin et al., 2004). Similarly, isolated brown fat cells

lacking PGC-1a still express several genes characteristic

of brown fat (Uldry et al., 2006). However, it is notable

that shRNA-mediated suppression of PGC-1b in cells

lacking PGC-1a caused a further loss of the brown fat

phenotype (Uldry et al., 2006). Thus, it is possible that

PRDM16 functions as a brown fat determination factor

at least in part by robustly stimulating PGC-1a and PGC-

1b simultaneously. PRDM16 may also increase PGC-1 co-

activator function in other tissues where it is expressed,
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such as heart, brain, and kidney, with important physio-

logical consequences.

How PRDM16 achieves this activation of the PGC-1s

remains to be determined. The PR domain present in

a subclass of zinc-finger proteins, including PRDM16, is

highly homologous to the SET domain, which is noted

for its histone lysine methyltransferase activity and diverse

functions in regulating chromatin structure (Huang et al.,

1998; Rea et al., 2000). Other PR-domain-containing fac-

tors such as RIZ1 (retinoblastoma-interacting zinc finger-

1) and Meisitz have intrinsic histone methyltransferase ac-

tivity, while PRISM (PR domain in smooth muscle) binds

and recruits a histone methyltransferase (Davis et al.,

2006; Hayashi et al., 2005; Kim et al., 2003). Interestingly,

another methyltransferase protein, PRMT1, has been

shown to bind to PGC-1a and activate it via arginine meth-

ylation (Teyssier et al., 2005). Whether the PR domain of

PRDM16 has enzymatic function and whether this activity

is required for stimulating brown fat gene expression re-

main to be established.

Components in addition to the PGC-1s that can influ-

ence the brown fat phenotype have been identified, such

as FOXC2, Rb, p107, and RIP140 (Cederberg et al., 2001;

Christian et al., 2005; Hansen et al., 2004; Leonardsson

et al., 2004; Powelka et al., 2006; Scime et al., 2005). It

will be important to investigate their genetic interactions

with PRDM16. The absolute requirement for PRDM16 in

the formation of brown adipocytes suggests that the

mechanism of action of these other factors may involve

PRDM16. Whether they act upstream or downstream of

PRDM16 in the differentiation program of brown fat

remains to be elucidated.

The replacement of BAT with WAT in humans and in

obese mice and rats has shown that these tissues can

interconvert to some extent in vivo. Similarly, prolonged

exposure to cold or b-adrenergic agonists induces the ap-

pearance of brown fat cells within classic white fat depots

(Himms-Hagen et al., 2000). This so-called transdifferen-

tiation of fat by cold exposure or b-adrenergic agonists

could be due to the acquisition of brown fat cell features

in preformed white fat cells and/or to the differentiation

of resident committed brown preadipocytes into mature

brown fat cells. While this important issue is not entirely

settled, the latter scenario is supported by the observation

that preadipocytes contained in fat tissues are committed

to the brown or white fate (Klaus, 1997; Klaus et al., 1994,

1995; Kozak and Kozak, 1994). In light of these data, it

is intriguing that PRDM16 expression did not convert ma-

ture white adipocytes into brown-type cells. However, the

white fat cell precursors present in whole fat tissues could

be converted to a brown fat-like phenotype efficiently

when PRDM16 was introduced before differentiation.

Furthermore, the emergence of UCP1-positive brown fat

cells in the white fat depots of transgenic mice strongly

suggests that PRDM16 directs the differentiation of resi-

dent white fat progenitors into the BAT fate. The small

clusters of BAT cells in wild-type WAT most likely arise

from BAT progenitors that are present in small numbers

within white depots. The stimulation of PRDM16 action
50 Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc.
by b-adrenergic signaling is not surprising given the

known importance of this cascade in BAT development

(Cannon and Nedergaard, 2004). The identity of the mech-

anism by which cAMP signaling modulates the activity of

PRDM16 is an important outstanding question from this

study.

Taken together, inducing PRDM16 expression in prea-

dipocytes could constitute a strategy to raise whole-

body energy expenditure and prevent excess fat accumu-

lation. This can be done, in theory, by using drugs that

raise PRDM16 levels in fat cell precursors or by engineer-

ing preadipocytes ex vivo and then reinjecting them, anal-

ogous to the transplantation experiments performed here.

More experimentation will be necessary to determine how

this brown fat determination factor might be used to fight

obesity in the context of a whole animal.

EXPERIMENTAL PROCEDURES

Plasmids and Viral Vectors

Full-length coding sequence of mouse PRDM16 (GeneID 70673) was

amplified from brown fat RNA by PCR and cloned into the XhoI/EcoRI

sites of pMSCV-puro retroviral vector (Stratagene) in frame with an

N-terminal FLAG tag. PRDM16 cDNA was also cloned into the XhoI/

EcoRI sites of pcDNA3.1 (Invitrogen) for expression in mammalian

cells. DNA-binding mutants of PRDM16, including the R998Q allele,

were created by site-directed mutagenesis (QuikChange, Stratagene).

Adenoviral vectors for PRDM16 expression were made in pAdTrack-

CMV using the AdEasy system as described elsewhere (He et al.,

1998). Adenoviral vectors for PGC-1a and GFP (Yoon et al., 2001)

and Gal4 fusion plasmids containing PGC-1b (Lin et al., 2002), PGC-

1a, and SRC-1 (Puigserver et al., 1999) have been described previ-

ously. The siRNA sequence identified for use in PRDM16 depletion

experiments was 50-GAAGAGCGUGAGUACAAAU-30 (Dharmacon).

The corresponding double-stranded DNA sequence was ligated into

pSUPER-Retro (GFP-Neo) (OligoEngine) for retroviral shRNA expres-

sion. This siRNA sequence was able to specifically knock down

PRDM16 protein and mRNA expression by over 75%.

Cell Culture

3T3-L1, C3H-10T1/2, and COS-7 cells were obtained from ATCC.

Immortalized brown fat preadipocytes and PPARg�/� fibroblasts

have been described elsewhere (Rosen et al., 2002; Uldry et al.,

2006). 3T3-F442A cells were from H. Green (Green and Kehinde,

1979). Primary brown fat preadipocytes were obtained from mice by

collagenase digestion as described elsewhere (Tseng et al., 2004). Pri-

mary white fat stromal-vascular and mature fat cells were fractionated

according to published methods (Rodbell, 1964; Soukas et al., 2001).

For retrovirus production, Phoenix packaging cells (Kinsella and

Nolan, 1996) were transfected at 70% confluence by calcium phos-

phate coprecipitation with 10 mg retroviral vectors; viral supernatant

was harvested 48 hr later. For retroviral transduction, cells were incu-

bated overnight with viral supernatant supplemented with 8 mg/ml

polybrene. For adenoviral infection of mature adipocytes, the fat cell

fraction (see above) from epididymal WAT of 10- to 12-week-old

C57BL/6 mice (n = 4) was incubated with PRDM16 (GFP) or GFP-

expressing adenovirus (moi = 100) in 0.5 ml Eppendorf tubes for 2 hr

in 10% FBS/DMEM. The medium was then replaced, and cells were

maintained in 5% CO2 at 37�C for an additional 48 hr prior to RNA

extraction and expression analysis. GFP expressed from the adenovi-

ral vectors was used to monitor infection efficiency, which was

typically over 50%.

Adipocyte differentiation was induced by treating confluent cells

for 48 hr in medium containing 10% FBS, 0.5 mM isobutylmethylxan-

thine, 125 nM indomethacin, 1 mM dexamethasone, 850 nM insulin,
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1 nM T3, 1 mM rosiglitazone (Cayman Chemical). Two days after induc-

tion, cells were switched to maintenance medium containing 10%

FBS, 850 nM insulin, 1 nM T3, 1 mM rosiglitazone. To stimulate thermo-

genesis, cells were incubated with 0.5 mM dibutyryl cyclic AMP for

4 hr. All chemicals for cell culture were obtained from Sigma unless

otherwise indicated.

Global Expression Screen of Transcription-Related Factors

RNA was isolated from brown adipose tissue (BAT) and epididymal

white fat tissue (WAT) of five adult male C57BL/6 mice at 10–12 weeks

of age. First-strand cDNA was prepared from RNA samples using

oligo(dT) and SuperScript III (Invitrogen). cDNAs were normalized for

equal loading by real-time PCR using TBP and HPRT mRNA expres-

sion levels. Thirty cycles of PCR (94�C 3 30 s, 62�C 3 45 s, 68�C 3

45 s) with primer sets described in Gray et al. (2004) were performed

in 50 ml reactions using Platinum Taq (Invitrogen). PCR products

(average of 500 bp) were separated on 96-well 2% agarose E-gels

(Invitrogen) containing ethidium bromide, imaged, and analyzed using

E-Editor software (Invitrogen).

Reporter Gene Assays

Reporter gene assays were performed in COS-7 cells or brown fat pre-

adipocytes. Briefly, the�2 kb PGC-1a reporter gene (Handschin et al.,

2003) or the UCP1�4 kb reporter (a gift from L. Kozak) was transiently

transfected with PRDM16 and/or PGC-1a expression plasmids in 12-

well plates using FuGENE6 (Roche). Forty-eight hours after transfec-

tion, cells were harvested and reporter gene activity was measured

using the Dual-Luciferase Reporter Assay System (Promega). Forsko-

lin (100 mM) or differentiation cocktail was added for 4 or 24 hr, respec-

tively, prior to harvesting cells. Gal4-based reporter gene assays were

performed in COS-7 cells by cotransfecting Gal4-DBD or Gal4-DBD

fusion constructs with PRDM16 or control expression constructs. Fire-

fly luciferase reporter gene measurements were normalized to Renilla

luciferase activity.

Binding Studies and Electrophoretic Mobility Shift Assays

To study protein-protein interactions, brown fat preadipocytes were

transduced with retroviral PRDM16 or control vector and induced to

differentiate into adipocytes. At day 6 of differentiation, whole-cell

extracts were incubated with FLAG-M2 agarose (Sigma) overnight at

4�C. Immunoprecipitates were washed three times with washing

buffer (20 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 2 mM EDTA,

0.1% NP-40, 0.1 mM PMSF), resolved by SDS-PAGE, transferred to

PVDF membrane (Millipore), and blotted with anti-PGC-1a (Puigserver

et al., 1999) and PGC-1b (Lin et al., 2005) antibodies. For GST immu-

noaffinity assays, GST-PGC-1a fusion proteins immobilized to gluta-

thione Sepharose beads were purified as previously described (Wall-

berg et al., 2003). 35S-labeled PRDM16 or ERRa proteins were

in vitro translated using the TNT Coupled Transcription/Translation

System (Promega). To examine the binding of PGC-1a with the

R998Q mutant allele of PRDM16, COS-7 cells were cotransfected

with HA-PGC-1a and FLAG-PRDM16 (wild-type and R998Q). Whole-

cell extracts were immunoprecipitated with HA antibody (Roche), re-

solved by SDS-PAGE, and blotted with anti-FLAG antibody to detect

PRDM16. For electrophoretic mobility shift assays, an oligonucleotide

probe containing the PRDM16 binding site (50-GATCCGACAAGATAA

GATAAGGATCTATAAGAAGATGAGGTATG-30 ) (Nishikata et al., 2003)

was end labeled with [g-32P]ATP and incubated (5 fmol) with in vitro-

translated wild-type and R998Q mutant PRDM16 in binding buffer

(10 mM Tris-HCl [pH 7.5], 50mM NaCl, 1mM MgCl2, 0.5mM EDTA,

4% glycerol, 0.5mM DTT, 0.5 mg poly(dI-dC)-poly(dI-dC)). Fifty or

five hundred femtomoles of unlabeled probe was added to the binding

reaction for competition assays. DNA-protein complexes were sepa-

rated by electrophoresis on a 4% PAGE gel and then dried and

exposed to X-ray film.
Oxygen Consumption Assays

PPARg�/� fibroblasts transduced with retroviral PPARg2 and either

PRDM16 or vector control were grown to confluence and induced to

differentiate into adipocytes. At day 6 of differentiation, oxygen con-

sumption was measured in fat cells as described previously (St-Pierre

et al., 2003). For cyclic-AMP-induced respiration assays, fully differen-

tiated fat cells were incubated with 0.5 mM dibutyryl cyclic AMP for

12 hr before measuring oxygen consumption.

Electron Microscopy

Electron microscopy was performed as described previously (St-Pierre

et al., 2003) on PPARg�/� cells expressing PPARg2 and PRDM16 or

vector control before and after their differentiation into adipocytes

(day 6). To calculate the mitochondrial volume density, a grid was laid

on randomly selected micrographs (n > 20), and the number of points

falling on mitochondria was expressed as a fraction of those landing

on cell area.

Real-Time PCR Analysis and Western Blotting

Total RNA from cultured cells was isolated using QIAGEN RNeasy mini

columns according to the manufacturer’s instructions. Tissue RNA

samples were prepared by the TRIzol method (Invitrogen). Northern

blot analysis was performed as described previously (Maniatis et al.,

1982). For real-time PCR analysis, RNA was reverse transcribed using

the IScript cDNA synthesis kit (Bio-Rad) and used in quantitative PCR

reactions containing SYBR green fluorescent dye (ABI). Relative

expression of mRNAs was determined after normalization with TBP

levels using the DD-Ct method. qPCR was performed using an ABI

9300 PCR machine. As a point of reference, the Ct values for both

PRDM16 and TBP mRNA expression in BAT were typically 24–26. Stu-

dent’s t test was used for comparisons and to obtain statistics. Primers

used for real-time PCR are shown in Table S2. For western blot anal-

ysis, cells or tissues were lysed in RIPA buffer (0.5% NP-40, 0.1%

sodium deoxycholate, 150 mM NaCl, 50 mM Tris-HCl [pH 7.5]).

Lysates were resolved by SDS-PAGE; transferred to PVDF membrane

(Millipore); and probed with anti-UCP1 (Chemicon), anti-FLAG M2

(Sigma), anti-PRDM16 (rabbit polyclonal), and anti-Pol II (Santa Cruz

Biotechnology).

Animals

All animal experiments were performed according to procedures

approved by the Dana-Farber Cancer Institute’s Institutional Animal

Care and Use Committee. Mice were maintained on a standard rodent

chow diet with 12 hr light and dark cycles. For acute cold-exposure

studies, BAT was obtained from five 3- to 4-week-old male C57BL/6

mice that were housed at 4�C for 4 hr. For transgenic mice, the com-

plete PRDM16 cDNA was cloned 30 to the 5.4 kb aP2 promoter/

enhancer, and the human growth hormone polyadenylation site was

inserted 30 to the cDNA. FVB mouse oocytes were injected with this

construct by the Dana-Farber Cancer Institute Core Facility. CL

316243 (Sigma) at 0.5 mg/kg was injected intraperitoneally into mice

daily for 6 days. Mice were euthanized for analysis of tissues 4 hr fol-

lowing the final injection on day 6. Transgenic and nontransgenic con-

trol littermates used for all experiments were 4- to 6-month-old males.

For cell transplantation, 107 fibroblasts transduced with retroviral

PPARg2 and either PRDM16 or vector control were suspended in

200 ml of 10% FBS/DMEM and implanted subcutaneously just above

the sternum of nude (Nu/Nu) mice (Taconic) (n = 10 mice/stable cell

line) using an insulin syringe attached to a 28 gauge needle. This in-

jection site was chosen due to the almost complete absence of endog-

enous subcutaneous fat. For immunohistochemistry, paraffin-embed-

ded sections were incubated with anti-Cidea (Chemicon) or anti-UCP1

(Abcam) antibodies for 30 min at room temperature, followed by detec-

tion using the ABC Vectastain Elite kit (Vector Labs) according to the

manufacturer’s instructions.
Cell Metabolism 6, 38–54, July 2007 ª2007 Elsevier Inc. 51



Cell Metabolism

PRDM16 Regulates Brown Fat Cell Fate
Transcriptional Profiling

Total RNA was isolated from the epididymal WAT and interscapular

BAT of three male C57BL/6 mice at 10–12 weeks of age. Array hybrid-

ization and scanning were performed by the Dana-Farber Cancer Insti-

tute Core Facility using Affymetrix GeneChip Mouse Genome 430

2.0 arrays according to established methods (Lockhart et al., 1996).

The array data were normalized using the DNA-Chip Analyzer (dChip)

software (Li and Wong, 2001). The statistical significance of differ-

ences in gene expression was assessed by unpaired t test (p < 0.05).

Supplemental Data

Supplemental Data include two tables and four figures and can be

found with this article online at http://www.cellmetabolism.org/cgi/

content/full/6/1/38/DC1/.
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