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1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,8]. Let D = (V, E) denote a digraph (directed graph)
with vertex set V = V(D), arcset E = E(D), and order n. Loops are permitted but multiple arcs are not. Awalk fromx toy ina
digraph D is a sequence of vertices x, vq, ..., v, y € V(D) and a sequence of arcs (x, v1), (vq, v2), ..., (v, y) € E(D), where
the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where x = y. A cycle is a closed walk from

x to y with distinct vertices except for x = y. The length of a walk W is the number of arcs in W. The notation x i> yisusedto
indicate that there exists a walk from x to y of length k. The distance from vertex x to vertex y in D is the length of the shortest
walk from x to y, and it is denoted by dp(x, y). For a vertex x and aset Y C V(D), let dp(x, Y) = min{dp(x,y) : y € Y}. For
x € Y,wedefinedp(x,Y) = 0.

A digraph D is called strongly connected if for each pair of vertices x and y in V (D), there exists a walk from x to y. For a
strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in D,
and it is denoted by (D). If D is a trivial digraph of order 1, I(D) is undefined. A strongly connected digraph D is primitive if
I(D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly
k from each vertex x to each vertex y. The smallest such k is called the exponent of D, and it is denoted by exp(D). For a
positive integer m where 1 < m < n, we define the m-competition index of a primitive digraph D, it is denoted by k,(D), as
the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices vq, v,, ..., vy, such

that x i) viand y —k> vifor1 <i<minD.
Cho et al. [6] introduced the concept of the m-step competition graph of a digraph. Kim [9] introduced the m-competition
index as a generalization of the competition index presented in [8]. Akelbek and Kirkland [1,2] introduced the scrambling
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index of a primitive digraph D, denoted by k(D). In the case of primitive digraphs, the definitions of the scrambling index
and competition index are identical. Furthermore, we have k(D) = k;(D). Huang and Lie [7] studied the scrambling
index of primitive digraphs. Lie and Huang [10] introduced the concept of the generalized scrambling index of a primitive
digraph D, denoted by k(D, A, u). This concept is a generalization of m-competition index of a primitive digraph D since
k(D, 2, m) = k(D).

On the basis of definitions of the m-competition index and the exponent of D of order n, we can write k,,(D) < exp(D),
where m is a positive integer such that 1 < m < n. Furthermore, we have k,(D) = exp(D) and

k(D) = ki(D) < k2(D) < -+ < kn(D) = exp(D). (1)
This is a generalization of the scrambling index and exponent. Several studies such as [11,15] have investigated exponents
and their generalization. Some studies such as [9,14] have also investigated generalized competition indices.

Definition 1. Let k be a positive integer and D be a primitive digraph of order n. Let m be a positive integer such that
1 < m < n. For a pair of vertices x and y in V (D), we define the following notation:

NT(D*: x) = Iv e V(D) : x = vinD} ,

NT(D*:x,y) =NTD*: x) NNT (D : y),

km(D : x,y) = min {t : IN*(D* : x, y)| > m for each a such thata > t},

k(D : x) = max {k,(D:x,y) :y € V(D)}.

Then, from the definitions of k,,(D), k(D : x), and k(D : X, y), we have
km(D :x,y) < kn(D : x) < kn(D),
and
kn(D) = max{k,(D : x) :x € V(D)}
max{k,(D : x,y) : x,y € V(D)}.

A primitive digraph D is called symmetric if and only if the adjacency matrix of D is symmetric. If D is symmetric and

(x,¥) € E(D), then we have (y, x) € E(D), which is represented by x <> y. When D is symmetric, the notation x & yis
used to indicate that there exists a walk of length k from x to y.

Let A, denote the set of all symmetric primitive digraphs of order n. If D € A, the s-cycle denotes the induced subdigraph
by distinct vertices vq, vy, ..., vs such that vy <> v, < --- < vg <> v1. If D € A, there exists an s-cycle in D where s is
odd since D is primitive. Let s(D) denote the smallest odd number s such that there exists an s-cycle in D. In this study, we
investigate k., (D) where D € A,.

Definition 2. For positive integers n and m such that 1 < m < n, we define the following notation:

A, ={D € A, :s(D) =s},
Inm = {km(D) : D € Ay},
Irsl,m = {kn(D) : D € A;}

Definition 3. For positive integers n and m such that 1 < m < n, we define P, ; = (V, E) where
V={vi, vy, ..., v},
E={vieo vl <i<n—1}U{v;, < vnsq1}).

Then, we have s(P, s) = s. The notation [a, b]° indicates the set of integers in [a, b].

Proposition 4 (Shao [13]).If D € A, where n > 4, then we have
Inn=1[1,2n— 2]°\ S,
where S = {k : kis an odd integer and n < k < 2n — 3}. Further, exp(D) = 2n — 2 if and only if D is isomorphic to Py, ;.

Proposition 5 (Liu et al. [12]). Let n be a positive integer where n > 4. Then, we have
Usss I3, = [2,2n — 41°\ S,

where S’ = {k : kis an odd integerandn — 2 < k < 2n — 5}.



H.K. Kim, S.H. Lee / Discrete Applied Mathematics 160 (2012) 1583-1590 1585

Proposition 6 (Chen and Liu [4]). Let n be a positive integer where n > 2. Then, we have

s+17°
I;’1=|:55,n— 5 ]

fors=1,

1,
where &5 = { % for s =1 (mod 2) and s > 3.
These results give us the upper and lower bounds on I, , or I; ;. In this paper, we extend these bounds to I m.

2. Main results

Proposition 7 (Chen and Liu [4], Cho and Kim [5]). If D € A, then we have

D k. (D
=[] -[+2]

Theorem 8. If D € A, where n > 4, then we have
In,l = [1, n— 1]0.

Furthermore, k1(D) = n — 1ifand only if D is isomorphic to Py 1.

Proof. By Propositions 4 and 7, we have I, ; = [1, n — 1]°. By Proposition 4, there is no symmetric primitive digraph whose
exponent is 2n — 3. Further, by Proposition 7, we have k{(P; 1) = n — 1. Therefore, we have k;(D) = n — 1 if and only if D
is isomorphic to Py ;. This establishes the result. O

Example 9. Let D; and D, be digraphs in A, such that k,(D;) = k,(D,). By Proposition 7, we have k(D) = k{(D;). However,
it is possible that k(D) # kn(D;) when 1 < m < n. For example, consider two digraphs D; and D, whose adjacency
matrices are respectively given by

01 0 0O 01 0 0 O
1 01 0O 1 01 0 1
01 0 1 1}, 01 0 10
0 01 10 00 1 10
0 01 0 1 01 0 0 O

Then, we have D € A, and D, € A,. Further, ks(D,) = ks(D,) = 6 and k{(D;) = k;(D,) = 3. However,
3 = ka(D1) # k(D) =4,
4 = k3(D1) # k3(D2) =5,
5= ](4(D1) 75 I(4(D2) = 6.

Lemma 10. Suppose D € A; where s > 3. Let C be an s-cycle and m be a positive integer such that m < s. For each pair of
vertices x and y in V(C), we have

k(D : X )<S_]+LmJ
m(D X, y) = 3 2
Proof. Lett = 51 + | 2] and t' = | £ |. We have that C? is an s-cycle where each vertex in V(C?) has a loop. Consider the
primitive digraph C.
Case 1. t is even. )
Then, t = 2t’. We also have [N ((Cz)t : x) | > 2t' + 1 since C? is an s-cycle in which each vertex has a loop. Then, we

have
INT(Ct 2 x, )| = INT(CE: )|+ INF(CE 2 y)| — [V(O)|
= INT(C* 1 x)| 4+ INT(C* 1 y)| — [V(O)|
QU+ +2t'+1)—s
2t+2—s>m.

%

Case 2. t is odd.
Then, t = 2t' + 1. We also have [N (C! : x)| = 2 for each vertex x € V(C). Suppose NT(C! : x) = {uy, vy}. Then,

Nt x) = Nt ((Cz)t/ : ux) UNT ((Cz)ﬂ : vx) )
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As aresult, we have |N+(C2““ : x)| > 2t’ + 2 since C? is an s-cycle in which each vertex has a loop. Therefore,
INF(C' :x,9) = INT(C" : )|+ INT(C" 1 y)| = [V(O)]
INF(@ 0]+ INFE )| = [V(©O)]

> ' +2)+ @2t +2) —s
=2t+2—s>m.
In all cases, we have
INT(C" : x,y)| = m. (2)

Then, INT(D" : x,y)| > [NT(C" : x, y)| > m. Therefore,

ko (D )<t s—l_’_{mJ
k Xy <t=—— — .
m y ) 5

This establishes the result. O

Lemma 11. Suppose D € A} wheres > 3. Let C be an s-cycle and m be a positive integer such that s < m < n. For each pair of
vertices x and y in V (C), we have

kn(D:x,y) <m-—1.

Proof. By (2), we have k;(C : x,y) <s— 1and
V(C) CNT(C T ixy) CNT(D i x, ).

Further, for each positive integer i such thati > s, V(C) ¢ N*(D' : x,y) and INtT(D' : x,y)| > s+ {i—(s— 1} =i+ 1.
Therefore,

kn(D:x,y) <m-—1.
This establishes the result. O

Lemma 12. Let D € A; where s > 3. For a positive integer m such that m < n, we have

k(D) > —1—{"_'"J
km (D) > s 5 )

Proof. Suppose k = kn(D) < s — 1 — | "™ |. By Proposition 6 and (1), we have k = k(D) > k;(D) > *5'. Let C be an
s-cycle in D. Without loss of generality, we can assume that

V(C) = {vo, v1, V2, ..., Us_1},
E(C) ={vi< vig1: 1 <i<s—2}U{vs_1 < vg}.

Lett =s—1— k. Then,wehave0 <t < 5t sincet =s—1—k > | %5 | > 0. Further,

k.
N+(C . UO,US,]) = {vt,...,U%,U%,Ungl,...,'Us,],t}.

For a nonnegative integer a such that 0 < a < t, we claim v, ¢ Nt(D¥ : vy, vs_1). Otherwise, there are two closed walks
in D, expressed as

k a k a 1
Vg <—> Vg <—> Vg and vs_1 <—> Vg <—> Vg <—> Vs_1,

whose lengths are k + a and k + a + 1, respectively. Sincek+a+1=s—1—t+a+ 1 < s, we have a closed walk of odd
length less than s. This is a contradiction to s(D) = s. Therefore, v, & N*t(D* : vy, vs_1) for each a such thata < t.

Similarly, for a nonnegative integer a such thats — 1 —t < a < s — 1, we claim v, & N*(D* : vy, vs_1). Otherwise, there
are two closed walks in D, expressed as

k s—a—1 k s—a—1 1
Us_1 <—> Vg <—> Us_q and vg <—> vy <—> vs_1 <—> vp,

whose lengths are k +s — a — 1and k 4+ s — q, respectively. Sincek +s—a=k+ (s—a—1)+1<k+t+1 =5 we
have a closed walk of odd length less than s. This is a contradiction to s(D) = s. Therefore, v, & NT(D¥ : vy, vs_;) for each a
suchthats—1—-t<a<s-—1.

Then, we have

{0, s Vet U vy ooy 0521} C V(D) — N (D¥ : g, v5-1).
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Sincet =s—1—k < % we have {vg, ..., vi_1} N {vs_¢, ..., vs_1} = ¢. Further,

Hvo, -+ s v} U{vse, oo us g} = 2t
Then,

2t < [V(D)| — INT(D* : g, v5_1)|.
Since INT(D¥ : v, vs_1)| > m,

2t < [V(D)| — INT(D* : vo, vs_1)| <n —m,

n—m
t < .
=|"5"]

Sincet = s — 1 — k, we have

st—l—Ln_mJ.
2

This is a contradiction. Therefore, the result is established. O

Lemmas 10 and 11 give us the upper bounds on [}, ,, and I, ;. Further, (1) and Lemma 12 give us the lower bounds on I}, ,
and I m.

Definition 13. Let n, s, and m be positive integers such that m, s < n and s is odd. We denote

n S+]+{mJ whenm < s
K(n,s,m) = 2 21 =5

n+m-s—1, whenm > s,

and

, whenm < n—s,

n—m

k(n,s, m) =
s—l—t J whenm >n —s.

Theorem 14. Let D € A;. For a positive integer m such that m < n, we have
k(n5 Sa m) S km(D) S I<(na Sa m)
Further, ky, (D) = K(n, s, m) only if D is isomorphic to Py s, and kp, (Pn,1) = K(n, 1, m).

Proof. Let C be an s-cycle.
Case 1.s = 1.
There exists a vertex z having a loop. Then, IN* (D’ : z)| > t + 1 for each t such that 1 < t < n. For each pair of vertices

x and y, we have two directed walks expressed as x "1 7 and y L ) Therefore, we have
kn(D:x,y) <n—14+m—1=K(n,s, m),

and k(D : x,y) > k(n, s, m) since k(n, 1, m) = 0. Therefore, we have
k(n,s, m) < k(D) < K(n,s, m).

Suppose k(D) = n+m — 2 = K(n, 1, m). Let V(C) = {z}, where z has a loop. Consider a pair of vertices x and y such
that k(D : x,y) = k(D). Ifdp(x,z) < n—1anddp(y,z) < n— 1,thenz € NT(D"2 : x,y). Further, if there exists
another vertex z’ having a loop, thenz € N*(D"2 : x,y) orz/ € N*(D"2 : x, y). Furthermore, ifz € N*(D"2 : x,y) or
7z e NY(D"? : x,y), then we have k(D : x,y) < (n —2) + (m — 1) < n+ m — 2, which is a contradiction. Therefore,
there exists a vertex x such that dp(x, z) = n — 1 and z is the only vertex having a loop in D. Then, D is isomorphic to Py 1.

Conversely, if D is isomorphic to P, 1, then we have

kn(D) =n+m—2=K(n, 1, m).

Case 2.s > 3.
For each pair of vertices x and y, there exist directed walks such that

x-S ¥ eV() and y =y e V().
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Ifm < s, then we have k, (D : ¥, y") < 5! + | 2 | by Lemma 10. Therefore, we have

kn(@D:x,y) <n—s+knD:x.,y)
S_

+ 1+L"’J K(n,'s, m)
n—s+ —— — | =K(n,s, m).
2 2

If m > s, then we have k,,(D : X', y') < m — 1 by Lemma 11. Therefore, we have

IA

km(D:x,y) <n—s+knD:x,y)
<n—-s+m-—1=K(n,s, m).

By Proposition 6 and (1), we have
s—1
km(D) > k1(D) > —5

By Lemma 12, we have

k(D) > —1—{”_mJ
km (D) > s 5 )

Sincem > n —sifand only if 51 <s—1— | %>™ |, we have ky(D) > k(n, s, m). Therefore,
k(n,s, m) < k,(D) < K(n,s, m).
Suppose k(D) = K(n, s, m). Consider a pair of vertices x and y such that k(D : x,y) = k(D). If dp(x, V(C)) <n—s

and dp(y, V(C)) < n — s, then there exist vertices ¥’ and y’ in V(C) such that x "' ¥ and y ! ¥, respectively. By
Lemmas 10 and 11, we have

s—1

m
kn(D:X,y)<{ o2 + LEJ , whenm <s,
m—1, whenm > s.

Then, k(D : x,y) < K(n,s, m) — 1, which is a contradiction. Therefore, we have that P, ; is a subdigraph of D. We can also
have k(D) < K(n, s, m) if there is another edge that is not in E (P, ¢), Therefore, D is isomorphic to P, ;. This establishes the
result. O

Corollary 15. If D € A}, then we have

s—1<k;,(D)=exp(D) <2n—s—1.

Corollary 16. Let D € A, and m be a positive integer such that m < n. Then, we have
kn(D) <n+m-—2.
The equality holds if and only if D is isomorphic to Py 1.

Theorem 17. Let n and m be positive integers such that n > 4 and m < n. Then, we have

Lim=[1,m+n—2]°

Proof. By Theorem 8, we have the result form = 1.Suppose 1 < m < n.For a positive integer k suchthat 1 < k < n+m-—2,
we claim thatk € I, p.
Wehaven+m—2eln since km(Pn.1) =n+m-2 by Corollary 16.
We have 1 € I, , since k;;(J,) = 1, where J, is the digraph whose adjacency matrix is n x n all-ones matrix.
Consider the digraph D’ given by
V(D) ={v1, v2, ..., Up—1, Up},
ED)={viwv:1<ij<n—1i#jU{veq < va}.
Then, we have k(D) =2 € I n.
We claim thatk € I, , foreach ksuchthat3 <k <n+4+m — 2.
Case1.2(m—1) <k <n+m-—2.
Consider the symmetric primitive digraph D; given by
V(D1) = {v1,v2, ..., vn},
ED)={vieovg:1<i<k—m+ 1} U{v—mp2 < V—mp2}U{vi o vyt k—m+3 <i<nj}.
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For a pair of positive integers i and j such that 1 < i,j < n, we have k(D1 : v;, vj) < kn(D1 : v1, v2). For each positive
integer [ such that | > k,

NTOE:v1, v2) = {Vkemtas Vkemtts - - - » Vk—2mta)s

N} 2 v1, v2) D {Vkemt2, Viemtts - - - » Vk—2me3)-
Then, we have k;(D1) = kn(D;q : vy, v3) = k. Further, k € I, .

Case 2.k < 2(m — 1) and k is even.
Consider the symmetric primitive digraph D, given by

V(Dy) = {v1,v2, ..., v},

k k )}
E(Dy) = Jvi< v 1<5i< || =1 Ujv< v X +1<i<miUui,| < vi: X +1<i<m
2 2 | 4] 2

U{vi< vy :m+1<i<n}.

For a pair of positive integers i and j such that 1 < i,j < n, we have k(D : v;, vj) < kn(D, : v1, v2). For each positive
integer [ such that | > k,

k—1
N+(D2 (U1, 02) = {2, 03, ..., Unl,
I
N’F(D2 Tv1, v2) D {v1, V2, ..., U, ..., Un}.

Then, we have kp,(D2) = k(D : vq, v3) = k. Further, k € I .
Case 3.k <2(m — 1) and k is odd.
Since m 4+ 1 < n, we can consider the symmetric primitive digraph D5 given by

V(D3) = {v1, v, ..., Un},

k k
E(D3) = {vi<—>vi+1:l§i§LZJ}U{vievi:L2J+2§i§m+l}

k
U3k syl |+2<i<m+1;U{vi< v, m+2<i<n}.
ij"’l 2
For a pair of positive integers i and j such that 1 < i,j < n, we have k(D3 : v;, vj) < kn(D3 : vy, v2). For each positive
integer [ such that [ > k,

k-1

NYD5! i vp, v2) = {v3, a4y ooy Uit
I

NT(D} : vy, v2) D {v2, v3, ..+, Upnpa )

Then, we have ky;(D3) = kn(Ds3 : vy, v2) = k. Further, k € I, .
We have k € I, for each k such that 1 < k < n 4+ m — 2. This establishes the result. O

If 1 < m < n, then there is no gap in I, ,,. However, there is a gap in I, , by Proposition 4. It should be noted that the
condition of m < n is essential for constructing the digraph D3 in Theorem 17.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of scrambling index of a primitive digraph. Kim [9] introduced the
generalized competition index k,, (D) as another generalization of exponent exp(D) and scrambling index k(D) for a primitive
digraph D. In this study, we investigated k(D) for a symmetric primitive digraph D as an extension of the results in [4,13].
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