
Discrete Applied Mathematics 160 (2012) 1583–1590

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Generalized competition indices of symmetric primitive digraphs
Hwa Kyung Kim a,∗, Sang Hoon Lee b

a Department of Mathematics Education, Sangmyung University, Seoul 110-743, South Korea
b Department of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

a r t i c l e i n f o

Article history:
Received 8 February 2011
Received in revised form 22 February 2012
Accepted 3 March 2012
Available online 28 March 2012

Keywords:
Competition index
Generalized competition index
m-competition index
Scrambling index
Symmetric digraph

a b s t r a c t

For a primitive digraph D of order n and a positive integer m such that m ≤ n, the m-
competition index of D is defined as the smallest positive integer k such that for every
pair of vertices x and y, there exist m distinct vertices v1, v2, . . . , vm such that there are
directed walks of length k from x to vi and from y to vi for 1 ≤ i ≤ m in D. In this study, we
investigatem-competition indices of symmetric primitive digraphs and provide the upper
and lower bounds. We also characterize the set of m-competition indices of symmetric
primitive digraphs.

© 2012 Elsevier B.V. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,8]. Let D = (V , E) denote a digraph (directed graph)
with vertex set V = V (D), arc set E = E(D), and order n. Loops are permitted butmultiple arcs are not. Awalk from x to y in a
digraphD is a sequence of vertices x, v1, . . . , vt , y ∈ V (D) and a sequence of arcs (x, v1), (v1, v2), . . . , (vt , y) ∈ E(D), where
the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to ywhere x = y. A cycle is a closedwalk from
x to ywith distinct vertices except for x = y. The length of a walkW is the number of arcs inW . The notation x

k
→ y is used to

indicate that there exists a walk from x to y of length k. The distance from vertex x to vertex y inD is the length of the shortest
walk from x to y, and it is denoted by dD(x, y). For a vertex x and a set Y ⊂ V (D), let dD(x, Y ) = min{dD(x, y) : y ∈ Y }. For
x ∈ Y , we define dD(x, Y ) = 0.

A digraph D is called strongly connected if for each pair of vertices x and y in V (D), there exists a walk from x to y. For a
strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in D,
and it is denoted by l(D). If D is a trivial digraph of order 1, l(D) is undefined. A strongly connected digraph D is primitive if
l(D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly
k from each vertex x to each vertex y. The smallest such k is called the exponent of D, and it is denoted by exp(D). For a
positive integer m where 1 ≤ m ≤ n, we define the m-competition index of a primitive digraph D, it is denoted by km(D), as
the smallest positive integer k such that for every pair of vertices x and y, there existm distinct vertices v1, v2, . . . , vm such
that x

k
−→ vi and y

k
−→ vi for 1 ≤ i ≤ m in D.

Cho et al. [6] introduced the concept of them-step competition graph of a digraph. Kim [9] introduced them-competition
index as a generalization of the competition index presented in [8]. Akelbek and Kirkland [1,2] introduced the scrambling
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index of a primitive digraph D, denoted by k(D). In the case of primitive digraphs, the definitions of the scrambling index
and competition index are identical. Furthermore, we have k(D) = k1(D). Huang and Lie [7] studied the scrambling
index of primitive digraphs. Lie and Huang [10] introduced the concept of the generalized scrambling index of a primitive
digraph D, denoted by k(D, λ, µ). This concept is a generalization of m-competition index of a primitive digraph D since
k(D, 2,m) = km(D).

On the basis of definitions of the m-competition index and the exponent of D of order n, we can write km(D) ≤ exp(D),
wherem is a positive integer such that 1 ≤ m ≤ n. Furthermore, we have kn(D) = exp(D) and

k(D) = k1(D) ≤ k2(D) ≤ · · · ≤ kn(D) = exp(D). (1)

This is a generalization of the scrambling index and exponent. Several studies such as [11,15] have investigated exponents
and their generalization. Some studies such as [9,14] have also investigated generalized competition indices.

Definition 1. Let k be a positive integer and D be a primitive digraph of order n. Let m be a positive integer such that
1 ≤ m ≤ n. For a pair of vertices x and y in V (D), we define the following notation:

N+(Dk
: x) =


v ∈ V (D) : x

k
−→ v in D


,

N+(Dk
: x, y) = N+(Dk

: x) ∩ N+(Dk
: y),

km(D : x, y) = min

t : |N+(Da

: x, y)| ≥ m for each a such that a ≥ t

,

km(D : x) = max {km(D : x, y) : y ∈ V (D)} .

Then, from the definitions of km(D), km(D : x), and km(D : x, y), we have

km(D : x, y) ≤ km(D : x) ≤ km(D),

and

km(D) = max{km(D : x) : x ∈ V (D)}

= max{km(D : x, y) : x, y ∈ V (D)}.

A primitive digraph D is called symmetric if and only if the adjacency matrix of D is symmetric. If D is symmetric and
(x, y) ∈ E(D), then we have (y, x) ∈ E(D), which is represented by x ↔ y. When D is symmetric, the notation x

k
←→ y is

used to indicate that there exists a walk of length k from x to y.
Let An denote the set of all symmetric primitive digraphs of order n. IfD ∈ An, the s-cycle denotes the induced subdigraph

by distinct vertices v1, v2, . . . , vs such that v1 ↔ v2 ↔ · · · ↔ vs ↔ v1. If D ∈ An, there exists an s-cycle in D where s is
odd since D is primitive. Let s(D) denote the smallest odd number s such that there exists an s-cycle in D. In this study, we
investigate km(D) where D ∈ An.

Definition 2. For positive integers n and m such that 1 ≤ m ≤ n, we define the following notation:

As
n = {D ∈ An : s(D) = s},

In,m = {km(D) : D ∈ An},

Isn,m = {km(D) : D ∈ As
n}.

Definition 3. For positive integers n and m such that 1 ≤ m ≤ n, we define Pn,s = (V , E) where

V = {v1, v2, . . . , vn},

E = {vi ↔ vi+1|1 ≤ i ≤ n− 1} ∪ {vn ↔ vn−s+1}.

Then, we have s(Pn,s) = s. The notation [a, b]o indicates the set of integers in [a, b].

Proposition 4 (Shao [13]). If D ∈ An where n ≥ 4, then we have

In,n = [1, 2n− 2]o \ S,

where S = {k : k is an odd integer and n ≤ k ≤ 2n− 3}. Further, exp(D) = 2n− 2 if and only if D is isomorphic to Pn,1.

Proposition 5 (Liu et al. [12]). Let n be a positive integer where n ≥ 4. Then, we have

∪s≥3 Isn,n = [2, 2n− 4]o \ S ′,

where S ′ = {k : k is an odd integer and n− 2 ≤ k ≤ 2n− 5}.
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Proposition 6 (Chen and Liu [4]). Let n be a positive integer where n ≥ 2. Then, we have

Isn,1 =

δs, n−

s+ 1
2

o

,

where δs =


1, for s = 1,
s− 1
2

, for s ≡ 1 (mod 2) and s ≥ 3.

These results give us the upper and lower bounds on In,n or Isn,1. In this paper, we extend these bounds to In,m.

2. Main results

Proposition 7 (Chen and Liu [4], Cho and Kim [5]). If D ∈ An, then we have

k1(D) =


exp(D)

2


=


kn(D)

2


.

Theorem 8. If D ∈ An where n ≥ 4, then we have

In,1 = [1, n− 1]o.

Furthermore, k1(D) = n− 1 if and only if D is isomorphic to Pn,1.

Proof. By Propositions 4 and 7, we have In,1 = [1, n− 1]o. By Proposition 4, there is no symmetric primitive digraph whose
exponent is 2n− 3. Further, by Proposition 7, we have k1(Pn,1) = n− 1. Therefore, we have k1(D) = n− 1 if and only if D
is isomorphic to Pn,1. This establishes the result. �

Example 9. LetD1 andD2 be digraphs in An such that kn(D1) = kn(D2). By Proposition 7,we have k1(D1) = k1(D2). However,
it is possible that km(D1) ≠ km(D2) when 1 < m < n. For example, consider two digraphs D1 and D2 whose adjacency
matrices are respectively given by

0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 1 0
0 0 1 0 1

 ,


0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 1 0
0 1 0 0 0

 .

Then, we have D1 ∈ An and D2 ∈ An. Further, k5(D1) = k5(D2) = 6 and k1(D1) = k1(D2) = 3. However,

3 = k2(D1) ≠ k2(D2) = 4,
4 = k3(D1) ≠ k3(D2) = 5,
5 = k4(D1) ≠ k4(D2) = 6.

Lemma 10. Suppose D ∈ As
n where s ≥ 3. Let C be an s-cycle and m be a positive integer such that m ≤ s. For each pair of

vertices x and y in V (C), we have

km(D : x, y) ≤
s− 1
2
+

m
2


.

Proof. Let t = s−1
2 +

m
2


and t ′ =

 t
2


. We have that C2 is an s-cycle where each vertex in V (C2) has a loop. Consider the

primitive digraph C .
Case 1. t is even.

Then, t = 2t ′. We also have |N+


C2
t ′
: x


| ≥ 2t ′ + 1 since C2 is an s-cycle in which each vertex has a loop. Then, we

have

|N+(C t
: x, y)| ≥ |N+(C t

: x)| + |N+(C t
: y)| − |V (C)|

= |N+(C2t ′
: x)| + |N+(C2t ′

: y)| − |V (C)|

≥ (2t ′ + 1)+ (2t ′ + 1)− s
= 2t + 2− s ≥ m.

Case 2. t is odd.
Then, t = 2t ′ + 1. We also have |N+(C1

: x)| = 2 for each vertex x ∈ V (C). Suppose N+(C1
: x) = {ux, vx}. Then,

N+(C2t ′+1
: x) = N+


C2t ′

: ux


∪ N+


C2t ′

: vx


.



1586 H.K. Kim, S.H. Lee / Discrete Applied Mathematics 160 (2012) 1583–1590

As a result, we have |N+(C2t ′+1
: x)| ≥ 2t ′ + 2 since C2 is an s-cycle in which each vertex has a loop. Therefore,

|N+(C t
: x, y)| ≥ |N+(C t

: x)| + |N+(C t
: y)| − |V (C)|

= |N+(C2t ′+1
: x)| + |N+(C2t ′+1

: y)| − |V (C)|

≥ (2t ′ + 2)+ (2t ′ + 2)− s
= 2t + 2− s ≥ m.

In all cases, we have

|N+(C t
: x, y)| ≥ m. (2)

Then, |N+(Dt
: x, y)| ≥ |N+(C t

: x, y)| ≥ m. Therefore,

km(D : x, y) ≤ t =
s− 1
2
+

m
2


.

This establishes the result. �

Lemma 11. Suppose D ∈ As
n where s ≥ 3. Let C be an s-cycle and m be a positive integer such that s ≤ m ≤ n. For each pair of

vertices x and y in V (C), we have

km(D : x, y) ≤ m− 1.

Proof. By (2), we have ks(C : x, y) ≤ s− 1 and

V (C) ⊂ N+(C s−1
: x, y) ⊂ N+(Ds−1

: x, y).

Further, for each positive integer i such that i ≥ s, V (C) ⊂ N+(Di
: x, y) and |N+(Di

: x, y)| ≥ s + {i − (s − 1)} = i + 1.
Therefore,

km(D : x, y) ≤ m− 1.

This establishes the result. �

Lemma 12. Let D ∈ As
n where s ≥ 3. For a positive integer m such that m ≤ n, we have

km(D) ≥ s− 1−

n−m

2


.

Proof. Suppose k = km(D) < s − 1 −
 n−m

2


. By Proposition 6 and (1), we have k = km(D) ≥ k1(D) ≥ s−1

2 . Let C be an
s-cycle in D. Without loss of generality, we can assume that

V (C) = {v0, v1, v2, . . . , vs−1},

E(C) = {vi ↔ vi+1 : 1 ≤ i ≤ s− 2} ∪ {vs−1 ↔ v0}.

Let t = s− 1− k. Then, we have 0 < t < s−1
2 since t = s− 1− k >

 n−m
2


≥ 0. Further,

N+(Ck
: v0, vs−1) =


vt , . . . , v s−3

2
, v s−1

2
, v s+1

2
, . . . , vs−1−t


.

For a nonnegative integer a such that 0 ≤ a < t , we claim va ∉ N+(Dk
: v0, vs−1). Otherwise, there are two closed walks

in D, expressed as

v0
k
←→ va

a
←→ v0 and vs−1

k
←→ va

a
←→ v0

1
←→ vs−1,

whose lengths are k+ a and k+ a+ 1, respectively. Since k+ a+ 1 = s− 1− t + a+ 1 < s, we have a closed walk of odd
length less than s. This is a contradiction to s(D) = s. Therefore, va ∉ N+(Dk

: v0, vs−1) for each a such that a < t .
Similarly, for a nonnegative integer a such that s− 1− t < a ≤ s− 1, we claim va ∉ N+(Dk

: v0, vs−1). Otherwise, there
are two closed walks in D, expressed as

vs−1
k
←→ va

s−a−1
←→ vs−1 and v0

k
←→ va

s−a−1
←→ vs−1

1
←→ v0,

whose lengths are k + s − a − 1 and k + s − a, respectively. Since k + s − a = k + (s − a − 1) + 1 < k + t + 1 = s, we
have a closed walk of odd length less than s. This is a contradiction to s(D) = s. Therefore, va ∉ N+(Dk

: v0, vs−1) for each a
such that s− 1− t < a ≤ s− 1.

Then, we have

{v0, . . . , vt−1} ∪ {vs−t , . . . , vs−1} ⊂ V (D)− N+(Dk
: v0, vs−1).
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Since t = s− 1− k < s−1
2 , we have {v0, . . . , vt−1} ∩ {vs−t , . . . , vs−1} = φ. Further,

|{v0, . . . , vt−1} ∪ {vs−t , . . . , vs−1}| = 2t.

Then,

2t ≤ |V (D)| − |N+(Dk
: v0, vs−1)|.

Since |N+(Dk
: v0, vs−1)| ≥ m,

2t ≤ |V (D)| − |N+(Dk
: v0, vs−1)| ≤ n−m,

t ≤

n−m

2


.

Since t = s− 1− k, we have

k ≥ s− 1−

n−m

2


.

This is a contradiction. Therefore, the result is established. �

Lemmas 10 and 11 give us the upper bounds on Isn,m and In,m. Further, (1) and Lemma 12 give us the lower bounds on Isn,m
and In,m.

Definition 13. Let n, s, and m be positive integers such thatm, s ≤ n and s is odd. We denote

K(n, s,m) =

n−
s+ 1
2
+

m
2


, whenm < s,

n+m− s− 1, whenm ≥ s,

and

k(n, s,m) =


s− 1
2

, whenm < n− s,

s− 1−

n−m

2


, whenm ≥ n− s.

Theorem 14. Let D ∈ As
n. For a positive integer m such that m ≤ n, we have

k(n, s,m) ≤ km(D) ≤ K(n, s,m).

Further, km(D) = K(n, s,m) only if D is isomorphic to Pn,s, and km(Pn,1) = K(n, 1,m).

Proof. Let C be an s-cycle.
Case 1. s = 1.

There exists a vertex z having a loop. Then, |N+(Dt
: z)| ≥ t + 1 for each t such that 1 ≤ t < n. For each pair of vertices

x and y, we have two directed walks expressed as x
n−1
−→ z and y

n−1
−→ z. Therefore, we have

km(D : x, y) ≤ n− 1+m− 1 = K(n, s,m),

and km(D : x, y) ≥ k(n, s,m) since k(n, 1,m) = 0. Therefore, we have

k(n, s,m) ≤ km(D) ≤ K(n, s,m).

Suppose km(D) = n + m − 2 = K(n, 1,m). Let V (C) = {z}, where z has a loop. Consider a pair of vertices x and y such
that km(D : x, y) = km(D). If dD(x, z) < n − 1 and dD(y, z) < n − 1, then z ∈ N+(Dn−2

: x, y). Further, if there exists
another vertex z ′ having a loop, then z ∈ N+(Dn−2

: x, y) or z ′ ∈ N+(Dn−2
: x, y). Furthermore, if z ∈ N+(Dn−2

: x, y) or
z ′ ∈ N+(Dn−2

: x, y), then we have km(D : x, y) ≤ (n − 2) + (m − 1) < n + m − 2, which is a contradiction. Therefore,
there exists a vertex x such that dD(x, z) = n− 1 and z is the only vertex having a loop in D. Then, D is isomorphic to Pn,1.

Conversely, if D is isomorphic to Pn,1, then we have

km(D) = n+m− 2 = K(n, 1,m).

Case 2. s ≥ 3.
For each pair of vertices x and y, there exist directed walks such that

x
n−s
−→ x′ ∈ V (C) and y

n−s
−→ y′ ∈ V (C).
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Ifm < s, then we have km(D : x′, y′) ≤ s−1
2 +

m
2


by Lemma 10. Therefore, we have

km(D : x, y) ≤ n− s+ km(D : x′, y′)

≤ n− s+
s− 1
2
+

m
2


= K(n, s,m).

Ifm ≥ s, then we have km(D : x′, y′) ≤ m− 1 by Lemma 11. Therefore, we have

km(D : x, y) ≤ n− s+ km(D : x′, y′)
≤ n− s+m− 1 = K(n, s,m).

By Proposition 6 and (1), we have

km(D) ≥ k1(D) ≥
s− 1
2

.

By Lemma 12, we have

km(D) ≥ s− 1−

n−m

2


.

Sincem ≥ n− s if and only if s−1
2 ≤ s− 1−

 n−m
2


, we have km(D) ≥ k(n, s,m). Therefore,

k(n, s,m) ≤ km(D) ≤ K(n, s,m).

Suppose km(D) = K(n, s,m). Consider a pair of vertices x and y such that km(D : x, y) = km(D). If dD(x, V (C)) < n − s
and dD(y, V (C)) < n − s, then there exist vertices x′ and y′ in V (C) such that x

n−s−1
−→ x′ and y

n−s−1
−→ y′, respectively. By

Lemmas 10 and 11, we have

km(D : x′, y′) ≤

 s− 1
2
+

m
2


, when m < s,

m− 1, whenm ≥ s.

Then, km(D : x, y) ≤ K(n, s,m)− 1, which is a contradiction. Therefore, we have that Pn,s is a subdigraph of D. We can also
have km(D) < K(n, s,m) if there is another edge that is not in E(Pn,s), Therefore, D is isomorphic to Pn,s. This establishes the
result. �

Corollary 15. If D ∈ As
n, then we have

s− 1 ≤ kn(D) = exp(D) ≤ 2n− s− 1.

Corollary 16. Let D ∈ An and m be a positive integer such that m ≤ n. Then, we have

km(D) ≤ n+m− 2.

The equality holds if and only if D is isomorphic to Pn,1.

Theorem 17. Let n and m be positive integers such that n ≥ 4 and m < n. Then, we have

In,m = [1,m+ n− 2]o.

Proof. By Theorem8,we have the result form = 1. Suppose 1 < m < n. For a positive integer k such that 1 ≤ k ≤ n+m−2,
we claim that k ∈ In,m.

We have n+m− 2 ∈ In,m since km(Pn,1) = n+m− 2 by Corollary 16.
We have 1 ∈ In,m since km(J̄n) = 1, where J̄n is the digraph whose adjacency matrix is n× n all-ones matrix.
Consider the digraph D′ given by

V (D′) = {v1, v2, . . . , vn−1, vn},

E(D′) = {vi ↔ vj : 1 ≤ i, j ≤ n− 1, i ≠ j} ∪ {vn−1 ↔ vn}.

Then, we have km(D′) = 2 ∈ In,m.
We claim that k ∈ In,m for each k such that 3 ≤ k < n+m− 2.

Case 1. 2(m− 1) < k < n+m− 2.
Consider the symmetric primitive digraph D1 given by

V (D1) = {v1, v2, . . . , vn} ,

E(D1) = {vi ↔ vi+1 : 1 ≤ i ≤ k−m+ 1} ∪ {vk−m+2 ↔ vk−m+2} ∪ {vi ↔ v2 : k−m+ 3 ≤ i ≤ n} .
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For a pair of positive integers i and j such that 1 ≤ i, j ≤ n, we have km(D1 : vi, vj) ≤ km(D1 : v1, v2). For each positive
integer l such that l ≥ k,

N+(Dk−1
1 : v1, v2) = {vk−m+2, vk−m+1, . . . , vk−2m+4},

N+(Dl
1 : v1, v2) ⊃ {vk−m+2, vk−m+1, . . . , vk−2m+3}.

Then, we have km(D1) = km(D1 : v1, v2) = k. Further, k ∈ In,m.
Case 2. k ≤ 2(m− 1) and k is even.

Consider the symmetric primitive digraph D2 given by

V (D2) = {v1, v2, . . . , vn},

E(D2) =


vi ↔ vi+1 : 1 ≤ i ≤


k
2


− 1


∪


vi ↔ vi :


k
2


+ 1 ≤ i ≤ m


∪


v

k
2

 ↔ vi :


k
2


+ 1 ≤ i ≤ m


∪ {vi ↔ v2 : m+ 1 ≤ i ≤ n} .

For a pair of positive integers i and j such that 1 ≤ i, j ≤ n, we have km(D2 : vi, vj) ≤ km(D2 : v1, v2). For each positive
integer l such that l ≥ k,

N+(Dk−1
2 : v1, v2) = {v2, v3, . . . , vm},

N+(Dl
2 : v1, v2) ⊃ {v1, v2, . . . , vm, . . . , vn}.

Then, we have km(D2) = km(D2 : v1, v2) = k. Further, k ∈ In,m.
Case 3. k ≤ 2(m− 1) and k is odd.

Sincem+ 1 ≤ n, we can consider the symmetric primitive digraph D3 given by

V (D3) = {v1, v2, . . . , vn},

E(D3) =


vi ↔ vi+1 : 1 ≤ i ≤


k
2


∪


vi ↔ vi :


k
2


+ 2 ≤ i ≤ m+ 1


∪


v

k
2


+1
↔ vi :


k
2


+ 2 ≤ i ≤ m+ 1


∪ {vi ↔ v2 : m+ 2 ≤ i ≤ n} .

For a pair of positive integers i and j such that 1 ≤ i, j ≤ n, we have km(D3 : vi, vj) ≤ km(D3 : v1, v2). For each positive
integer l such that l ≥ k,

N+(Dk−1
3 : v1, v2) = {v3, v4, . . . , vm+1},

N+(Dl
3 : v1, v2) ⊃ {v2, v3, . . . , vm+1}.

Then, we have km(D3) = km(D3 : v1, v2) = k. Further, k ∈ In,m.
We have k ∈ In,m for each k such that 1 ≤ k ≤ n+m− 2. This establishes the result. �

If 1 ≤ m < n, then there is no gap in In,m. However, there is a gap in In,n by Proposition 4. It should be noted that the
condition of m < n is essential for constructing the digraph D3 in Theorem 17.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of scrambling index of a primitive digraph. Kim [9] introduced the
generalized competition index km(D) as another generalization of exponent exp(D) and scrambling index k(D) for a primitive
digraph D. In this study, we investigated km(D) for a symmetric primitive digraph D as an extension of the results in [4,13].
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