Discrete Applied Mathematics 160 (2012) 1583-1590

Contents lists available at SciVerse ScienceDirect

ELSEVIER

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Generalized competition indices of symmetric primitive digraphs

Hwa Kyung Kim^{a,*}, Sang Hoon Lee^b

^a Department of Mathematics Education, Sangmyung University, Seoul 110-743, South Korea ^b Department of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

ARTICLE INFO

Article history: Received 8 February 2011 Received in revised form 22 February 2012 Accepted 3 March 2012 Available online 28 March 2012

Keywords: Competition index Generalized competition index *m*-competition index Scrambling index Symmetric digraph

ABSTRACT

For a primitive digraph *D* of order *n* and a positive integer *m* such that $m \le n$, the *m*-competition index of *D* is defined as the smallest positive integer *k* such that for every pair of vertices *x* and *y*, there exist *m* distinct vertices v_1, v_2, \ldots, v_m such that there are directed walks of length *k* from *x* to v_i and from *y* to v_i for $1 \le i \le m$ in *D*. In this study, we investigate *m*-competition indices of symmetric primitive digraphs and provide the upper and lower bounds. We also characterize the set of *m*-competition indices of symmetric primitive digraphs.

© 2012 Elsevier B.V. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,8]. Let D = (V, E) denote a *digraph* (directed graph) with vertex set V = V(D), arc set E = E(D), and order *n*. Loops are permitted but multiple arcs are not. A *walk* from *x* to *y* in a digraph *D* is a sequence of vertices *x*, $v_1, \ldots, v_t, y \in V(D)$ and a sequence of arcs $(x, v_1), (v_1, v_2), \ldots, (v_t, y) \in E(D)$, where the vertices and arcs are not necessarily distinct. A *closed walk* is a walk from *x* to *y* where x = y. A *cycle* is a closed walk from

x to *y* with distinct vertices except for x = y. The *length of a walk W* is the number of arcs in *W*. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from *x* to *y* of length *k*. The *distance* from vertex *x* to vertex *y* in *D* is the length of the shortest walk from *x* to *y*, and it is denoted by $d_D(x, y)$. For a vertex *x* and a set $Y \subset V(D)$, let $d_D(x, Y) = \min\{d_D(x, y) : y \in Y\}$. For $x \in Y$, we define $d_D(x, Y) = 0$.

A digraph *D* is called *strongly connected* if for each pair of vertices *x* and *y* in *V*(*D*), there exists a walk from *x* to *y*. For a strongly connected digraph *D*, the *index of imprimitivity* of *D* is the greatest common divisor of the lengths of the cycles in *D*, and it is denoted by l(D). If *D* is a trivial digraph of order 1, l(D) is undefined. A strongly connected digraph *D* is *primitive* if l(D) = 1.

If *D* is a primitive digraph of order *n*, there exists some positive integer *k* such that there exists a walk of length exactly *k* from each vertex *x* to each vertex *y*. The smallest such *k* is called the *exponent* of *D*, and it is denoted by exp(D). For a positive integer *m* where $1 \le m \le n$, we define the *m*-competition index of a primitive digraph *D*, it is denoted by $k_m(D)$, as the smallest positive integer *k* such that for every pair of vertices *x* and *y*, there exist *m* distinct vertices v_1, v_2, \ldots, v_m such that $x \xrightarrow{k} v_i$ and $y \xrightarrow{k} v_i$ for $1 \le i \le m$ in *D*.

Cho et al. [6] introduced the concept of the *m*-step competition graph of a digraph. Kim [9] introduced the *m*-competition index as a generalization of the competition index presented in [8]. Akelbek and Kirkland [1,2] introduced the scrambling

* Corresponding author. Fax: +82 2 2287 0069.

E-mail addresses: indices@smu.ac.kr (H.K. Kim), iami9999@naver.com (S.H. Lee).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter S 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2012.03.001

index of a primitive digraph *D*, denoted by k(D). In the case of primitive digraphs, the definitions of the scrambling index and competition index are identical. Furthermore, we have $k(D) = k_1(D)$. Huang and Lie [7] studied the scrambling index of primitive digraphs. Lie and Huang [10] introduced the concept of the generalized scrambling index of a primitive digraph *D*, denoted by $k(D, \lambda, \mu)$. This concept is a generalization of *m*-competition index of a primitive digraph *D* since $k(D, 2, m) = k_m(D)$.

On the basis of definitions of the *m*-competition index and the exponent of *D* of order *n*, we can write $k_m(D) \le \exp(D)$, where *m* is a positive integer such that $1 \le m \le n$. Furthermore, we have $k_n(D) = \exp(D)$ and

$$k(D) = k_1(D) \le k_2(D) \le \dots \le k_n(D) = \exp(D).$$

$$\tag{1}$$

This is a generalization of the scrambling index and exponent. Several studies such as [11,15] have investigated exponents and their generalization. Some studies such as [9,14] have also investigated generalized competition indices.

Definition 1. Let *k* be a positive integer and *D* be a primitive digraph of order *n*. Let *m* be a positive integer such that $1 \le m \le n$. For a pair of vertices *x* and *y* in *V*(*D*), we define the following notation:

 $N^{+}(D^{k}:x) = \left\{ v \in V(D) : x \xrightarrow{k} v \text{ in } D \right\},$ $N^{+}(D^{k}:x,y) = N^{+}(D^{k}:x) \cap N^{+}(D^{k}:y),$ $k_{m}(D:x,y) = \min \left\{ t : |N^{+}(D^{a}:x,y)| \ge m \text{ for each } a \text{ such that } a \ge t \right\},$ $k_{m}(D:x) = \max \left\{ k_{m}(D:x,y) : y \in V(D) \right\}.$

Then, from the definitions of $k_m(D)$, $k_m(D : x)$, and $k_m(D : x, y)$, we have

 $k_m(D:x,y) \le k_m(D:x) \le k_m(D),$

and

$$k_m(D) = \max\{k_m(D:x) : x \in V(D)\}\$$

= max{k_m(D:x, y) : x, y \in V(D)}

A primitive digraph *D* is called *symmetric* if and only if the adjacency matrix of *D* is symmetric. If *D* is symmetric and $(x, y) \in E(D)$, then we have $(y, x) \in E(D)$, which is represented by $x \leftrightarrow y$. When *D* is symmetric, the notation $x \xleftarrow{k} y$ is used to indicate that there exists a walk of length *k* from *x* to *y*.

Let A_n denote the set of all symmetric primitive digraphs of order n. If $D \in A_n$, the s-cycle denotes the induced subdigraph by distinct vertices v_1, v_2, \ldots, v_s such that $v_1 \leftrightarrow v_2 \leftrightarrow \cdots \leftrightarrow v_s \leftrightarrow v_1$. If $D \in A_n$, there exists an s-cycle in D where s is odd since D is primitive. Let s(D) denote the smallest odd number s such that there exists an s-cycle in D. In this study, we investigate $k_m(D)$ where $D \in A_n$.

Definition 2. For positive integers *n* and *m* such that $1 \le m \le n$, we define the following notation:

 $\begin{aligned} A_n^s &= \{ D \in A_n : s(D) = s \}, \\ I_{n,m} &= \{ k_m(D) : D \in A_n \}, \\ I_{n,m}^s &= \{ k_m(D) : D \in A_n^s \}. \end{aligned}$

Definition 3. For positive integers *n* and *m* such that $1 \le m \le n$, we define $P_{n,s} = (V, E)$ where

$$V = \{v_1, v_2, \dots, v_n\},\$$

$$E = \{v_i \leftrightarrow v_{i+1} | 1 \le i \le n-1\} \cup \{v_n \leftrightarrow v_{n-s+1}\}.$$

Then, we have $s(P_{n,s}) = s$. The notation $[a, b]^o$ indicates the set of integers in [a, b].

Proposition 4 (Shao [13]). If $D \in A_n$ where $n \ge 4$, then we have

$$I_{n,n} = [1, 2n-2]^o \setminus S,$$

where $S = \{k : k \text{ is an odd integer and } n \le k \le 2n - 3\}$. Further, $\exp(D) = 2n - 2$ if and only if D is isomorphic to $P_{n,1}$.

Proposition 5 (Liu et al. [12]). Let n be a positive integer where $n \ge 4$. Then, we have

$$\bigcup_{s>3} I_{n n}^s = [2, 2n-4]^o \setminus S',$$

where $S' = \{k : k \text{ is an odd integer and } n - 2 \le k \le 2n - 5\}.$

Proposition 6 (Chen and Liu [4]). Let *n* be a positive integer where $n \ge 2$. Then, we have

$$I_{n,1}^{s} = \left[\delta_{s}, n - \frac{s+1}{2}\right]^{o},$$

where $\delta_{s} = \begin{cases} 1, & \text{for } s = 1, \\ \frac{s-1}{2}, & \text{for } s \equiv 1 \pmod{2} \text{ and } s \geq 3. \end{cases}$

These results give us the upper and lower bounds on $I_{n,n}$ or I_{n-1}^s . In this paper, we extend these bounds to $I_{n,m}$.

2. Main results

Proposition 7 (*Chen and Liu* [4], *Cho and Kim* [5]). If $D \in A_n$, then we have

$$k_1(D) = \left\lceil \frac{\exp(D)}{2} \right\rceil = \left\lceil \frac{k_n(D)}{2} \right\rceil.$$

Theorem 8. If $D \in A_n$ where $n \ge 4$, then we have

$$I_{n,1} = [1, n-1]^{\circ}.$$

Furthermore, $k_1(D) = n - 1$ if and only if D is isomorphic to $P_{n,1}$.

Proof. By Propositions 4 and 7, we have $I_{n,1} = [1, n-1]^{\circ}$. By Proposition 4, there is no symmetric primitive digraph whose exponent is 2n - 3. Further, by Proposition 7, we have $k_1(P_{n,1}) = n - 1$. Therefore, we have $k_1(D) = n - 1$ if and only if D is isomorphic to $P_{n,1}$. This establishes the result. \Box

Example 9. Let D_1 and D_2 be digraphs in A_n such that $k_n(D_1) = k_n(D_2)$. By Proposition 7, we have $k_1(D_1) = k_1(D_2)$. However, it is possible that $k_m(D_1) \neq k_m(D_2)$ when 1 < m < n. For example, consider two digraphs D_1 and D_2 whose adjacency matrices are respectively given by

Γ0	1	0	0	0		Γ0	1	0	0	0	
1	0	1	0	0		1	0	1	0	1	
0	1	0	1	1	,	0	1	0	1	0	
0	0	1	1	0		0	0	1	1	0	
0	0	1	0	1		0	1	0	0	0	

Then, we have $D_1 \in A_n$ and $D_2 \in A_n$. Further, $k_5(D_1) = k_5(D_2) = 6$ and $k_1(D_1) = k_1(D_2) = 3$. However,

$$3 = k_2(D_1) \neq k_2(D_2) = 4,$$

$$4 = k_3(D_1) \neq k_3(D_2) = 5,$$

$$5 = k_4(D_1) \neq k_4(D_2) = 6.$$

Lemma 10. Suppose $D \in A_n^s$ where $s \ge 3$. Let C be an s-cycle and m be a positive integer such that $m \le s$. For each pair of vertices x and y in V(C), we have

$$k_m(D:x,y) \leq \frac{s-1}{2} + \left\lfloor \frac{m}{2} \right\rfloor$$

Proof. Let $t = \frac{s-1}{2} + \lfloor \frac{m}{2} \rfloor$ and $t' = \lfloor \frac{t}{2} \rfloor$. We have that C^2 is an *s*-cycle where each vertex in $V(C^2)$ has a loop. Consider the primitive digraph *C*. *Case* 1. *t* is even.

Then, t = 2t'. We also have $|N^+((C^2)^{t'}:x)| \ge 2t' + 1$ since C^2 is an *s*-cycle in which each vertex has a loop. Then, we have

$$|N^{+}(C^{t}:x,y)| \ge |N^{+}(C^{t}:x)| + |N^{+}(C^{t}:y)| - |V(C)|$$

= $|N^{+}(C^{2t'}:x)| + |N^{+}(C^{2t'}:y)| - |V(C)|$
 $\ge (2t'+1) + (2t'+1) - s$
= $2t + 2 - s > m$.

Case 2. t is odd.

Then, t = 2t' + 1. We also have $|N^+(C^1 : x)| = 2$ for each vertex $x \in V(C)$. Suppose $N^+(C^1 : x) = \{u_x, v_x\}$. Then,

$$N^{+}(C^{2t'+1}:x) = N^{+}\left((C^{2})^{t'}:u_{x}\right) \cup N^{+}\left((C^{2})^{t'}:v_{x}\right).$$

As a result, we have $|N^+(C^{2t'+1}:x)| \ge 2t' + 2$ since C^2 is an *s*-cycle in which each vertex has a loop. Therefore,

$$\begin{split} |N^+(C^t:x,y)| &\geq |N^+(C^t:x)| + |N^+(C^t:y)| - |V(C)| \\ &= |N^+(C^{2t'+1}:x)| + |N^+(C^{2t'+1}:y)| - |V(C)| \\ &\geq (2t'+2) + (2t'+2) - s \\ &= 2t+2 - s \geq m. \end{split}$$

In all cases, we have

$$|N^+(C^t:x,y)| \ge m.$$

Then, $|N^+(D^t : x, y)| \ge |N^+(C^t : x, y)| \ge m$. Therefore,

$$k_m(D:x,y) \leq t = \frac{s-1}{2} + \left\lfloor \frac{m}{2} \right\rfloor.$$

This establishes the result. \Box

Lemma 11. Suppose $D \in A_n^s$ where $s \ge 3$. Let C be an s-cycle and m be a positive integer such that $s \le m \le n$. For each pair of vertices x and y in V(C), we have

$$k_m(D:x,y) \le m-1.$$

Proof. By (2), we have $k_s(C : x, y) \le s - 1$ and

$$V(C) \subset N^+(C^{s-1}:x,y) \subset N^+(D^{s-1}:x,y)$$

Further, for each positive integer *i* such that $i \ge s$, $V(C) \subset N^+(D^i : x, y)$ and $|N^+(D^i : x, y)| \ge s + \{i - (s - 1)\} = i + 1$. Therefore,

$$k_m(D:x,y) \le m-1.$$

This establishes the result. \Box

Lemma 12. Let $D \in A_n^s$ where $s \ge 3$. For a positive integer m such that $m \le n$, we have

$$k_m(D) \ge s - 1 - \left\lfloor \frac{n-m}{2} \right\rfloor.$$

Proof. Suppose $k = k_m(D) < s - 1 - \lfloor \frac{n-m}{2} \rfloor$. By Proposition 6 and (1), we have $k = k_m(D) \ge k_1(D) \ge \frac{s-1}{2}$. Let *C* be an *s*-cycle in *D*. Without loss of generality, we can assume that

$$V(C) = \{v_0, v_1, v_2, \dots, v_{s-1}\},\$$

$$E(C) = \{v_i \leftrightarrow v_{i+1} : 1 \le i \le s-2\} \cup \{v_{s-1} \leftrightarrow v_0\}.$$

Let t = s - 1 - k. Then, we have $0 < t < \frac{s-1}{2}$ since $t = s - 1 - k > \lfloor \frac{n-m}{2} \rfloor \ge 0$. Further,

$$N^+(C^k:v_0,v_{s-1}) = \left\{ v_t, \ldots, v_{\frac{s-3}{2}}, v_{\frac{s-1}{2}}, v_{\frac{s+1}{2}}, \ldots, v_{s-1-t} \right\}.$$

For a nonnegative integer *a* such that $0 \le a < t$, we claim $v_a \notin N^+(D^k : v_0, v_{s-1})$. Otherwise, there are two closed walks in *D*, expressed as

$$v_0 \stackrel{k}{\longleftrightarrow} v_a \stackrel{a}{\longleftrightarrow} v_0$$
 and $v_{s-1} \stackrel{k}{\longleftrightarrow} v_a \stackrel{a}{\longleftrightarrow} v_0 \stackrel{1}{\longleftrightarrow} v_{s-1}$,

whose lengths are k + a and k + a + 1, respectively. Since k + a + 1 = s - 1 - t + a + 1 < s, we have a closed walk of odd length less than s. This is a contradiction to s(D) = s. Therefore, $v_a \notin N^+(D^k : v_0, v_{s-1})$ for each a such that a < t.

Similarly, for a nonnegative integer *a* such that $s - 1 - t < a \le s - 1$, we claim $v_a \notin N^+(D^k : v_0, v_{s-1})$. Otherwise, there are two closed walks in *D*, expressed as

$$v_{s-1} \stackrel{k}{\longleftrightarrow} v_a \stackrel{s-a-1}{\longleftrightarrow} v_{s-1}$$
 and $v_0 \stackrel{k}{\longleftrightarrow} v_a \stackrel{s-a-1}{\longleftrightarrow} v_{s-1} \stackrel{l}{\longleftrightarrow} v_0$,

whose lengths are k + s - a - 1 and k + s - a, respectively. Since k + s - a = k + (s - a - 1) + 1 < k + t + 1 = s, we have a closed walk of odd length less than s. This is a contradiction to s(D) = s. Therefore, $v_a \notin N^+(D^k : v_0, v_{s-1})$ for each a such that $s - 1 - t < a \le s - 1$.

Then, we have

$$\{v_0,\ldots,v_{t-1}\} \cup \{v_{s-t},\ldots,v_{s-1}\} \subset V(D) - N^+(D^k:v_0,v_{s-1}).$$

(2)

$$|\{v_0,\ldots,v_{t-1}\}\cup\{v_{s-t},\ldots,v_{s-1}\}|=2t.$$

Then,

$$2t \le |V(D)| - |N^+(D^k : v_0, v_{s-1})|.$$

Since $|N^+(D^k : v_0, v_{s-1})| \ge m$,

$$\begin{aligned} 2t &\leq |V(D)| - |N^+(D^k:v_0,v_{s-1})| \leq n-m, \\ t &\leq \left\lfloor \frac{n-m}{2} \right\rfloor. \end{aligned}$$

Since t = s - 1 - k, we have

$$k\geq s-1-\left\lfloor\frac{n-m}{2}\right\rfloor.$$

This is a contradiction. Therefore, the result is established. \Box

Lemmas 10 and 11 give us the upper bounds on $I_{n,m}^s$ and $I_{n,m}$. Further, (1) and Lemma 12 give us the lower bounds on $I_{n,m}^s$ and $I_{n,m}$.

Definition 13. Let *n*, *s*, and *m* be positive integers such that $m, s \le n$ and *s* is odd. We denote

$$K(n, s, m) = \begin{cases} n - \frac{s+1}{2} + \lfloor \frac{m}{2} \rfloor, & \text{when } m < s, \\ n + m - s - 1, & \text{when } m \ge s, \end{cases}$$

and

$$k(n, s, m) = \begin{cases} \frac{s-1}{2}, & \text{when } m < n-s, \\ s-1 - \left\lfloor \frac{n-m}{2} \right\rfloor, & \text{when } m \ge n-s. \end{cases}$$

Theorem 14. Let $D \in A_n^s$. For a positive integer m such that $m \le n$, we have

 $k(n, s, m) \leq k_m(D) \leq K(n, s, m).$

Further, $k_m(D) = K(n, s, m)$ only if D is isomorphic to $P_{n,s}$, and $k_m(P_{n,1}) = K(n, 1, m)$.

Proof. Let *C* be an *s*-cycle.

Case 1.s = 1.

There exists a vertex *z* having a loop. Then, $|N^+(D^t : z)| \ge t + 1$ for each *t* such that $1 \le t < n$. For each pair of vertices *x* and *y*, we have two directed walks expressed as $x \xrightarrow{n-1} z$ and $y \xrightarrow{n-1} z$. Therefore, we have

 $k_m(D:x,y) \le n-1+m-1 = K(n,s,m),$

and $k_m(D: x, y) \ge k(n, s, m)$ since k(n, 1, m) = 0. Therefore, we have

$$k(n, s, m) \le k_m(D) \le K(n, s, m).$$

Suppose $k_m(D) = n + m - 2 = K(n, 1, m)$. Let $V(C) = \{z\}$, where z has a loop. Consider a pair of vertices x and y such that $k_m(D : x, y) = k_m(D)$. If $d_D(x, z) < n - 1$ and $d_D(y, z) < n - 1$, then $z \in N^+(D^{n-2} : x, y)$. Further, if there exists another vertex z' having a loop, then $z \in N^+(D^{n-2} : x, y)$ or $z' \in N^+(D^{n-2} : x, y)$. Furthermore, if $z \in N^+(D^{n-2} : x, y)$ or $z' \in N^+(D^{n-2} : x, y)$, then we have $k_m(D : x, y) \le (n - 2) + (m - 1) < n + m - 2$, which is a contradiction. Therefore, there exists a vertex x such that $d_D(x, z) = n - 1$ and z is the only vertex having a loop in D. Then, D is isomorphic to $P_{n,1}$. Conversely, if D is isomorphic to $P_{n,1}$, then we have

$$k_m(D) = n + m - 2 = K(n, 1, m).$$

Case 2. $s \ge 3$.

For each pair of vertices x and y, there exist directed walks such that

 $x \xrightarrow{n-s} x' \in V(C)$ and $y \xrightarrow{n-s} y' \in V(C)$.

If m < s, then we have $k_m(D: x', y') \le \frac{s-1}{2} + \left\lfloor \frac{m}{2} \right\rfloor$ by Lemma 10. Therefore, we have

$$k_m(D:x,y) \le n-s+k_m(D:x',y')$$

$$\le n-s+\frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor=K(n,s,m).$$

If $m \ge s$, then we have $k_m(D: x', y') \le m - 1$ by Lemma 11. Therefore, we have

$$k_m(D:x,y) \le n-s+k_m(D:x',y')$$

 $\le n-s+m-1 = K(n,s,m).$

By Proposition 6 and (1), we have

$$k_m(D) \ge k_1(D) \ge \frac{s-1}{2}.$$

By Lemma 12, we have

$$k_m(D) \geq s-1-\left\lfloor \frac{n-m}{2} \right\rfloor.$$

Since $m \ge n - s$ if and only if $\frac{s-1}{2} \le s - 1 - \lfloor \frac{n-m}{2} \rfloor$, we have $k_m(D) \ge k(n, s, m)$. Therefore,

$$k(n, s, m) \leq k_m(D) \leq K(n, s, m).$$

Suppose $k_m(D) = K(n, s, m)$. Consider a pair of vertices x and y such that $k_m(D : x, y) = k_m(D)$. If $d_D(x, V(C)) < n - s$ and $d_D(y, V(C)) < n - s$, then there exist vertices x' and y' in V(C) such that $x \xrightarrow{n-s-1} x'$ and $y \xrightarrow{n-s-1} y'$, respectively. By Lemmas 10 and 11, we have

$$k_m(D:x',y') \leq \begin{cases} \frac{s-1}{2} + \lfloor \frac{m}{2} \rfloor, & \text{when } m < s, \\ m-1, & \text{when } m \geq s. \end{cases}$$

Then, $k_m(D : x, y) \le K(n, s, m) - 1$, which is a contradiction. Therefore, we have that $P_{n,s}$ is a subdigraph of D. We can also have $k_m(D) < K(n, s, m)$ if there is another edge that is not in $E(P_{n,s})$, Therefore, D is isomorphic to $P_{n,s}$. This establishes the result. \Box

Corollary 15. *If* $D \in A_n^s$, then we have

$$s - 1 \le k_n(D) = \exp(D) \le 2n - s - 1.$$

Corollary 16. Let $D \in A_n$ and m be a positive integer such that $m \le n$. Then, we have

$$k_m(D) \le n+m-2.$$

The equality holds if and only if D is isomorphic to $P_{n,1}$.

Theorem 17. Let *n* and *m* be positive integers such that $n \ge 4$ and m < n. Then, we have

 $I_{n,m} = [1, m + n - 2]^{\circ}.$

Proof. By Theorem 8, we have the result for m = 1. Suppose 1 < m < n. For a positive integer k such that $1 \le k \le n+m-2$, we claim that $k \in I_{n,m}$.

We have $n + m - 2 \in I_{n,m}$ since $k_m(P_{n,1}) = n + m - 2$ by Corollary 16. We have $1 \in I_{n,m}$ since $k_m(\bar{J}_n) = 1$, where \bar{J}_n is the digraph whose adjacency matrix is $n \times n$ all-ones matrix. Consider the digraph D' given by

$$V(D') = \{v_1, v_2, \dots, v_{n-1}, v_n\},\$$

$$E(D') = \{v_i \leftrightarrow v_j : 1 \le i, j \le n-1, i \ne j\} \cup \{v_{n-1} \leftrightarrow v_n\}.$$

Then, we have $k_m(D') = 2 \in I_{n,m}$.

We claim that $k \in I_{n,m}$ for each k such that $3 \le k < n + m - 2$.

Case 1. 2(m-1) < k < n+m-2.

Consider the symmetric primitive digraph D_1 given by

$$V(D_1) = \{v_1, v_2, \dots, v_n\},\$$

$$E(D_1) = \{v_i \leftrightarrow v_{i+1} : 1 \le i \le k - m + 1\} \cup \{v_{k-m+2} \leftrightarrow v_{k-m+2}\} \cup \{v_i \leftrightarrow v_2 : k - m + 3 \le i \le n\}.$$

For a pair of positive integers *i* and *j* such that $1 \le i, j \le n$, we have $k_m(D_1 : v_i, v_j) \le k_m(D_1 : v_1, v_2)$. For each positive integer *l* such that $l \ge k$,

$$N^{+}(D_{1}^{k-1}:v_{1},v_{2}) = \{v_{k-m+2}, v_{k-m+1}, \dots, v_{k-2m+4}\},\$$

$$N^{+}(D_{1}^{l}:v_{1},v_{2}) \supset \{v_{k-m+2}, v_{k-m+1}, \dots, v_{k-2m+3}\}.$$

Then, we have $k_m(D_1) = k_m(D_1 : v_1, v_2) = k$. Further, $k \in I_{n,m}$. *Case* 2. k < 2(m - 1) and k is even.

Consider the symmetric primitive digraph *D*₂ given by

$$V(D_2) = \{v_1, v_2, \dots, v_n\},\$$

$$E(D_2) = \left\{v_i \leftrightarrow v_{i+1} : 1 \le i \le \left\lfloor\frac{k}{2}\right\rfloor - 1\right\} \cup \left\{v_i \leftrightarrow v_i : \left\lfloor\frac{k}{2}\right\rfloor + 1 \le i \le m\right\} \cup \left\{v_{\left\lfloor\frac{k}{2}\right\rfloor} \leftrightarrow v_i : \left\lfloor\frac{k}{2}\right\rfloor + 1 \le i \le m\right\},\$$

For a pair of positive integers *i* and *j* such that $1 \le i, j \le n$, we have $k_m(D_2 : v_i, v_j) \le k_m(D_2 : v_1, v_2)$. For each positive integer *l* such that $l \ge k$,

$$N^{+}(D_{2}^{k-1}:v_{1},v_{2}) = \{v_{2},v_{3},\ldots,v_{m}\},\$$

$$N^{+}(D_{2}^{l}:v_{1},v_{2}) \supset \{v_{1},v_{2},\ldots,v_{m},\ldots,v_{n}\}.$$

Then, we have $k_m(D_2) = k_m(D_2 : v_1, v_2) = k$. Further, $k \in I_{n,m}$. *Case* 3. $k \le 2(m-1)$ and k is odd.

Since $m + 1 \le n$, we can consider the symmetric primitive digraph D_3 given by

$$V(D_3) = \{v_1, v_2, \dots, v_n\},\$$

$$E(D_3) = \left\{v_i \leftrightarrow v_{i+1} : 1 \le i \le \left\lfloor \frac{k}{2} \right\rfloor\right\} \cup \left\{v_i \leftrightarrow v_i : \left\lfloor \frac{k}{2} \right\rfloor + 2 \le i \le m+1\right\}$$

$$\cup \left\{v_{\lfloor \frac{k}{2} \rfloor + 1} \leftrightarrow v_i : \left\lfloor \frac{k}{2} \right\rfloor + 2 \le i \le m+1\right\} \cup \{v_i \leftrightarrow v_2 : m+2 \le i \le n\}.$$

For a pair of positive integers *i* and *j* such that $1 \le i, j \le n$, we have $k_m(D_3 : v_i, v_j) \le k_m(D_3 : v_1, v_2)$. For each positive integer *l* such that $l \ge k$,

$$N^+(D_3^{k-1}:v_1,v_2) = \{v_3, v_4, \dots, v_{m+1}\},\$$

$$N^+(D_3^l:v_1,v_2) \supset \{v_2, v_3, \dots, v_{m+1}\}.$$

Then, we have $k_m(D_3) = k_m(D_3 : v_1, v_2) = k$. Further, $k \in I_{n,m}$.

We have $k \in I_{n,m}$ for each k such that $1 \le k \le n + m - 2$. This establishes the result. \Box

If $1 \le m < n$, then there is no gap in $I_{n,m}$. However, there is a gap in $I_{n,n}$ by Proposition 4. It should be noted that the condition of m < n is essential for constructing the digraph D_3 in Theorem 17.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of scrambling index of a primitive digraph. Kim [9] introduced the generalized competition index $k_m(D)$ as another generalization of exponent $\exp(D)$ and scrambling index k(D) for a primitive digraph D. In this study, we investigated $k_m(D)$ for a symmetric primitive digraph D as an extension of the results in [4,13].

Acknowledgment

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

- [1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111–1130.
- [2] M. Akelbek, S. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099–1110.
- [3] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [4] S. Chen, B. Liu, The scrambling index of symmetric primitive matrices, Linear Algebra Appl. 433 (2010) 1110–1126.
- [5] H.H. Cho, H.K. Kim, Competition indices of strongly connected digraphs, Bull. Korean Math. Soc. 48 (2011) 637–646.
- [6] H.H. Cho, S.-R. Kim, Y. Nam, The *m*-step competition graph of a digraph, Discrete Appl. Math. 105 (2000) 115–127.
- [7] Y. Huang, B. Liu, Generalized scrambling indices of a primitive digraph, Linear Algebra Appl. 433 (2010) 1798–1808.
- [8] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
- [9] H.K. Kim, Generalized competition index of a primitive digraph, Linear Algebra Appl. 433 (2010) 72-79.
- [10] B. Liu, Y. Huang, The scrambling index of primitive digraphs, Comput. Math. Appl. 60 (2010) 706–721.

- [11] B. Liu, H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, 2000.
 [12] B. Liu, B.D. McKay, N.C. Wormald, Z.K. Min, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990) 121–131.
- [13] J. Shao, On the set of symmetrical graph matrix, Sci. Sin. A 9 (1986) 931–939.
- [14] M.S. Sim, H.K. Kim, On generalized competition index of a primitive tournament, Discrete Math. 311 (2011) 2657–2662.
 [15] B. Zhou, J. Shen, On generalized exponents of tournaments, Taiwanese J. Math. 6 (2002) 565–572.