Generalized competition indices of symmetric primitive digraphs

Hwa Kyung Kim ${ }^{\text {a,*, }}$, Sang Hoon Lee ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics Education, Sangmyung University, Seoul 110-743, South Korea
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

A R T I C L E INFO

Article history:

Received 8 February 2011
Received in revised form 22 February 2012
Accepted 3 March 2012
Available online 28 March 2012

Keywords:

Competition index
Generalized competition index
m-competition index
Scrambling index
Symmetric digraph

Abstract

For a primitive digraph D of order n and a positive integer m such that $m \leq n$, the m competition index of D is defined as the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that there are directed walks of length k from x to v_{i} and from y to v_{i} for $1 \leq i \leq m$ in D. In this study, we investigate m-competition indices of symmetric primitive digraphs and provide the upper and lower bounds. We also characterize the set of m-competition indices of symmetric primitive digraphs.

© 2012 Elsevier B.V. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,8]. Let $D=(V, E)$ denote a digraph (directed graph) with vertex set $V=V(D)$, arc set $E=E(D)$, and order n. Loops are permitted but multiple arcs are not. A walk from x to y in a digraph D is a sequence of vertices $x, v_{1}, \ldots, v_{t}, y \in V(D)$ and a sequence of arcs $\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{t}, y\right) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where $x=y$. A cycle is a closed walk from x to y with distinct vertices except for $x=y$. The length of a walk W is the number of arcs in W. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from x to y of length k. The distance from vertex x to vertex y in D is the length of the shortest walk from x to y, and it is denoted by $d_{D}(x, y)$. For a vertex x and a set $Y \subset V(D)$, let $d_{D}(x, Y)=\min \left\{d_{D}(x, y): y \in Y\right\}$. For $x \in Y$, we define $d_{D}(x, Y)=0$.

A digraph D is called strongly connected if for each pair of vertices x and y in $V(D)$, there exists a walk from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in D, and it is denoted by $l(D)$. If D is a trivial digraph of order $1, l(D)$ is undefined. A strongly connected digraph D is primitive if $l(D)=1$.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly k from each vertex x to each vertex y. The smallest such k is called the exponent of D, and it is denoted by $\exp (D)$. For a positive integer m where $1 \leq m \leq n$, we define the m-competition index of a primitive digraph D, it is denoted by $k_{m}(D)$, as the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that $x \xrightarrow{k} v_{i}$ and $y \xrightarrow{k} v_{i}$ for $1 \leq i \leq m$ in D.

Cho et al. [6] introduced the concept of the m-step competition graph of a digraph. Kim [9] introduced the m-competition index as a generalization of the competition index presented in [8]. Akelbek and Kirkland [1,2] introduced the scrambling

[^0]index of a primitive digraph D, denoted by $k(D)$. In the case of primitive digraphs, the definitions of the scrambling index and competition index are identical. Furthermore, we have $k(D)=k_{1}(D)$. Huang and Lie [7] studied the scrambling index of primitive digraphs. Lie and Huang [10] introduced the concept of the generalized scrambling index of a primitive digraph D, denoted by $k(D, \lambda, \mu)$. This concept is a generalization of m-competition index of a primitive digraph D since $k(D, 2, m)=k_{m}(D)$.

On the basis of definitions of the m-competition index and the exponent of D of order n, we can write $k_{m}(D) \leq \exp (D)$, where m is a positive integer such that $1 \leq m \leq n$. Furthermore, we have $k_{n}(D)=\exp (D)$ and

$$
\begin{equation*}
k(D)=k_{1}(D) \leq k_{2}(D) \leq \cdots \leq k_{n}(D)=\exp (D) . \tag{1}
\end{equation*}
$$

This is a generalization of the scrambling index and exponent. Several studies such as [11,15] have investigated exponents and their generalization. Some studies such as $[9,14]$ have also investigated generalized competition indices.

Definition 1. Let k be a positive integer and D be a primitive digraph of order n. Let m be a positive integer such that $1 \leq m \leq n$. For a pair of vertices x and y in $V(D)$, we define the following notation:

$$
\begin{aligned}
& N^{+}\left(D^{k}: x\right)=\{v \in V(D): x \xrightarrow{k} v \text { in } D\}, \\
& N^{+}\left(D^{k}: x, y\right)=N^{+}\left(D^{k}: x\right) \cap N^{+}\left(D^{k}: y\right), \\
& k_{m}(D: x, y)=\min \left\{t:\left|N^{+}\left(D^{a}: x, y\right)\right| \geq m \text { for each } a \text { such that } a \geq t\right\}, \\
& k_{m}(D: x)=\max \left\{k_{m}(D: x, y): y \in V(D)\right\} .
\end{aligned}
$$

Then, from the definitions of $k_{m}(D), k_{m}(D: x)$, and $k_{m}(D: x, y)$, we have

$$
k_{m}(D: x, y) \leq k_{m}(D: x) \leq k_{m}(D)
$$

and

$$
\begin{aligned}
k_{m}(D) & =\max \left\{k_{m}(D: x): x \in V(D)\right\} \\
& =\max \left\{k_{m}(D: x, y): x, y \in V(D)\right\}
\end{aligned}
$$

A primitive digraph D is called symmetric if and only if the adjacency matrix of D is symmetric. If D is symmetric and $(x, y) \in E(D)$, then we have $(y, x) \in E(D)$, which is represented by $x \leftrightarrow y$. When D is symmetric, the notation $x \stackrel{k}{\longleftrightarrow} y$ is used to indicate that there exists a walk of length k from x to y.

Let A_{n} denote the set of all symmetric primitive digraphs of order n. If $D \in A_{n}$, the s-cycle denotes the induced subdigraph by distinct vertices $v_{1}, v_{2}, \ldots, v_{s}$ such that $v_{1} \leftrightarrow v_{2} \leftrightarrow \cdots \leftrightarrow v_{s} \leftrightarrow v_{1}$. If $D \in A_{n}$, there exists an s-cycle in D where s is odd since D is primitive. Let $s(D)$ denote the smallest odd number s such that there exists an s-cycle in D. In this study, we investigate $k_{m}(D)$ where $D \in A_{n}$.

Definition 2. For positive integers n and m such that $1 \leq m \leq n$, we define the following notation:

$$
\begin{aligned}
& A_{n}^{s}=\left\{D \in A_{n}: s(D)=s\right\} \\
& I_{n, m}=\left\{k_{m}(D): D \in A_{n}\right\} \\
& I_{n, m}^{s}=\left\{k_{m}(D): D \in A_{n}^{s}\right\}
\end{aligned}
$$

Definition 3. For positive integers n and m such that $1 \leq m \leq n$, we define $P_{n, s}=(V, E)$ where

$$
\begin{aligned}
& V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
& E=\left\{v_{i} \leftrightarrow v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{n} \leftrightarrow v_{n-s+1}\right\}
\end{aligned}
$$

Then, we have $s\left(P_{n, s}\right)=s$. The notation $[a, b]^{0}$ indicates the set of integers in $[a, b]$.
Proposition 4 (Shao [13]). If $D \in A_{n}$ where $n \geq 4$, then we have

$$
I_{n, n}=[1,2 n-2]^{0} \backslash S,
$$

where $S=\{k: k$ is an odd integer and $n \leq k \leq 2 n-3\}$. Further, $\exp (D)=2 n-2$ if and only if D is isomorphic to $P_{n, 1}$.
Proposition 5 (Liu et al. [12]). Let n be a positive integer where $n \geq 4$. Then, we have

$$
\cup_{s \geq 3} I_{n, n}^{s}=[2,2 n-4]^{o} \backslash S^{\prime}
$$

where $S^{\prime}=\{k: k$ is an odd integer and $n-2 \leq k \leq 2 n-5\}$.

Proposition 6 (Chen and Liu [4]). Let n be a positive integer where $n \geq 2$. Then, we have

$$
I_{n, 1}^{s}=\left[\delta_{s}, n-\frac{s+1}{2}\right]^{0},
$$

where $\delta_{s}= \begin{cases}1, & \text { for } s=1, \\ \frac{s-1}{2}, & \text { for } s \equiv 1(\bmod 2) \text { and } s \geq 3 .\end{cases}$
These results give us the upper and lower bounds on $I_{n, n}$ or $I_{n, 1}^{s}$. In this paper, we extend these bounds to $I_{n, m}$.

2. Main results

Proposition 7 (Chen and Liu [4], Cho and Kim [5]). If $D \in A_{n}$, then we have

$$
k_{1}(D)=\left\lceil\frac{\exp (D)}{2}\right\rceil=\left\lceil\frac{k_{n}(D)}{2}\right\rceil .
$$

Theorem 8. If $D \in A_{n}$ where $n \geq 4$, then we have

$$
I_{n, 1}=[1, n-1]^{0} .
$$

Furthermore, $k_{1}(D)=n-1$ if and only if D is isomorphic to $P_{n, 1}$.
Proof. By Propositions 4 and 7, we have $I_{n, 1}=[1, n-1]^{\circ}$. By Proposition 4, there is no symmetric primitive digraph whose exponent is $2 n-3$. Further, by Proposition 7, we have $k_{1}\left(P_{n, 1}\right)=n-1$. Therefore, we have $k_{1}(D)=n-1$ if and only if D is isomorphic to $P_{n, 1}$. This establishes the result.

Example 9. Let D_{1} and D_{2} be digraphs in A_{n} such that $k_{n}\left(D_{1}\right)=k_{n}\left(D_{2}\right)$. By Proposition 7, we have $k_{1}\left(D_{1}\right)=k_{1}\left(D_{2}\right)$. However, it is possible that $k_{m}\left(D_{1}\right) \neq k_{m}\left(D_{2}\right)$ when $1<m<n$. For example, consider two digraphs D_{1} and D_{2} whose adjacency matrices are respectively given by

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

Then, we have $D_{1} \in A_{n}$ and $D_{2} \in A_{n}$. Further, $k_{5}\left(D_{1}\right)=k_{5}\left(D_{2}\right)=6$ and $k_{1}\left(D_{1}\right)=k_{1}\left(D_{2}\right)=3$. However,

$$
\begin{aligned}
& 3=k_{2}\left(D_{1}\right) \neq k_{2}\left(D_{2}\right)=4, \\
& 4=k_{3}\left(D_{1}\right) \neq k_{3}\left(D_{2}\right)=5, \\
& 5=k_{4}\left(D_{1}\right) \neq k_{4}\left(D_{2}\right)=6 .
\end{aligned}
$$

Lemma 10. Suppose $D \in A_{n}^{s}$ where $s \geq 3$. Let C be an s-cycle and m be a positive integer such that $m \leq s$. For each pair of vertices x and y in $V(C)$, we have

$$
k_{m}(D: x, y) \leq \frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor .
$$

Proof. Let $t=\frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor$ and $t^{\prime}=\left\lfloor\frac{t}{2}\right\rfloor$. We have that C^{2} is an s-cycle where each vertex in $V\left(C^{2}\right)$ has a loop. Consider the primitive digraph C.
Case 1.t is even.
Then, $t=2 t^{\prime}$. We also have $\left|N^{+}\left(\left(C^{2}\right)^{t^{\prime}}: x\right)\right| \geq 2 t^{\prime}+1$ since C^{2} is an s-cycle in which each vertex has a loop. Then, we have

$$
\begin{aligned}
\left|N^{+}\left(C^{t}: x, y\right)\right| & \geq\left|N^{+}\left(C^{t}: x\right)\right|+\left|N^{+}\left(C^{t}: y\right)\right|-|V(C)| \\
& =\left|N^{+}\left(C^{2 t^{\prime}}: x\right)\right|+\left|N^{+}\left(C^{2 t^{\prime}}: y\right)\right|-|V(C)| \\
& \geq\left(2 t^{\prime}+1\right)+\left(2 t^{\prime}+1\right)-s \\
& =2 t+2-s \geq m .
\end{aligned}
$$

Case 2. t is odd.
Then, $t=2 t^{\prime}+1$. We also have $\left|N^{+}\left(C^{1}: x\right)\right|=2$ for each vertex $x \in V(C)$. Suppose $N^{+}\left(C^{1}: x\right)=\left\{u_{x}, v_{x}\right\}$. Then,

$$
N^{+}\left(C^{2 t^{\prime}+1}: x\right)=N^{+}\left(\left(C^{2}\right)^{t^{\prime}}: u_{x}\right) \cup N^{+}\left(\left(C^{2}\right)^{t^{\prime}}: v_{x}\right)
$$

As a result, we have $\left|N^{+}\left(C^{2 t^{\prime}+1}: x\right)\right| \geq 2 t^{\prime}+2$ since C^{2} is an s-cycle in which each vertex has a loop. Therefore,

$$
\begin{aligned}
\left|N^{+}\left(C^{t}: x, y\right)\right| & \geq\left|N^{+}\left(C^{t}: x\right)\right|+\left|N^{+}\left(C^{t}: y\right)\right|-|V(C)| \\
& =\left|N^{+}\left(C^{2 t^{\prime}+1}: x\right)\right|+\left|N^{+}\left(C^{2 t^{\prime}+1}: y\right)\right|-|V(C)| \\
& \geq\left(2 t^{\prime}+2\right)+\left(2 t^{\prime}+2\right)-s \\
& =2 t+2-s \geq m .
\end{aligned}
$$

In all cases, we have

$$
\begin{equation*}
\left|N^{+}\left(C^{t}: x, y\right)\right| \geq m \tag{2}
\end{equation*}
$$

Then, $\left|N^{+}\left(D^{t}: x, y\right)\right| \geq\left|N^{+}\left(C^{t}: x, y\right)\right| \geq m$. Therefore,

$$
k_{m}(D: x, y) \leq t=\frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor .
$$

This establishes the result.
Lemma 11. Suppose $D \in A_{n}^{s}$ where $s \geq 3$. Let C be an s-cycle and m be a positive integer such that $s \leq m \leq n$. For each pair of vertices x and y in $V(C)$, we have

$$
k_{m}(D: x, y) \leq m-1
$$

Proof. By (2), we have $k_{s}(C: x, y) \leq s-1$ and

$$
V(C) \subset N^{+}\left(C^{s-1}: x, y\right) \subset N^{+}\left(D^{S-1}: x, y\right) .
$$

Further, for each positive integer i such that $i \geq s, V(C) \subset N^{+}\left(D^{i}: x, y\right)$ and $\left|N^{+}\left(D^{i}: x, y\right)\right| \geq s+\{i-(s-1)\}=i+1$. Therefore,

$$
k_{m}(D: x, y) \leq m-1
$$

This establishes the result.
Lemma 12. Let $D \in A_{n}^{s}$ where $s \geq 3$. For a positive integer m such that $m \leq n$, we have

$$
k_{m}(D) \geq s-1-\left\lfloor\frac{n-m}{2}\right\rfloor .
$$

Proof. Suppose $k=k_{m}(D)<s-1-\left\lfloor\frac{n-m}{2}\right\rfloor$. By Proposition 6 and (1), we have $k=k_{m}(D) \geq k_{1}(D) \geq \frac{s-1}{2}$. Let C be an s-cycle in D. Without loss of generality, we can assume that

$$
\begin{aligned}
& V(C)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{s-1}\right\} \\
& E(C)=\left\{v_{i} \leftrightarrow v_{i+1}: 1 \leq i \leq s-2\right\} \cup\left\{v_{s-1} \leftrightarrow v_{0}\right\} .
\end{aligned}
$$

Let $t=s-1-k$. Then, we have $0<t<\frac{s-1}{2}$ since $t=s-1-k>\left\lfloor\frac{n-m}{2}\right\rfloor \geq 0$. Further,

$$
N^{+}\left(C^{k}: v_{0}, v_{s-1}\right)=\left\{v_{t}, \ldots, v_{\frac{s-3}{2}}, v_{\frac{s-1}{2}}, v_{\frac{s+1}{2}}, \ldots, v_{s-1-t}\right\} .
$$

For a nonnegative integer a such that $0 \leq a<t$, we claim $v_{a} \notin N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)$. Otherwise, there are two closed walks in D, expressed as

$$
v_{0} \stackrel{k}{\longleftrightarrow} v_{a} \stackrel{a}{\longleftrightarrow} v_{0} \quad \text { and } \quad v_{s-1} \stackrel{k}{\longleftrightarrow} v_{a} \stackrel{a}{\longleftrightarrow} v_{0} \stackrel{1}{\longleftrightarrow} v_{s-1},
$$

whose lengths are $k+a$ and $k+a+1$, respectively. Since $k+a+1=s-1-t+a+1<s$, we have a closed walk of odd length less than s. This is a contradiction to $s(D)=s$. Therefore, $v_{a} \notin N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)$ for each a such that $a<t$.

Similarly, for a nonnegative integer a such that $s-1-t<a \leq s-1$, we claim $v_{a} \notin N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)$. Otherwise, there are two closed walks in D, expressed as

$$
v_{s-1} \stackrel{k}{\longleftrightarrow} v_{a} \stackrel{s-a-1}{\longleftrightarrow} v_{s-1} \quad \text { and } \quad v_{0} \stackrel{k}{\longleftrightarrow} v_{a} \stackrel{s-a-1}{\longleftrightarrow} v_{s-1} \stackrel{1}{\longleftrightarrow} v_{0},
$$

whose lengths are $k+s-a-1$ and $k+s-a$, respectively. Since $k+s-a=k+(s-a-1)+1<k+t+1=s$, we have a closed walk of odd length less than s. This is a contradiction to $s(D)=s$. Therefore, $v_{a} \notin N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)$ for each a such that $s-1-t<a \leq s-1$.

Then, we have

$$
\left\{v_{0}, \ldots, v_{t-1}\right\} \cup\left\{v_{s-t}, \ldots, v_{s-1}\right\} \subset V(D)-N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)
$$

Since $t=s-1-k<\frac{s-1}{2}$, we have $\left\{v_{0}, \ldots, v_{t-1}\right\} \cap\left\{v_{s-t}, \ldots, v_{s-1}\right\}=\phi$. Further,

$$
\left|\left\{v_{0}, \ldots, v_{t-1}\right\} \cup\left\{v_{s-t}, \ldots, v_{s-1}\right\}\right|=2 t
$$

Then,

$$
2 t \leq|V(D)|-\left|N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)\right| .
$$

Since $\left|N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)\right| \geq m$,

$$
\begin{aligned}
& 2 t \leq|V(D)|-\left|N^{+}\left(D^{k}: v_{0}, v_{s-1}\right)\right| \leq n-m \\
& t \leq\left\lfloor\frac{n-m}{2}\right\rfloor
\end{aligned}
$$

Since $t=s-1-k$, we have

$$
k \geq s-1-\left\lfloor\frac{n-m}{2}\right\rfloor
$$

This is a contradiction. Therefore, the result is established.
Lemmas 10 and 11 give us the upper bounds on $I_{n, m}^{s}$ and $I_{n, m}$. Further, (1) and Lemma 12 give us the lower bounds on $I_{n, m}^{s}$ and $I_{n, m}$.

Definition 13. Let n, s, and m be positive integers such that $m, s \leq n$ and s is odd. We denote

$$
K(n, s, m)= \begin{cases}n-\frac{s+1}{2}+\left\lfloor\frac{m}{2}\right\rfloor, & \text { when } m<s \\ n+m-s-1, & \text { when } m \geq s\end{cases}
$$

and

$$
k(n, s, m)= \begin{cases}\frac{s-1}{2}, & \text { when } m<n-s \\ s-1-\left\lfloor\frac{n-m}{2}\right\rfloor, & \text { when } m \geq n-s\end{cases}
$$

Theorem 14. Let $D \in A_{n}^{s}$. For a positive integer m such that $m \leq n$, we have

$$
k(n, s, m) \leq k_{m}(D) \leq K(n, s, m)
$$

Further, $k_{m}(D)=K(n, s, m)$ only if D is isomorphic to $P_{n, s}$, and $k_{m}\left(P_{n, 1}\right)=K(n, 1, m)$.
Proof. Let C be an s-cycle.
Case 1. $s=1$.
There exists a vertex z having a loop. Then, $\left|N^{+}\left(D^{t}: z\right)\right| \geq t+1$ for each t such that $1 \leq t<n$. For each pair of vertices x and y, we have two directed walks expressed as $x \xrightarrow{n-1} z$ and $y \xrightarrow{n-1} z$. Therefore, we have

$$
k_{m}(D: x, y) \leq n-1+m-1=K(n, s, m),
$$

and $k_{m}(D: x, y) \geq k(n, s, m)$ since $k(n, 1, m)=0$. Therefore, we have

$$
k(n, s, m) \leq k_{m}(D) \leq K(n, s, m)
$$

Suppose $k_{m}(D)=n+m-2=K(n, 1, m)$. Let $V(C)=\{z\}$, where z has a loop. Consider a pair of vertices x and y such that $k_{m}(D: x, y)=k_{m}(D)$. If $d_{D}(x, z)<n-1$ and $d_{D}(y, z)<n-1$, then $z \in N^{+}\left(D^{n-2}: x, y\right)$. Further, if there exists another vertex z^{\prime} having a loop, then $z \in N^{+}\left(D^{n-2}: x, y\right)$ or $z^{\prime} \in N^{+}\left(D^{n-2}: x, y\right)$. Furthermore, if $z \in N^{+}\left(D^{n-2}: x, y\right)$ or $z^{\prime} \in N^{+}\left(D^{n-2}: x, y\right)$, then we have $k_{m}(D: x, y) \leq(n-2)+(m-1)<n+m-2$, which is a contradiction. Therefore, there exists a vertex x such that $d_{D}(x, z)=n-1$ and z is the only vertex having a loop in D. Then, D is isomorphic to $P_{n, 1}$.

Conversely, if D is isomorphic to $P_{n, 1}$, then we have

$$
k_{m}(D)=n+m-2=K(n, 1, m)
$$

Case $2 . s \geq 3$.
For each pair of vertices x and y, there exist directed walks such that

$$
x \xrightarrow{n-s} x^{\prime} \in V(C) \quad \text { and } \quad y \xrightarrow{n-s} y^{\prime} \in V(C) .
$$

If $m<s$, then we have $k_{m}\left(D: x^{\prime}, y^{\prime}\right) \leq \frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor$ by Lemma 10 . Therefore, we have

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n-s+k_{m}\left(D: x^{\prime}, y^{\prime}\right) \\
& \leq n-s+\frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor=K(n, s, m) .
\end{aligned}
$$

If $m \geq s$, then we have $k_{m}\left(D: x^{\prime}, y^{\prime}\right) \leq m-1$ by Lemma 11 . Therefore, we have

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n-s+k_{m}\left(D: x^{\prime}, y^{\prime}\right) \\
& \leq n-s+m-1=K(n, s, m)
\end{aligned}
$$

By Proposition 6 and (1), we have

$$
k_{m}(D) \geq k_{1}(D) \geq \frac{s-1}{2} .
$$

By Lemma 12, we have

$$
k_{m}(D) \geq s-1-\left\lfloor\frac{n-m}{2}\right\rfloor .
$$

Since $m \geq n-s$ if and only if $\frac{s-1}{2} \leq s-1-\left\lfloor\frac{n-m}{2}\right\rfloor$, we have $k_{m}(D) \geq k(n, s, m)$. Therefore,

$$
k(n, s, m) \leq k_{m}(D) \leq K(n, s, m)
$$

Suppose $k_{m}(D)=K(n, s, m)$. Consider a pair of vertices x and y such that $k_{m}(D: x, y)=k_{m}(D)$. If $d_{D}(x, V(C))<n-s$ and $d_{D}(y, V(C))<n-s$, then there exist vertices x^{\prime} and y^{\prime} in $V(C)$ such that $x \xrightarrow{n-s-1} x^{\prime}$ and $y \xrightarrow{n-s-1} y^{\prime}$, respectively. By Lemmas 10 and 11, we have

$$
k_{m}\left(D: x^{\prime}, y^{\prime}\right) \leq \begin{cases}\frac{s-1}{2}+\left\lfloor\frac{m}{2}\right\rfloor, & \text { when } m<s \\ m-1, & \text { when } m \geq s\end{cases}
$$

Then, $k_{m}(D: x, y) \leq K(n, s, m)-1$, which is a contradiction. Therefore, we have that $P_{n, s}$ is a subdigraph of D. We can also have $k_{m}(D)<K(n, s, m)$ if there is another edge that is not in $E\left(P_{n, s}\right)$, Therefore, D is isomorphic to $P_{n, s}$. This establishes the result.

Corollary 15. If $D \in A_{n}^{S}$, then we have

$$
s-1 \leq k_{n}(D)=\exp (D) \leq 2 n-s-1 .
$$

Corollary 16. Let $D \in A_{n}$ and m be a positive integer such that $m \leq n$. Then, we have

$$
k_{m}(D) \leq n+m-2
$$

The equality holds if and only if D is isomorphic to $P_{n, 1}$.
Theorem 17. Let n and m be positive integers such that $n \geq 4$ and $m<n$. Then, we have

$$
I_{n, m}=[1, m+n-2]^{0}
$$

Proof. By Theorem 8, we have the result for $m=1$. Suppose $1<m<n$. For a positive integer k such that $1 \leq k \leq n+m-2$, we claim that $k \in I_{n, m}$.

We have $n+m-2 \in I_{n, m}$ since $k_{m}\left(P_{n, 1}\right)=n+m-2$ by Corollary 16 .
We have $1 \in I_{n, m}$ since $k_{m}\left(\bar{J}_{n}\right)=1$, where \bar{J}_{n} is the digraph whose adjacency matrix is $n \times n$ all-ones matrix.
Consider the digraph D^{\prime} given by

$$
\begin{aligned}
& V\left(D^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}\right\} \\
& E\left(D^{\prime}\right)=\left\{v_{i} \leftrightarrow v_{j}: 1 \leq i, j \leq n-1, i \neq j\right\} \cup\left\{v_{n-1} \leftrightarrow v_{n}\right\} .
\end{aligned}
$$

Then, we have $k_{m}\left(D^{\prime}\right)=2 \in I_{n, m}$.
We claim that $k \in I_{n, m}$ for each k such that $3 \leq k<n+m-2$.
Case 1. $2(m-1)<k<n+m-2$.
Consider the symmetric primitive digraph D_{1} given by

$$
\begin{aligned}
& V\left(D_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
& E\left(D_{1}\right)=\left\{v_{i} \leftrightarrow v_{i+1}: 1 \leq i \leq k-m+1\right\} \cup\left\{v_{k-m+2} \leftrightarrow v_{k-m+2}\right\} \cup\left\{v_{i} \leftrightarrow v_{2}: k-m+3 \leq i \leq n\right\}
\end{aligned}
$$

For a pair of positive integers i and j such that $1 \leq i, j \leq n$, we have $k_{m}\left(D_{1}: v_{i}, v_{j}\right) \leq k_{m}\left(D_{1}: v_{1}, v_{2}\right)$. For each positive integer l such that $l \geq k$,

$$
\begin{aligned}
& N^{+}\left(D_{1}^{k-1}: v_{1}, v_{2}\right)=\left\{v_{k-m+2}, v_{k-m+1}, \ldots, v_{k-2 m+4}\right\} \\
& N^{+}\left(D_{1}^{l}: v_{1}, v_{2}\right) \supset\left\{v_{k-m+2}, v_{k-m+1}, \ldots, v_{k-2 m+3}\right\}
\end{aligned}
$$

Then, we have $k_{m}\left(D_{1}\right)=k_{m}\left(D_{1}: v_{1}, v_{2}\right)=k$. Further, $k \in I_{n, m}$.
Case 2 . $k \leq 2(m-1)$ and k is even.
Consider the symmetric primitive digraph D_{2} given by

$$
\begin{aligned}
V\left(D_{2}\right)= & \left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
E\left(D_{2}\right)= & \left.\left\{v_{i} \leftrightarrow v_{i+1}: 1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor-1\right\} \cup\left\{v_{i} \leftrightarrow v_{i}:\left\lfloor\frac{k}{2}\right\rfloor+1 \leq i \leq m\right\} \cup\left\{v_{\left\lfloor\frac{k}{2}\right\rfloor}\right\rfloor v_{i}:\left\lfloor\frac{k}{2}\right\rfloor+1 \leq i \leq m\right\} \\
& \cup\left\{v_{i} \leftrightarrow v_{2}: m+1 \leq i \leq n\right\}
\end{aligned}
$$

For a pair of positive integers i and j such that $1 \leq i, j \leq n$, we have $k_{m}\left(D_{2}: v_{i}, v_{j}\right) \leq k_{m}\left(D_{2}: v_{1}, v_{2}\right)$. For each positive integer l such that $l \geq k$,

$$
\begin{aligned}
& N^{+}\left(D_{2}^{k-1}: v_{1}, v_{2}\right)=\left\{v_{2}, v_{3}, \ldots, v_{m}\right\} \\
& N^{+}\left(D_{2}^{l}: v_{1}, v_{2}\right) \supset\left\{v_{1}, v_{2}, \ldots, v_{m}, \ldots, v_{n}\right\}
\end{aligned}
$$

Then, we have $k_{m}\left(D_{2}\right)=k_{m}\left(D_{2}: v_{1}, v_{2}\right)=k$. Further, $k \in I_{n, m}$.
Case 3 . $k \leq 2(m-1)$ and k is odd.
Since $m+1 \leq n$, we can consider the symmetric primitive digraph D_{3} given by

$$
\begin{aligned}
V\left(D_{3}\right)= & \left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
E\left(D_{3}\right)= & \left\{v_{i} \leftrightarrow v_{i+1}: 1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor\right\} \cup\left\{v_{i} \leftrightarrow v_{i}:\left\lfloor\frac{k}{2}\right\rfloor+2 \leq i \leq m+1\right\} \\
& \cup\left\{v^{\left\lfloor\frac{k}{2}\right\rfloor+1} \leftrightarrow v_{i}:\left\lfloor\frac{k}{2}\right\rfloor+2 \leq i \leq m+1\right\} \cup\left\{v_{i} \leftrightarrow v_{2}: m+2 \leq i \leq n\right\}
\end{aligned}
$$

For a pair of positive integers i and j such that $1 \leq i, j \leq n$, we have $k_{m}\left(D_{3}: v_{i}, v_{j}\right) \leq k_{m}\left(D_{3}: v_{1}, v_{2}\right)$. For each positive integer l such that $l \geq k$,

$$
\begin{aligned}
& N^{+}\left(D_{3}^{k-1}: v_{1}, v_{2}\right)=\left\{v_{3}, v_{4}, \ldots, v_{m+1}\right\}, \\
& N^{+}\left(D_{3}^{l}: v_{1}, v_{2}\right) \supset\left\{v_{2}, v_{3}, \ldots, v_{m+1}\right\}
\end{aligned}
$$

Then, we have $k_{m}\left(D_{3}\right)=k_{m}\left(D_{3}: v_{1}, v_{2}\right)=k$. Further, $k \in I_{n, m}$.
We have $k \in I_{n, m}$ for each k such that $1 \leq k \leq n+m-2$. This establishes the result.
If $1 \leq m<n$, then there is no gap in $I_{n, m}$. However, there is a gap in $I_{n, n}$ by Proposition 4 . It should be noted that the condition of $m<n$ is essential for constructing the digraph D_{3} in Theorem 17.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of scrambling index of a primitive digraph. Kim [9] introduced the generalized competition index $k_{m}(D)$ as another generalization of exponent $\exp (D)$ and scrambling index $k(D)$ for a primitive digraph D. In this study, we investigated $k_{m}(D)$ for a symmetric primitive digraph D as an extension of the results in [4,13].

Acknowledgment

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

[1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111-1130.
[2] M. Akelbek, S. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099-1110.
[3] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[4] S. Chen, B. Liu, The scrambling index of symmetric primitive matrices, Linear Algebra Appl. 433 (2010) 1110-1126.
[5] H.H. Cho, H.K. Kim, Competition indices of strongly connected digraphs, Bull. Korean Math. Soc. 48 (2011) 637-646.
[6] H.H. Cho, S.-R. Kim, Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math. 105 (2000) 115-127.
[7] Y. Huang, B. Liu, Generalized scrambling indices of a primitive digraph, Linear Algebra Appl. 433 (2010) 1798-1808.
[8] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
[9] H.K. Kim, Generalized competition index of a primitive digraph, Linear Algebra Appl. 433 (2010) 72-79.
[10] B. Liu, Y. Huang, The scrambling index of primitive digraphs, Comput. Math. Appl. 60 (2010) 706-721.
[11] B. Liu, H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, 2000.
[12] B. Liu, B.D. McKay, N.C. Wormald, Z.K. Min, The exponent set of symmetric primitive (0,1) matrices with zero trace, Linear Algebra Appl. 133 (1990) 121-131.
[13] J. Shao, On the set of symmetrical graph matrix, Sci. Sin. A 9 (1986) 931-939.
[14] M.S. Sim, H.K. Kim, On generalized competition index of a primitive tournament, Discrete Math. 311 (2011) 2657-2662.
[15] B. Zhou, J. Shen, On generalized exponents of tournaments, Taiwanese J. Math. 6 (2002) 565-572.

[^0]: * Corresponding author. Fax: +82 222870069.

 E-mail addresses: indices@smu.ac.kr (H.K. Kim), iami9999@naver.com (S.H. Lee).

