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Note
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Erdés and Purdy ask how many points can be chosen from the n x n-grid with
no four of them on a circle. They proved a lower bound of #%*~% In this note we
improve the lower bound to (—¢)-n.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Erdds and Purdy ask the following question [Rkg]: consider the set of
n? grid points (x, y) with 0 < x, y <n. How many points can you choose,
s.t. there are no four of them on a common circle; in particular, there are
no four points on a line. Let C(n) denote the maximum number of such
points. They mentioned that it is easy to show that n**~¢is a lower bound
but they conjectured that more is possible. We will show the following.

THEOREM 1.1. Let £¢>0 be a real constant. Then, for n sufficiently large
Cn)>(1—5)-n.

This bound is optimal up to the constant since 3 is an obvious upper
bound. For the proof we construct a subset of the nxn-grid with the
desired property. In fact, our point set will have a further property: there
are no three points on a line.

Such point sets are useful for perturbating degenerated point sets. The
aim of a perturbation algorithm is to perturb the input of a geometric
algorithm (such as computation of convex hulls or Voronoi diagrams)
designed under the hypothesis of non-degeneracy of the input so that it can
execute on arbitrary instances (see, for example, [ EC]).

Related to our problem is the so-called no-three-in-line problem where
one secks for large subsets of the grid with no three points on a common
line. The best known lower bound is (1.5 —¢) - # (see [ HISW]). Up to now
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it is an unsolved problem whether it is always possible to select 2z points
with this property (see [F1]).

2. CONSTRUCTION AND PROOF

Let p be a prime number. Define the point set P(p) as
P(p):= {(1, 1> mod p) : 0< 1< p/4}. (1)
Clearly P(p) is a subset of the p x p-grid.
LemMA 2.1. Let p be a prime number. Then there are no four points in
P(p) on a common circle and no three points on a common line.

Proof. Let p be a given prime and P(p) defined by (1). Assume first
that there are three points (¢;, t2mod p), i=1, 2, 3, in P(p) on a line. Then
the determinant

1 ¢ i3
1 1, =] @-1)
NI S

would be zero modulo p. But this is impossible since p is a prime

Now assume there are four points (z;, t; mod p), i=1, 2, 3, 4, in P(p)
on a circle. Four points in the plane lie on a common circle if and only if
their projections onto the unit paraboloid {(x, y, x*+ y*): x, ye R} lie on
a common hyperplane. Thus the determinant
t, 1 i+
t, tZ 2413
Iy 1 13+1;
t, 17 ti+i}

=(ti+t+15+t,) [] (1,—1)

i<j

would be zero modulo p. Again this is impossible since p is a prime and
the ¢;’s are less than p/4. |

Theorem 1.1 is an immediate consequence of Lemma 2.1 by taking p to
be the largest prime less than or equal to x.
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Note added in proof. The construction can be generalized to dimension d > 2 to determine
a set of Q(n“~ 1) points in the ngrid with no d-+2 points on a sphere and no d + 1 points
on a hyperplane.



334 NOTE

REFERENCES

[EC] I. Emiris anD J. CaNNyY, An efficient approach to removing geometric degeneracies,
in “Proceedings Eighth Annual Symposium on Computational Geometry,”
pp. 74-82, Assoc. Comput. Mach., New York, 1992.

[F1] A. FLAMMENKAMP, Progress in the no-three-in-line-problem, J. Combin. Theory
Ser. 4 60 (1992), 305-311.

[HISW] R. R. Harr, T. H. JacksoN, A. SupBerY, aNp K. WILD, Some advances in the
no-three-in-line problem, J. Combin. Theory Ser. A 18 (1975), 336-341.

[Rkg] R. K. Guy, “Unsolved Problems in Number Theory,” p. 133, Springer-Verlag,
New York/Berlin, 1981.



