

Available online at www.sciencedirect.com

Journal of Algebra 285 (2005) 335-355

www.elsevier.com/locate/jalgebra

w-Divisorial domains

Said El Baghdadi^a, Stefania Gabelli^{b,*}

^a Department of Mathematics, Faculté des Sciences et Techniques, P.O. Box 523, Beni Mellal, Morocco ^b Dipartimento di Matematica, Università degli Studi Roma Tre, Largo S.L. Murialdo, 1, 00146 Roma, Italy

> Received 7 July 2004 Available online 15 January 2005 Communicated by Paul Roberts

Abstract

We study the class of domains in which each w-ideal is divisorial, extending several properties of divisorial and totally divisorial domains to a much wider class of domains. In particular we consider PvMDs and Mori domains.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Divisorial domains; Prüfer v-multiplication domains; Mori domains

Introduction

The class of domains in which each nonzero ideal is divisorial has been studied, independently and with different methods, by H. Bass [2], E. Matlis [25] and W. Heinzer [17] in the sixties. Following S. Bazzoni and L. Salce [3,4], these domains are now called *divisorial domains*. Among other results, Heinzer proved that an integrally closed domain is divisorial if and only if it is a Prüfer domain with certain finiteness properties [17, Theorem 5.1].

Twenty years later E. Houston and M. Zafrullah introduced in [20] the class of domains in which each *t*-ideal is divisorial, which they called *TV-domains*, and characterized *PvMDs* with this property [20, Theorem 3.1]. However they observed that an integrally

^{*} Corresponding author. *E-mail addresses:* baghdadi@fstbm.ac.ma (S. El Baghdadi), gabelli@mat.uniroma3.it (S. Gabelli).

^{0021-8693/\$ –} see front matter $\,$ © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.11.016

closed *TV*-domain need not be a *PvMD* [20, Remark 3.2]; thus in some sense the class of *TV*-domains is not the right setting for extending to *PvMD*s the properties of divisorial Prüfer domains.

The purpose of this paper is to investigate *w*-divisorial domains, that is domains in which each *w*-ideal is divisorial. This class of domains proves to be the most suitable *t*-analogue of divisorial domains. In fact, by using this concept we are able to improve and generalize several results proved for Noetherian and Prüfer divisorial domains in [3,17,28,31].

The main result of Section 1 is Theorem 1.5. It states that R is a w-divisorial domain if and only if R is a weakly Matlis domain (that is a domain with *t*-finite character such that each *t*-prime ideal is contained in a unique *t*-maximal ideal) and R_M is a divisorial domain, for each *t*-maximal ideal M. In this way we recover the characterization of divisorial domains given in [3, Proposition 5.4].

In Section 2, we study the transfer of the properties of w-divisoriality and divisoriality to certain (generalized) rings of fractions, such as localizations at (*t*-)prime ideals, (*t*-)flat overrings and (*t*-)subintersections.

In Section 3 we consider *w*-divisorial PvMDs. We prove that *R* is an integrally closed *w*-divisorial domain if and only if *R* is a weakly Matlis PvMD and each *t*-maximal ideal is *t*-invertible (Theorem 3.3). This is the *t*-analogue of [17, Theorem 5.1]. We also prove that when *R* is integrally closed, each *t*-linked overring of *R* is *w*-divisorial if and only if *R* is a generalized Krull domain and each *t*-prime ideal is contained in a unique *t*-maximal ideal (Theorem 3.5). Since in the Prüfer case generalized Krull domains coincide with generalized Dedekind domains [7], we obtain that an integrally closed domain is totally divisorial if and only if it is a divisorial generalized Dedekind domain [28, Section 4].

The last section is devoted to Mori *w*-divisorial domains. A Mori *w*-divisorial domain is necessarily of *t*-dimension one and each of its localizations at a height-one prime is Noetherian (Corollary 4.3). Noetherian divisorial and totally divisorial domains were intensely studied in [2,3,25,31]. It turns out that several of the results proved there can be extended to the Mori case by using different technical tools. In Theorem 4.2 we characterize *w*-divisorial Mori domains and in Theorems 4.5 and 4.11 we study *w*-divisoriality of their overrings. In particular, we show that generalized rings of fractions of *w*-divisorial Mori domains are *w*-divisorial and we prove that a domain whose *t*-linked overings are all *w*-divisorial is Mori if and only if it has *t*-dimension one.

Throughout this paper *R* will denote an integral domain with quotient field *K* and we will assume that $R \neq K$.

We shall use the language of star operations. A *star operation* is a map $I \to I^*$ from the set F(R) of nonzero fractional ideals of R to itself such that:

(1) $R^* = R$ and $(aI)^* = aI^*$, for all $a \in K \setminus \{0\}$;

(2) $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$;

(3)
$$I^{**} = I^*$$

General references for systems of ideals and star operations are [13,15,16,21].

A star operation * is of *finite type* if $I^* = \bigcup \{J^*; J \subseteq I \text{ and } J \text{ is finitely generated} \}$, for each $I \in F(R)$. To any star operation *, we can associate a star operation $*_f$ of finite type

by defining $I^{*_f} = \bigcup J^*$, with the union taken over all finitely generated ideals *J* contained in *I*. Clearly $I^{*_f} \subseteq I^*$. A nonzero ideal *I* is *-*finite* if $I^* = J^*$ for some finitely generated ideal *J*.

The identity is a star operation, called the *d*-operation. The *v*- and the *t*-operations are the best known nontrivial star operations and are defined in the following way. For a pair of nonzero ideals *I* and *J* of a domain *R* we let (J : I) denote the set $\{x \in K; xI \subseteq J\}$. We set $I_v = (R : (R : I))$ and $I_t = \bigcup J_v$ with the union taken over all finitely generated ideals *J* contained in *I*. Thus the *t*-operation is the finite type star operation associated to the *v*-operation.

A nonzero fractional ideal I is called a *-*ideal* if $I = I^*$. If $I = I_v$ we say that I is *divisorial*. For each star operation *, we have $I^* \subseteq I_v$, thus each divisorial ideal is a *-ideal.

The set $F_*(R)$ of *-ideals of R is a semigroup with respect to the *-*multiplication*, defined by $(I, J) \rightarrow (IJ)^*$, with unity R. We say that an ideal $I \in F(R)$ is *-*invertible* if I^* is a unit in the semigroup $F_*(R)$. In this case the *-*inverse* of I is (R : I). Thus I is *-invertible if and only if $(I(R : I))^* = R$. Invertible ideals are (*-invertible) *-ideals.

A prime *-ideal is also called a *-*prime*. A *-*maximal* ideal is an ideal that is maximal in the set of the proper *-ideals. A *-maximal ideal (if it exists) is a prime ideal. If * is a star operation of finite type, an easy application of Zorn's Lemma shows that the set *-Max(*R*) of the *-maximal ideals of *R* is not empty. Moreover, for each $I \in F(R)$, $I^* = \bigcap_{M \in *-Max(R)} I^*R_M$; in particular $R = \bigcap_{M \in *-Max(R)} R_M$ [15].

The w-operation is the star operation defined by setting $I_w = \bigcap_{M \in t-Max(R)} IR_M$. An equivalent definition is obtained by setting $I_w = \bigcup\{(I : J); J \text{ is finitely generated and } (R : J) = R\}$. By using the latter definition, one can see that the notion of w-ideal co-incides with the notion of *semi-divisorial* ideal introduced by S. Glaz and W. Vasconcelos in 1977 [14]. As a star operation, the w-operation was first considered by E. Hedstrom and E. Houston in 1980 under the name of F_{∞} -operation [18]. Since 1997 this star operation was intensely studied by Wang Fanggui and R. McCasland in a more general context. In particular they showed that the notion of w-closure is a very useful tool in the study of Strong Mori domains [32,33].

The *w*-operation is of finite type. We have $w-\operatorname{Max}(R) = t-\operatorname{Max}(R)$ and $IR_M = I_w R_M \subseteq I_t R_M$, for each $I \in F(R)$ and $M \in t-\operatorname{Max}(R)$. Thus $I_w \subseteq I_t \subseteq I_v$.

We denote by t-Spec(R) the set of t-prime ideals of R. Each height one prime is a t-prime and each prime minimal over a t-ideal is a t-prime. We say that R has t-dimension one if each t-prime ideal has height one.

1. w-Divisorial domains

A *divisorial domain* is a domain such that each ideal is divisorial [3] and we say that a domain R is *w*-*divisorial* if each *w*-ideal is divisorial, that is w = v. Since $I_w \subseteq I_t \subseteq I_v$, for each nonzero fractional ideal I, then R is *w*-divisorial if and only if w = t = v. A domain with the property that t = v is called in [20] a *TV*-*domain*. Mori domains (i.e., domains satisfying the ascending chain condition on proper divisorial ideals) are *TV*-domains. A domain such that w = t is called a *TW*-*domain* [27]. An important class of *TW*-domain is the class of *PvMD*s; in fact a *PvMD* is precisely an integrally closed *TW*-domain [22, The-

orem 3.1]. (Recall that a domain *R* is a *Prüfer v-multiplication domain*, for short a *PvMD*, if R_M is a valuation domain for each *t*-maximal ideal *M* of *R*.) Since a Krull domain is a Mori *PvMD*, a Krull domain is a *w*-divisorial domain. An example due to M. Zafrullah shows that in general $w \neq t \neq v$ [27, Proposition 1.2]. Also there exist *TV*-domains and *TW*-domains that are not *w*-divisorial [27, Example 2.7].

If R is a Prüfer domain, in particular a valuation domain, then w-divisoriality coincides with divisoriality, because each ideal of a Prüfer domain is a t-ideal.

Proposition 1.1. A *w*-divisorial domain *R* is divisorial if and only if each maximal ideal of *R* is a *t*-ideal. Hence a one-dimensional *w*-divisorial domain is divisorial.

Proof. If each maximal ideal of *R* is a *t*-ideal, then each ideal of *R* is a *w*-ideal by [27, Proposition 1.3]. Hence, if *R* is *w*-divisorial it is also divisorial. The converse is clear. \Box

Following [1], we say that a nonempty family Λ of nonzero prime ideals of R is of *finite* character if each nonzero element of R belongs to at most finitely many members of Λ and we say that Λ is *independent* if no two members of Λ contain a common nonzero prime ideal. We observe that a family of primes is independent if and only if no two members of Λ contain a common *t*-prime ideal. In fact a minimal prime of a nonzero principal ideal is a *t*-ideal.

The domain R has finite character (respectively, *t*-finite character) if Max(R) (respectively, *t*-Max(R)) is of finite character. If the set Max(R) is independent of finite character, the domain R is called by E. Matlis an *h*-local domain [26]; thus R is *h*-local if it has finite character and each nonzero prime ideal is contained in a unique maximal ideal. A domain R such that *t*-Max(R) is independent of finite character is called in [1] a *weakly Matlis domain*; hence R is a weakly Matlis domain if it has *t*-finite character and each *t*-prime ideal is contained in a unique *t*-maximal ideal.

Clearly, a domain of *t*-dimension one is a weakly Matlis domain if and only if it has *t*-finite character. A one-dimensional domain is a weakly Matlis domain if and only if it is *h*-local; if and only if it has finite character.

We recall that any TV-domain, hence any w-divisorial domain, has t-finite character by [20, Theorem 1.3]. The main result of this section shows that w-divisorial domains form a distinguished class of weakly Matlis domains.

We start by proving some technical properties of weakly Matlis domains.

Lemma 1.2. Let R be an integral domain. The following conditions are equivalent:

- (1) *R* is a weakly Matlis domain;
- (2) For each t-maximal ideal M of R and a collection $\{I_{\alpha}\}$ of w-ideals of R such that $\bigcap_{\alpha} I_{\alpha} \neq 0$, if $\bigcap_{\alpha} I_{\alpha} \subseteq M$, then $I_{\alpha} \subseteq M$ for some α .

Proof. (1) \Rightarrow (2) follows from [1, Corollary 4.4 and Proposition 4.7], by taking $\mathcal{F} = t$ -Max(R) and then $*_{\mathcal{F}} = w$.

 $(2) \Rightarrow (1)$. First, we show that each *t*-prime ideal is contained in a unique *t*-maximal ideal. We adapt the proof of [17, Theorem 2.4]. Let *P* be a *t*-prime which is contained in

two distinct *t*-maximal ideals M_1 and M_2 . Let $\{I_\alpha\}$ be the set of all *w*-ideals of *R* which contain *P* but are not contained in M_1 . Such a collection is nonempty since M_2 is in it. Let $I = \bigcap I_\alpha$. Then $I \nsubseteq M_1$ and $I \subseteq M_2$. Take $x \in I \setminus M_1$. Since $x^2 \notin M_1$, then $(P + x^2R)_w \in$ $\{I_\alpha\}$ and so $x \in (P + x^2R)_w$. Thus $x \in (P + x^2R)R_{M_2} \neq R_{M_2}$ and $sx = p + x^2r$ for some $s \in R \setminus M_2$, $p \in P$ and $r \in R$. Whence $(s - rx)x = p \in P \subseteq M_1 \cap M_2$. Now $s - rx \notin P$ because $s \notin M_2$ and $rx \in I \subseteq M_2$. But also $x \notin P$, since $x \notin M_1$; a contradiction because *P* is prime.

Next we show that *R* has *t*-finite character. Let $0 \neq x \in R$ and $\{M_{\beta}\}$ be the set of all *t*-maximal ideals of *R* which contain *x*. For a fixed β , let A_{β} be the intersection of all *w*-ideals of *R* which contain *x* but are not contained in M_{β} . By assumption $A_{\beta} \nsubseteq M_{\beta}$. Set $A = \sum_{\beta} A_{\beta}$. Then $x \in A$ and *A* is contained in no M_{β} . Hence $A_t = R$. Let $F = (a_{\beta_1}, a_{\beta_2}, \ldots, a_{\beta_n})$, where $a_{\beta_i} \in A_{\beta_i}$, be a finitely generated ideal of *R* such that $F_t = R$. Now, if $M_{\beta} \notin \{M_{\beta_1}, M_{\beta_2}, \ldots, M_{\beta_n}\}$, necessarily $M_{\beta} \supseteq F$, which is impossible because M_{β} is a proper *t*-ideal and $F_t = R$. We conclude that $\{M_{\beta}\} = \{M_{\beta_1}, M_{\beta_2}, \ldots, M_{\beta_n}\}$ is finite. \Box

Lemma 1.3. Let R be a w-divisorial domain, M a t-maximal ideal of R and $\{I_{\alpha}\}$ a collection of w-ideals of R such that $\bigcap_{\alpha} I_{\alpha} \neq 0$. If $\bigcap_{\alpha} I_{\alpha} \subseteq M$, then $I_{\alpha} \subseteq M$ for some α .

Proof. Set $A = \bigcap_{\alpha} I_{\alpha}$. Since *R* is a *TW*-domain, then the I_{α} 's and *A* are *t*-ideals. Since *R* is also a *TV*-domain, by [20, Lemma 1.2], if $I_{\alpha} \nsubseteq M$, for each α , then $A \nsubseteq M$. \Box

Lemma 1.4. If R is a weakly Matlis domain, then $I_v R_M = (IR_M)_v$, for each nonzero fractional ideal I and each t-maximal ideal M.

Proof. Apply [1, Corollary 5.3] for $\mathcal{F} = t$ -Max(R). \Box

We are now ready to prove the *t*-analogue of [3, Proposition 5.4], which states that a domain R is divisorial if and only if it is *h*-local and R_M is a divisorial domain, for each maximal ideal M. Local divisorial domains have been studied in [3, Section 5] and completely characterized in [4, Section 2].

Theorem 1.5. Let *R* be an integral domain. The following conditions are equivalent:

- (1) *R* is a *w*-divisorial domain;
- (2) *R* is a weakly Matlis domain and R_M is a divisorial domain, for each t-maximal ideal *M*;
- (3) *R* is a *TV*-domain and R_M is a divisorial domain, for each *t*-maximal ideal *M*;
- (4) $IR_M = (IR_M)_v = I_v R_M$, for each nonzero fractional ideal I and each t-maximal ideal M.

Proof. (1) \Rightarrow (2). That *R* is a weakly Matlis domain follows from Lemmas 1.3 and 1.2. Now let *M* be a *t*-maximal ideal of *R* and $I = JR_M$ a nonzero ideal of R_M , where *J* is an ideal of *R*. By Lemma 1.4, we have $I_v = (JR_M)_v = J_vR_M$. Since $J_v = J_w$, then $I_v = J_wR_M = JR_M = I$. Hence R_M is a divisorial domain. $(2) \Rightarrow (4)$ follows from Lemma 1.4.

(4) \Rightarrow (1). Let *I* be a nonzero fractional ideal of *R*. Then $I_w = \bigcap_{M \in t - \text{Max}(R)} IR_M = \bigcap_{M \in t - \text{Max}(R)} I_v R_M = I_v$. Whence *R* is a *w*-divisorial domain. (1) \Rightarrow (3) via (2).

(3) \Rightarrow (4). Since t = v in R and d = t = v in R_M , for each nonzero fractional ideal I and each *t*-maximal ideal M of R, we have

$$IR_M = (IR_M)_v = (IR_M)_t = (I_tR_M)_t = I_tR_M = I_vR_M.$$

Any almost Dedekind domain that is not Dedekind provides an example of a locally divisorial domain that is not w-divisorial, because it is not of finite character [13, Theorem 37.2].

Corollary 1.6. Let R be a domain of t-dimension one. Then R is w-divisorial if and only if R has t-finite character and R_P is divisorial, for each height one prime P.

2. Localizations of w-divisorial domains

A domain whose overrings are all divisorial is called *totally divisorial* [3]. Not all divisorial domains are totally divisorial [17, Remark 5.4]; in fact a valuation domain R is divisorial if and only if its maximal ideal is principal [17, Lemma 5.2], but it is totally divisorial if and only if it is strongly discrete [3, Proposition 7.6], equivalently PR_P is a principal ideal for each prime ideal P of R [8, Proposition 5.3.8]. Since for valuation domains divisoriality coincides with w-divisoriality and each overring of a valuation domain is a localization at a certain (t-)prime, we see that w-divisoriality is not stable under localization at t-primes.

We say that an integral domain R is a *strongly w-divisorial domain* (respectively, a *strongly divisorial domain*) if R is *w*-divisorial (respectively, divisorial) and R_P is a divisorial domain for each $P \in t$ -Spec(R) (respectively, $P \in$ Spec(R)). Note that if R is strongly *w*-divisorial (respectively, strongly divisorial), then R_P is strongly divisorial for each $P \in t$ -Spec(R) (respectively, for each $P \in$ Spec(R)).

By Theorem 1.5 (respectively, [3, Proposition 5.4]), R is a strongly *w*-divisorial domain (respectively, a strongly divisorial domain) if and only if R is a weakly Matlis domain (respectively, an *h*-local domain) and R_P is a divisorial domain for each $P \in t$ -Spec(R) (respectively, $P \in \text{Spec}(R)$).

If R has t-dimension one, then R is w-divisorial if and only if it is strongly w-divisorial.

In this section we shall study the extension of w-divisoriality and divisoriality to distinguished classes of generalized rings of fractions such as localizations at (t-)prime ideals, (t-)flat overrings and (t-)subintersections.

We recall the requisite definitions. A nonempty family \mathcal{F} of nonzero ideals of a domain R is said to be a *multiplicative system* of ideals if $IJ \in \mathcal{F}$, for each $I, J \in \mathcal{F}$. If \mathcal{F} is a multiplicative system, the set of ideals of R containing some ideal of \mathcal{F} is still a multiplicative system, which is called the *saturation of* \mathcal{F} and is denoted by $Sat(\mathcal{F})$. A multiplicative system \mathcal{F} is said to be *saturated* if $\mathcal{F} = Sat(\mathcal{F})$.

If \mathcal{F} is a multiplicative system of ideals, the overring $R_{\mathcal{F}} := \bigcup \{ (R : J); J \in \mathcal{F} \}$ of R is called the *generalized ring of fractions* of R with respect to \mathcal{F} . For any fractional ideal I of R, $I_{\mathcal{F}} := \bigcup \{ (I : J); J \in \mathcal{F} \}$ is a fractional ideal of $R_{\mathcal{F}}$ and $IR_{\mathcal{F}} \subseteq I_{\mathcal{F}}$. Clearly $I_{\mathcal{F}} = I_{\text{Sat}(\mathcal{F})}$.

The map $P \mapsto P_{\mathcal{F}}$ is an order-preserving bijection between the set of prime ideals P of R such that $P \notin \operatorname{Sat}(\mathcal{F})$ and the set of prime ideals Q of $R_{\mathcal{F}}$ such that $JR_{\mathcal{F}} \nsubseteq Q$ for any $J \in \mathcal{F}$, with inverse map $Q \mapsto Q \cap R$. In addition, $R_P = (R_{\mathcal{F}})_{P_{\mathcal{F}}}$ for each prime ideal $P \notin \operatorname{Sat}(\mathcal{F})$. If Q is a *t*-prime ideal of $R_{\mathcal{F}}$, then $Q \cap R$ is a *t*-prime ideal of R [10, Proposition 1.3].

If Λ is a nonempty family of nonzero prime ideals of R, the set $\mathcal{F}(\Lambda) = \{J; J \subseteq R \text{ is an ideal and } J \notin P \text{ for each } P \in \Lambda\}$ is a saturated multiplicative system of ideals and $I_{\mathcal{F}(\Lambda)} = \bigcap \{IR_P; P \in \Lambda\}$, for each fractional ideal I of R; in particular $R_{\mathcal{F}(\Lambda)} = \bigcap \{R_P; P \in \Lambda\}$. A generalized ring of fractions of type $R_{\mathcal{F}(\Lambda)}$ is called a *subintersection of R*; when $\Lambda \subseteq t$ -Spec(R), we say that $R_{\mathcal{F}(\Lambda)}$ is a *t*-subintersection of R.

A multiplicative system of ideals \mathcal{F} of R is *finitely generated* if each ideal $I \in \mathcal{F}$ contains a finitely generated ideal J which is still in \mathcal{F} . As in [10], we say that \mathcal{F} is a *v*-finite multiplicative system if each *t*-ideal $I \in \operatorname{Sat}(\mathcal{F})$ contains a finitely generated ideal J such that $J_v \in \operatorname{Sat}(\mathcal{F})$. A finitely generated multiplicative system is *v*-finite. If \mathcal{F} is *v*-finite, the set Λ of *t*-ideals which are maximal with respect to the property of not being in $\operatorname{Sat}(\mathcal{F})$ is not empty, $\Lambda \subseteq t\operatorname{-Spec}(R)$, $\mathcal{F}(\Lambda)$ is *v*-finite and $T = R_{\mathcal{F}(\Lambda)}$ [10, Proposition 1.9(a) and (b)].

An overring *T* of *R* is said to be *t*-flat over *R* if $T_M = R_{M\cap R}$, for each *t*-maximal ideal *M* of *T* [23], equivalently $T_Q = R_{Q\cap R}$, for each *t*-prime ideal *Q* of *T* [7, Proposition 2.6]. Flatness implies *t*-flatness, but the converse is not true [23, Remark 2.12]. By [7, Theorem 2.6], *T* is *t*-flat over *R* if and only if there exists a *v*-finite multiplicative system \mathcal{F} of *R* such that $T = R_{\mathcal{F}}$. Thus *T* is *t*-flat if and only if $T = R_{\mathcal{F}(\Lambda)}$, where Λ is a family of pairwise incomparable *t*-primes of *R* and $\mathcal{F}(\Lambda)$ is *v*-finite. It follows that a *t*-flat overring of *R* is a *t*-subintersection of *R*.

In turn, any generalized ring of fractions is a *t*-linked overring; but the converse does not hold in general [5, Proposition 2.2]. We recall that an overring *T* of an integral domain *R* is *t*-linked over *R* if, for each nonzero finitely generated ideal *J* of *R* such that (R : J) = R, we have (T : JT) = T [5]. This is equivalent to say that $T = \bigcap T_{R \setminus P}$, where *P* ranges over the *t*-primes of *R* [5, Proposition 2.13(a)].

It is well known that if *P* is a *t*-prime ideal of *R*, then PR_P need not be a *t*-ideal of R_P . When PR_P is a *t*-prime ideal, *P* is called by M. Zafrullah a *well behaved t*-prime [34, page 436]. We prefer to say that *P t-localizes* or that it is a *t-localizing prime*. Height-one prime ideals and divisorial *t*-maximal primes, e.g., *t*-invertible *t*-primes, are examples of *t*-localizing primes.

A large class of domains with the property that each *t*-prime ideal *t*-localizes is the class of *v*-coherent domains. We recall that a domain *R* is called *v*-coherent if the ideal (R : J) is *v*-finite whenever *J* is finitely generated. This class of domains properly includes *PvMDs*, Mori domains and coherent domains [11,24].

If *R* is a *w*-divisorial (respectively, strongly *w*-divisorial) domain, then each *t*-maximal (respectively, *t*-prime) ideal *t*-localizes.

Lemma 2.1. Let A be a set of t-localizing t-primes of R. Then:

- (1) $P_{\mathcal{F}(\Lambda)} \in t$ -Spec $(R_{\mathcal{F}(\Lambda)})$, for each $P \in \Lambda$.
- (2) If $\mathcal{F}(\Lambda)$ is v-finite, t-Max $(R_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)}; P \text{ maximal in } \Lambda\}.$

Proof. Set $\mathcal{F} = \mathcal{F}(\Lambda)$ and $T = R_{\mathcal{F}}$.

(1) Let $P \in \Lambda$. Since $R_P = T_{P_F}$ and by hypothesis $PR_P = P_F T_{P_F}$ is a *t*-ideal, then $P_F = P_F T_{P_F} \cap T$ is a *t*-ideal of *T*.

(2) Since $P_{\mathcal{F}}$ is a *t*-ideal by part (1), we can apply [10, Proposition 1.9(c)]. \Box

Proposition 2.2. Let Λ be a set of pairwise incomparable t-localizing t-primes of R. Then:

- (1) Λ is independent of finite character if and only if $\mathcal{F}(\Lambda)$ is v-finite and $R_{\mathcal{F}(\Lambda)}$ is a weakly Matlis domain.
- (2) If $R_{\mathcal{F}(\Lambda)}$ is w-divisorial, then Λ is independent of finite character.

Proof. Set $\mathcal{F} = \mathcal{F}(\Lambda)$ and $T = R_{\mathcal{F}}$.

(1) If \mathcal{F} is *v*-finite, by Lemma 2.1(2) we have t-Max $(T) = \{P_{\mathcal{F}}; P \in A\}$. It follows that Λ is independent of finite character if and only if t-Max $(T) = \{P_{\mathcal{F}}; P \in \Lambda\}$ is independent of finite character, that is T is a weakly Matlis domain. On the other hand, if Λ is of finite character, then \mathcal{F} is *v*-finite by [10, Lemma 1.16].

(2) Since T is a weakly Matlis domain, by part (1) it suffices to show that Λ is of finite character.

By Lemma 2.1(1), $P_{\mathcal{F}}$ is a *t*-prime of *T*, for each $P \in \Lambda$. We show that each proper divisorial ideal of *T* is contained in some $P_{\mathcal{F}}$. We have $T = \bigcap_{P \in \Lambda} R_P = \bigcap_{P \in \Lambda} T_{P_{\mathcal{F}}}$. If *I* is a proper divisorial ideal of *T*, there is $x \in K \setminus T$ (where *K* is the quotient field of *R*) such that $I \subseteq x^{-1}T \cap T$. Since $x \notin T$, there exists $P \in \Lambda$ such that $x \notin T_{P_{\mathcal{F}}}$, equivalently $x^{-1}T \cap T \subseteq P_{\mathcal{F}}$.

Since t = v on T, we conclude that t-Max $(T) = \{P_{\mathcal{F}}; P \in \Lambda\}$. Since T has t-finite character, it follows that Λ is of finite character. \Box

Theorem 2.3. Let R be a w-divisorial domain. If $\Lambda \subseteq t$ -Max(R), then $R_{\mathcal{F}(\Lambda)}$ is a t-flat w-divisorial overring of R.

Proof. Since *R* is a weakly Matlis domain (Theorem 1.5), *t*-Max(*R*) is independent of finite character; thus Λ has the same properties. In addition, each *t*-maximal ideal is a *t*-localizing prime ideal. It follows that $\mathcal{F}(\Lambda)$ is *v*-finite and $T := R_{\mathcal{F}(\Lambda)}$ is a *t*-flat weakly Matlis domain (Proposition 2.2(1)). By Lemma 2.1(2), for each $N \in t$ -Max(*T*), there exists $M \in \Lambda$ such that $N = M_{\mathcal{F}(\Lambda)}$. It follows that $T_N = R_M$ is divisorial and so *T* is *w*-divisorial by Theorem 1.5. \Box

As we have mentioned above, the localization of a *w*-divisorial domain at a *t*-prime need not be a (*w*-)divisorial domain. Thus Theorem 2.3 does not hold for an arbitrary $\Lambda \subseteq t$ -Spec(R). However, under the hypothesis that R is strongly *w*-divisorial, we have a satisfying result.

Theorem 2.4. Let R be a strongly w-divisorial domain and Λ a set of pairwise incomparable t-primes of R. The following conditions are equivalent:

- (1) $R_{\mathcal{F}(\Lambda)}$ is w-divisorial;
- (2) $R_{\mathcal{F}(\Lambda)}$ is strongly w-divisorial;
- (3) $R_{\mathcal{F}(\Lambda)}$ is a *t*-flat weakly Matlis domain;
- (4) $R_{\mathcal{F}(\Lambda)}$ is a *t*-flat *TV*-domain;
- (5) Λ is independent of finite character.

Proof. Set $\mathcal{F} = \mathcal{F}(\Lambda)$ and $T = R_{\mathcal{F}}$. Since R is strongly w-divisorial, each $P \in \Lambda$ t-localizes.

 $(1) \Rightarrow (5)$ by Proposition 2.2(2).

 $(5) \Rightarrow (3)$ by Proposition 2.2(1).

(3) \Rightarrow (2). If Q is a t-prime of T, then $P = Q \cap R \in t$ -Spec(R) and $T_Q = R_P$ is divisorial. Whence T is strongly w-divisorial.

(3) \Leftrightarrow (4). By *t*-flatness, T_M is divisorial for each *t*-maximal ideal *M*. Thus we can apply Theorem 1.5.

 $(2) \Rightarrow (1)$ is obvious. \Box

Divisorial flat overrings of a strongly divisorial domain have a similar characterization. Recall that an overring *T* of *R* is flat if $T_M = R_{M \cap R}$, for each maximal ideal *M* of *T*; in this case $T = R_{\mathcal{F}(\Lambda)}$, where Λ is a set of pairwise incomparable prime ideals of *R*.

Corollary 2.5. Let *R* be a strongly divisorial domain and $T = R_{\mathcal{F}(\Lambda)}$ a flat overring, where Λ is a set of pairwise incomparable prime ideals of *R*. The following conditions are equivalent:

- (1) T is divisorial;
- (2) T is strongly divisorial;

(3) T is h-local;

(4) Λ is independent of finite character.

Proof. (1) \Leftrightarrow (3). By [3, Proposition 5.4], *T* is divisorial if and only if it is *h*-local and locally divisorial. But, since *T* is flat and *R* is strongly divisorial, for each maximal ideal *M* of *T*, $T_M = R_{M \cap R}$ is divisorial.

(1) \Rightarrow (2). Since *T* is flat and *R* is strongly divisorial, then $T_Q = R_{Q \cap R}$ is divisorial, for each prime ideal *Q* of *T*.

 $(2) \Rightarrow (4)$. Since R and T are divisorial, then d = w = t = v in R and T. Thus we can apply Theorem 2.4 ($(2) \Rightarrow (5)$).

 $(4) \Rightarrow (1)$. Since d = w = t = v in R, by Theorem 2.4 ((5) \Rightarrow (1)), T is w-divisorial. To prove that T is divisorial, we show that each maximal ideal of T is a t-ideal (Proposition 1.1). If M is a maximal ideal of T, by flatness we have $T_M = R_{M \cap R}$. Since R is strongly divisorial, MT_M is a t-ideal and so $M = MT_M \cap T$ is a t-ideal. \Box

Corollary 2.6. *Let R be an integral domain. The following conditions are equivalent:*

- (1) Each t-flat overring of R is strongly w-divisorial;
- (2) *R* is strongly *w*-divisorial and each *t*-flat overring is a weakly Matlis domain;
- (3) *R* is strongly *w*-divisorial and each *t*-flat overring is a TV-domain;
- (4) *R* is strongly w-divisorial and each family Λ of pairwise incomparable t-primes of *R* such that F(Λ) is v-finite is independent of finite character.

Proof. By Theorem 2.4, recalling that an overring *T* is *t*-flat over *R* if and only if $T = R_{\mathcal{F}(\Lambda)}$, where Λ is a family of pairwise incomparable *t*-primes of *R* and $\mathcal{F}(\Lambda)$ is *v*-finite. \Box

In order to study *t*-subintersections, we need the following technical lemma.

Lemma 2.7. Let R be an integral domain and C an ascending chain of t-localizing t-primes of R. If $R_{\mathcal{F}(C)}$ is a TV-domain, then C is stationary.

Proof. Let $C = \{P_{\alpha}\}$ and set $\mathcal{F} = \mathcal{F}(C)$ and $T = R_{\mathcal{F}}$. By Lemma 2.1(1), $(P_{\alpha})_{\mathcal{F}}$ is a *t*-prime ideal of *T*, for each α . It follows that $M = \bigcup_{\alpha} (P_{\alpha})_{\mathcal{F}}$ is a proper *t*-prime ideal of *T* (since it is an ascending union of *t*-primes) and so *M* is divisorial (because *T* is a *TV*-domain). We have $T = \bigcap_{\alpha} T_{R \setminus P_{\alpha}}$; thus the map $I \mapsto I^* = \bigcap_{\alpha} IT_{R \setminus P_{\alpha}}$ defines a star operation on *T*. Since *M* is divisorial, we have $M^* \subseteq M$; so that M^* is a proper ideal. It follows that there exists α such that $M \cap R \subseteq P_{\alpha}$. Hence $M \cap R = P_{\alpha}$ and so $P_{\beta} = P_{\alpha}$ for $\beta \ge \alpha$. \Box

Theorem 2.8. Let R be an integral domain. The following conditions are equivalent:

- (1) Each t-subintersection of R is strongly w-divisorial;
- (2) *R* is a strongly *w*-divisorial domain which satisfies the ascending chain condition on *t*-prime ideals and each family Λ of pairwise incomparable *t*-primes of *R* is independent of finite character.

Proof. (1) \Rightarrow (2). Clearly *R* is a strongly *w*-divisorial domain. If Λ is a set of pairwise incomparable *t*-prime ideals, then by assumption $R_{\mathcal{F}(\Lambda)}$ is strongly *w*-divisorial. Hence Λ is independent of finite character, by Theorem 2.4. It remains to show that *R* has the ascending chain condition on *t*-prime ideals. This follows from Lemma 2.7. In fact, if *C* is an ascending chain of *t*-prime ideals of *R*, $R_{\mathcal{F}(\mathcal{C})}$ is strongly *w*-divisorial. Hence each *t*-prime in *C t*-localizes and it follows that *C* is stationary.

 $(2) \Rightarrow (1)$. Let $R_{\mathcal{F}(\Lambda)}$ be a *t*-subintersection of *R*. By the ascending chain condition on *t*-prime ideals, Λ has maximal elements; thus we can assume that Λ is a set of pairwise incomparable *t*-primes. The conclusion follows from Theorem 2.4. \Box

Corollary 2.9. Let *R* be a domain. If each *t*-subintersection of *R* is strongly *w*-divisorial, then each *t*-subintersection of *R* is *t*-flat.

Proof. If each *t*-subintersection of R is strongly *w*-divisorial, then R satisfies the ascending chain condition on *t*-primes (Theorem 2.8). Thus each *t*-subintersection is of type

 $R_{\mathcal{F}(\Lambda)}$, where Λ is a family of pairwise incomparable *t*-primes. By Theorem 2.4, $R_{\mathcal{F}(\Lambda)}$ is *t*-flat. \Box

Remark 2.10. If each subintersection of the domain *R* is strongly divisorial, then clearly *R* is strongly divisorial. In addition, since d = w = t = v on *R*, then *R* satisfies the ascending chain condition on prime ideals and each family Λ of pairwise incomparable prime ideals of *R* is independent of finite character (Theorem 2.8).

Conversely, assume that *R* is a strongly divisorial domain satisfying the ascending chain condition on prime ideals and that each family Λ of pairwise incomparable prime ideals of *R* is independent of finite character.

Then each subintersection T of R is of type $R_{\mathcal{F}(\Lambda)}$, where Λ is a family of pairwise incomparable prime ideals independent of finite character. Thus $\mathcal{F}(\Lambda)$ is finitely generated [10, Lemma 1.16] and T is strongly w-divisorial and t-flat by Theorem 2.4. We conclude that T is (strongly) divisorial if and only if each maximal ideal of T is a t-ideal (Proposition 1.1) if and only if T is flat.

We observe that in general, if \mathcal{F} is a finitely generated multiplicative system of ideals, then $R_{\mathcal{F}}$ need not be a flat extension of R [9, page 32]. On the other hand, we do not know any example of a strongly divisorial domain R with a finitely generated multiplicative system \mathcal{F} such that $R_{\mathcal{F}}$ is not flat.

If *R* is any domain, we say that Spec(R) (respectively, *t*-Spec(R)) is *treed* (under inclusion) if any maximal (respectively, *t*-maximal) ideal of *R* cannot contain two incomparable primes (respectively, *t*-primes). The Spectrum of a Prüfer domain and the *t*-Spectrum of a *PvMD* are treed. If Spec(R) is treed, then Spec(R) = t-Spec(R) [23, Proposition 2.6]; in particular each maximal ideal is a *t*-ideal and so *w*-divisoriality coincides with divisoriality by Proposition 1.1.

If t-Spec(R) is treed and t-Max(R) is independent of finite character, then each family Λ of pairwise incomparable t-prime ideals of R is independent of finite character. Hence the next results are easy consequences of Theorems 2.4 and 2.8 respectively.

Corollary 2.11. Let R be an integral domain such that t-Spec(R) is treed. The following conditions are equivalent:

- (1) *R* is strongly *w*-divisorial;
- (2) $R_{\mathcal{F}(\Lambda)}$ is a t-flat w-divisorial domain, for each set Λ of pairwise incomparable *t*-primes;
- (3) $R_{\mathcal{F}(\Lambda)}$ is a t-flat strongly w-divisorial domain, for each set Λ of pairwise incomparable t-primes.

If *R* has *t*-dimension one, then clearly t-Spec(*R*) is treed. In this case, the conditions stated in Corollary 2.11 are all satisfied if *R* is *w*-divisorial (cf. Theorem 2.3).

Corollary 2.12. Let R be an integral domain such that t-Spec(R) is treed. The following conditions are equivalent:

- (1) *R* is a strongly *w*-divisorial domain which satisfies the ascending chain conditions on *t*-prime ideals;
- (2) Each t-subintersection of R is t-flat and strongly w-divisorial.

3. Integrally closed w-divisorial domains

W. Heinzer proved in [17] that an integrally closed domain is divisorial if and only if it is an *h*-local Prüfer domain with invertible maximal ideals. We start this section by showing that integrally closed *w*-divisorial domains have a similar characterization among PvMDs. Note that a divisorial PvMD is a Prüfer domain.

Lemma 3.1. Let *R* be a *w*-divisorial domain and $M \in t$ -Max(*R*). The following conditions are equivalent:

- (1) *M* is *t*-invertible;
- (2) MR_M is a principal ideal;
- (3) R_M is a valuation domain.

Proof. (1) \Leftrightarrow (2). Since *t*-Max(*R*) has *t*-finite character (Theorem 1.5), we can apply [34, Theorem 2.2 and Proposition 3.1].

 $(2) \Rightarrow (3)$ follows from [31, Lemme 1, Section 4], because R_M is a divisorial domain (Theorem 1.5), and $(3) \Rightarrow (2)$ follows from [17, Lemma 5.2]. \Box

Proposition 3.2. Let *R* be a *w*-divisorial domain. Then *R* is a *PvMD* if and only if each *t*-maximal ideal of *R* is *t*-invertible.

Theorem 3.3. Let R be an integral domain. The following conditions are equivalent:

- (1) *R* is an integrally closed *w*-divisorial domain;
- (2) *R* is a weakly Matlis PvMD and each t-maximal ideal of *R* is t-invertible.

Proof. (1) \Rightarrow (2). A domain *R* is a *PvMD* if and only if *R* is an integrally closed *TW*-domain [22, Theorem 3.5]. Hence an integrally closed *w*-divisorial domain is a *PvMD*. By Theorem 1.5, *R* is a weakly Matlis domain and by Proposition 3.2 each *t*-maximal ideal is *t*-invertible.

 $(2) \Rightarrow (1)$. A *t*-maximal ideal *M* of a *PvMD* is *t*-invertible if and only if *MR_M* is a principal ideal [19]. Since *R_M* is a valuation domain, this means that *R_M* is divisorial [17, Lemma 5.2]. Now we can apply Theorem 1.5. \Box

The previous theorem can be proved also by using the fact that a domain R is a PvMD if and only if R is an integrally closed TW-domain [22, Theorem 3.5] and the characterization of PvMDs which are TV-domains given in [20, Theorem 3.1].

Recall that a Prüfer domain R is strongly discrete if $P^2 \neq P$ for each nonzero prime ideal P of R [8, Section 5.3] and that a generalized Dedekind domain is a strongly discrete

Prüfer domain with the property that each ideal has finitely many minimal primes [30]. We say that a *PvMD R* is *strongly discrete* if $(P^2)_t \neq P$, for each $P \in t$ -Spec(*R*) [7, Remark 3.10]. If *R* is a strongly discrete *PvMD* and each *t*-ideal of *R* has only finitely many minimal primes, then *R* is called a *generalized Krull domain* [7].

The next theorem shows that the class of strongly w-divisorial domains and the class of strongly discrete PvMDs are strictly related to each other.

Lemma 3.4. Let *R* be a domain. The following conditions are equivalent:

- (1) *R* is a strongly discrete *PvMD*;
- (2) R_M is a strongly discrete valuation domain, for each $M \in t$ -Max(R);
- (3) R_P is a strongly discrete valuation domain, for each $P \in t$ -Spec(R);
- (4) R_P is a valuation domain and PR_P is a principal ideal, for each $P \in t$ -Spec(R);
- (5) R_P is a divisorial valuation domain, for each $P \in t$ -Spec(R).

Proof. (1) \Leftrightarrow (4). For each *t*-prime ideal *P* of *R*, we have $(P^2)_t = P^2 R_P \cap R$ [19, Proposition 1.3]. Hence $(P^2)_t \neq P$ if and only if $P^2 R_P \neq P R_P$. Now recall that a maximal ideal of a valuation domain is not idempotent if and only if it is principal.

(2) \Leftrightarrow (3) because each overring of a strongly discrete valuation domain is a strongly discrete valuation domain [8, Proposition 5.3.1(3)].

- (3) \Leftrightarrow (4) by [8, Proposition 5.3.8 ((2) \Leftrightarrow (6))].
- (4) \Leftrightarrow (5) by [17, Lemma 5.2]. \Box

Theorem 3.5. Let R be an integral domain. The following conditions are equivalent:

- (1) *R* is a strongly discrete *PvMD* and a weakly Matlis domain;
- (2) *R* is an integrally closed strongly *w*-divisorial domain;
- (3) *R* is integrally closed and each *t*-flat overring of *R* is *w*-divisorial;
- (4) *R* is integrally closed and each *t*-linked overring of *R* is *w*-divisorial;
- (5) *R* is a *w*-divisorial generalized Krull domain;
- (6) *R* is a generalized Krull domain and each *t*-prime ideal of *R* is contained in a unique *t*-maximal ideal.

Proof. (1) \Rightarrow (2). Clearly *R* is integrally closed. In addition, by Lemma 3.4, *R*_P is a divisorial domain, for each $P \in t$ -Spec(*R*). Hence *R* is a strongly *w*-divisorial domain.

 $(2) \Rightarrow (3)$. By Theorem 3.3, *R* is a *PvMD*; in particular *t*-Spec(*R*) is treed. Thus we can apply Corollary 2.11.

(3) \Rightarrow (1). By Theorem 3.3, *R* is a weakly Matlis *PvMD*. Now, given $P \in t$ -Spec(*R*), R_P is a divisorial valuation domain. Hence *R* is a strongly discrete *PvMD* by Lemma 3.4.

(3) \Leftrightarrow (4). By Theorem 3.3, statements (3) and (4) imply that *R* is a *PvMD*. The conclusion now follows from the fact that each *t*-linked overring of a *PvMD R* is *t*-flat [23, Proposition 2.10].

 $(1) \Rightarrow (5)$. By $(1) \Rightarrow (2)$, *R* is a *w*-divisorial domain. To show that *R* is a generalized Krull domain, let *I* be a *t*-ideal of *R*. Since *R* has *t*-finite character, then *I* is contained in only finitely many *t*-maximal ideals. Furthermore, each *t*-prime ideal is contained in

a unique *t*-maximal ideal. Thus *I* has just finitely many minimal (*t*-)prime ideals. We conclude by using [7, Theorem 3.9].

 $(5) \Rightarrow (6)$ is clear.

 $(6) \Rightarrow (1)$. It is enough to show that *R* has *t*-finite character. This follows from the fact that each nonzero principal ideal has finitely many minimal (*t*-)primes. \Box

As a consequence of Theorem 3.5, we obtain the following characterization of integrally closed totally divisorial domains (see also [28]).

Corollary 3.6. *Let R be an integral domain. The following conditions are equivalent:*

- (1) *R* is an integrally closed totally divisorial domain;
- (2) *R* is integrally closed and each flat overring of *R* is divisorial;
- (3) *R* is an integrally closed strongly divisorial domain;
- (4) *R* is an *h*-local strongly discrete Prüfer domain;
- (5) *R* is a divisorial generalized Dedekind domain;
- (6) *R* is a generalized Dedekind domain and each nonzero prime ideal is contained in a unique maximal ideal.

Proof. This follows from the fact that in a Prüfer domain the *d*- and *t*-operation coincide, that each overring of a Prüfer domain is a flat Prüfer domain, and that a Prüfer domain is a generalized Krull domain if and only if it is a generalized Dedekind domain [7]. \Box

Recall that the *complete integral closure* of *R* is the overring $\widetilde{R} := \bigcup \{ (I : I); I \text{ nonzero} ideal of$ *R* $\}$. If $R = \widetilde{R}$, we say that *R* is *completely integrally closed*.

Proposition 3.7. Let R be an integral domain. The following conditions are equivalent:

- (1) *R* is an integrally closed *w*-divisorial domain of *t*-dimension one;
- (2) *R* is an integrally closed domain of *t*-dimension one and each *t*-linked overring of *R* is *w*-divisorial;
- (3) *R* is a completely integrally closed *w*-divisorial domain;
- (4) *R* is a Krull domain.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (4). Clearly a *w*-divisorial domain of *t*-dimension one is strongly *w*-divisorial. Since a generalized Krull domain of *t*-dimension one is a Krull domain [7, Theorem 3.11], we can conclude by applying Theorem 3.5.

(3) \Leftrightarrow (4) because a completely integrally closed *TV*-domain is Krull [20, Theorem 2.3]. \Box

It is well known that a divisorial Krull domain is a Dedekind domain; hence by the previous proposition we recover that a completely integrally closed divisorial domain is a Dedekind domain [17, Proposition 5.5].

Remark 3.8. Recall that, for any domain R, \tilde{R} is integrally closed and *t*-linked over R [5, Corollary 2.3]. Since each localization of a *t*-linked overring of R is still *t*-linked over R, if each *t*-linked overring of R is *w*-divisorial, we have that \tilde{R} is an integrally closed strongly *w*-divisorial domain. In this case, by Theorem 3.5, \tilde{R} is a weakly Matlis strongly discrete *PvMD*. If in addition \tilde{R} is completely integrally closed, for example if $(R : \tilde{R}) \neq 0$, by Proposition 3.7 \tilde{R} is a Krull domain.

In a similar way, by using Corollary 3.6, we see that if R is totally divisorial, the integral closure of R is an h-local strongly divisorial Prüfer domain.

4. Mori w-divisorial domains

We start by recalling some properties of Noetherian divisorial domains proved in [17, 31].

Proposition 4.1. Let *R* be a domain. The following conditions are equivalent:

- (1) *R* is a one-dimensional *w*-divisorial Mori domain;
- (2) *R* is a divisorial Mori domain;
- (3) *R* is a divisorial Noetherian domain;
- (4) *R* is a Mori domain and each two generated ideal of *R* is divisorial;
- (5) *R* is a one-dimensional Mori domain and (*R* : *M*) is a two generated ideal, for each *M* ∈ Max(*R*);
- (6) *R* is a one-dimensional Noetherian domain and (R : M) is a two generated ideal, for each $M \in Max(R)$.

Proof. (1) \Rightarrow (2) by Proposition 1.1.

 $(2) \Rightarrow (3)$ because each *v*-ideal of a Mori domain is *v*-finite.

 $(3) \Rightarrow (1)$ because Noetherian divisorial domains are one-dimensional [17, Corollary 4.3].

 $(3) \Leftrightarrow (6) \text{ and } (2) \Leftrightarrow (4) \Leftrightarrow (5) \text{ by } [31, \text{ Theorem 3, Section 2}]. \square$

An integrally closed *w*-divisorial Mori domain is a Krull domain. In fact it has to be a PvMD (Theorem 3.3). By Proposition 4.1, any Noetherian integrally closed domain of dimension greater than one is a *w*-divisorial Noetherian domain that is not divisorial.

We say that a nonzero fractional ideal I of R is a *w*-divisorial ideal if $I_v = I_w$. With this notation, a *w*-divisorial domain is a domain in which each nonzero ideal is *w*-divisorial. We also say that, for $n \ge 1$, I is n *w*-generated if $I_w = (a_1R + \cdots + a_nR)_w$, for some a_1, \ldots, a_n in the quotient field of R.

Theorem 4.2. Let R be a Mori domain. The following conditions are equivalent:

- (1) *R* is a *w*-divisorial domain;
- (2) Each two generated nonzero ideal is w-divisorial;

(3) *R* has t-dimension one and (R : M) is a two w-generated ideal, for each $M \in t$ -Max(R).

Proof. (1) \Rightarrow (2) is clear.

 $(2) \Rightarrow (3)$. Let $M \in t$ -Max(R). Since R is a Mori domain, then M is a divisorial ideal. Let $x \in (R : M) \setminus R$, then $(R : M) = (R + Rx)_v$. So that by assumption $(R : M) = (R + Rx)_w$. To conclude, we show that R_M is one-dimensional. Let I be a nonzero two generated ideal of R_M . Then, we can assume that $I = (a, b)R_M$ for some $a, b \in I \cap R$. Since R is a Mori domain, then $I_v = ((a, b)R_M)_v = (a, b)_v R_M$. Hence $I_v = (a, b)_w R_M = (a, b)R_M = I$. Thus each two generated ideal of R_M is divisorial. It follows from Proposition 4.1 that R_M is one-dimensional.

 $(3) \Rightarrow (1)$. Since *R* is a *TV*-domain, by Theorem 1.5, it is enough to show that R_M is a divisorial domain for each $M \in t$ -Max(R). This follows again from Proposition 4.1. In fact, by assumption R_M is a Mori domain of dimension one. Let $(R : M) = (a, b)_w$ for some $a, b \in (R : M)$. Then $(R_M : MR_M) = (R : M)R_M = (a, b)_w R_M = (a, b)R_M$ is two generated (the first equality holds because *M* is *v*-finite). \Box

Recall that a *Strong Mori domain* is a domain satisfying the ascending chain condition on *w*-ideals. A domain *R* is a Strong Mori domain if and only if it has *t*-finite character and R_M is Noetherian, for each *t*-maximal ideal *M* [33, Theorem 1.9]. Thus a Mori domain is Strong Mori if and only if R_M is Noetherian, for each *t*-maximal ideal *M*.

Corollary 4.3 [27, Corollary 2.5]. A *w*-divisorial Mori domain is a Strong Mori domain of *t*-dimension one.

Proof. A *w*-divisorial Mori domain is Strong Mori (because w = v) and has *t*-dimension one by Theorem 4.2. \Box

We next investigate w-divisoriality of overrings of Mori domains. Our first result in this direction shows that, if R is Mori, w-divisoriality is inherited by generalized ring of fractions. This improves [27, Theorem 2.4].

We observe that a Mori domain is a *v*-coherent *TV*-domain, because each *t*-ideal of a Mori domain is *v*-finite. We also recall that if *R* is *v*-coherent, we have $I_t R_S = (I R_S)_t$, for each nonzero fractional ideal *I* and each multiplicative set *S*.

Proposition 4.4. Let R be a v-coherent domain. The following conditions are equivalent:

- (1) R is a TW-domain;
- (2) All the nonzero ideals of R_M are t-ideals, for each $M \in t$ -Max(R);
- (3) All the nonzero ideals of R_P are t-ideals, for each $P \in t$ -Spec(R);
- (4) Each t-flat overring of R is a TW-domain.

Proof. (1) \Leftrightarrow (2). Let *I* be a nonzero ideal and *M* a *t*-maximal ideal of *R*. If t = w on *R*, then $IR_M = I_wR_M = I_tR_M = (IR_M)_t$.

Conversely, we have $IR_M = (IR_M)_t = I_t R_M$. Thus

$$I_w = \bigcap_{M \in t - \operatorname{Max}(R)} I R_M = \bigcap_{M \in t - \operatorname{Max}(R)} I_t R_M = I_t.$$

 $(2) \Rightarrow (3)$. Let *I* be a nonzero ideal of *R*, *P* a *t*-prime of *R* and *M* a *t*-maximal ideal containing *P*. Then

$$IR_P = (IR_M)R_P = (IR_M)_t R_P = (I_t R_M)R_P = I_t R_P = (IR_P)_t.$$

(3) \Rightarrow (4). Let *T* be a *t*-flat overring of *R*. Then *T* is a *v*-coherent domain [10, Proposition 3.1]. If *N* is a *t*-maximal ideal of *T*, then $P = N \cap R$ is a *t*-prime of *R* and $T_N = R_P$. Hence, if (3) holds, each nonzero ideal of T_N is a *t*-ideal and *T* is a *TW*-domain by (2) \Rightarrow (1).

 $(4) \Rightarrow (1)$ is clear. \Box

Theorem 4.5. Let R be a Mori domain. The following conditions are equivalent:

(1) R is w-divisorial;

- (2) *R* is strongly *w*-divisorial;
- (3) Each t-flat overring of R is w-divisorial;
- (4) Each generalized ring of fractions of R is w-divisorial;

(5) R_M is a divisorial domain, for each $M \in t$ -Max(R).

Proof. Each generalized ring of fractions of a Mori domain is Mori [31, Corollaire 1, Section 3]; thus it is a *TV*-domain. In addition, each generalized ring of fractions of a Mori domain is *t*-flat, because each *t*-ideal is *v*-finite and so each multiplicative system of ideals is *v*-finite. Hence we can apply Proposition 4.4. \Box

t-Linked overrings of Mori domains do not behave as well as generalized rings of fractions. In fact a Mori non-Krull domain has *t*-linked overrings which are not *t*-flat [6, Corollary 2.10]. Also, if each *t*-linked overring of a Mori domain *R* is Mori, then *R* has *t*-dimension one [5, Proposition 2.20]. The converse holds if *R* is a Strong Mori domain; precisely, we have the following result.

Proposition 4.6. Each t-linked overring of a Strong Mori domain of t-dimension one is either a field or a Strong Mori domain of t-dimension one.

Proof. It follows from [33, Theorem 3.4] recalling that an overring of a domain is a *w*-module if and only if it is *t*-linked [5, Proposition 2.13(a)]. \Box

Corollary 4.7. If R is a w-divisorial Mori domain, then each t-linked overring of R is either a field or a Strong Mori domain of t-dimension one.

Proof. It follows from Corollary 4.3 and Proposition 4.6. \Box

Our next purpose is to improve and generalize to Mori domains some results proved in [3] for Noetherian totally divisorial domains.

Proposition 4.8. Let R be a domain. The following conditions are equivalent:

- (1) *R* is a one-dimensional domain and each *t*-linked overring of *R* is *w*-divisorial;
- (2) *R* is a one-dimensional totally divisorial domain;
- (3) *R* is a Noetherian totally divisorial domain;
- (4) Each ideal of R is two generated.

Proof. (1) \Rightarrow (2). Since dim(R) = 1, each overring of R is t-linked over R [5, Corollary 2.7(b)]. Hence each overring T of R is w-divisorial. Assume that T is not a field. To prove that T is divisorial it suffices to check that dim(T) = 1 (Proposition 1.1). Let R' be the integral closure of R and T' that of T. Since R' is one-dimensional and w-divisorial, then R' is divisorial. Thus R', being integrally closed, is a Prüfer domain [17, Theorem 5.1]. It follows that the extension $R' \subseteq T'$ is flat, and so dim(T') \leq dim(R') = 1. Hence dim(T) = dim(T') = 1. We conclude that T is divisorial and therefore R is totally divisorial.

- $(2) \Rightarrow (3)$ by [3, Proposition 7.1].
- $(3) \Rightarrow (1)$ by Proposition 4.1.

(3) \Leftrightarrow (4) by [3, Theorem 7.3], because in the Noetherian case a domain is totally divisorial if and only if it is totally reflexive [29, Section 3]. \Box

Lemma 4.10 below is similar to [26, Theorem 26(2)]. We will need the following version of Chinese Remainder Theorem, whose proof is straightforward.

Lemma 4.9. Let R be an integral domain, I an ideal of R, P_1, \ldots, P_n a set of pairwise incomparable prime ideals and $S = R \setminus (P_1 \cup \cdots \cup P_n)$. If $x_1, \ldots, x_n \in I$, there exists $x \in IR_S$ such that $x \equiv x_i \pmod{IP_iR_{P_i}}$, for each $i = 1, \ldots, n$.

Lemma 4.10. Let R be an integral domain which has t-finite character and I a nonzero ideal of R. Let n be a positive integer and assume that, for each $M \in t$ -Max(R), a minimal set of generators of IR_M has at most n elements. Then I is w-generated by a number of generators $m \leq \max(2, n)$.

Proof. If *I* is not contained in any *t*-maximal ideal, then $I_w = R$. Otherwise, let M_1, \ldots, M_r be the *t*-maximal ideals of *R* which contain *I*. For $i = 1, \ldots, r$, let $a_{1i}, \ldots, a_{ni} \in I$ be such that $IR_{M_i} = (a_{1i}, \ldots, a_{ni})R_{M_i}$. By Lemma 4.9, if $S = R \setminus (M_1 \cup \cdots \cup M_r)$, for each $j = 1, \ldots, n$, there exists $a_j \in IR_S \subseteq IR_{M_i}$ such that $a_j \equiv a_{ji} \pmod{IM_i R_{M_i}}$, for each $i = 1, \ldots, r$. By going modulo $IM_iR_{M_i}$ and using Nakayama's Lemma, we get $IR_{M_i} = (a_1, \ldots, a_n)R_{M_i}$ for each $i = 1, \ldots, r$. We can assume that the a_j 's are in *I* and $a_1 \neq 0$. Let N_1, \ldots, N_s be the set of *t*-maximal ideals which contain a_1 , with $N_1 = M_1, \ldots, N_r = M_r$. Let $b \in I \setminus \bigcup_{j=r+1}^s M_j$. Then $IR_{N_j} = (a_1, \ldots, a_n)R_{N_j}$ for $j = 1, \ldots, r$ and $IR_{N_j} = (a_1, b)R_{N_j} = R_{N_j}$ for $j = r + 1, \ldots, s$. By arguing as above, there exist $b_1 = a_1, b_2, \ldots, b_n \in I$ such that $IR_{N_i} = (b_1, \ldots, b_n)R_{N_i}$ for

each j = 1, ..., s. We claim that $I_w = (b_1, ..., b_n)_w$. Let M be a *t*-maximal ideal of R. If $M = N_j$ for some j, then $IR_M = (b_1, ..., b_n)R_M$. If $M \neq N_j$ for j = 1, ..., s, then $IR_M = R_M = (b_1, ..., b_n)R_M$, since $b_1 = a_1 \notin M$. \Box

Theorem 4.11. Let R be a domain. The following conditions are equivalent:

- (1) *R* has *t*-dimension one and each *t*-linked overring of *R* is *w*-divisorial;
- (2) *R* is a Mori domain and each *t*-linked overring of *R* is *w*-divisorial;
- (3) *R* is a Mori domain and R_M is totally divisorial, for each $M \in t$ -Max(R);
- (4) Each nonzero ideal of R is a two w-generated w-divisorial ideal;
- (5) Each nonzero ideal of R is two w-generated.

Proof. (1) \Rightarrow (2). *R* has *t*-finite character, because it is *w*-divisorial (Theorem 1.5). We now show that, for each $M \in t$ -Max(*R*), R_M is Noetherian. Since R_M is a one-dimensional *t*-linked overring of *R*, then R_M is divisorial (Proposition 1.1). In addition, each overring *T* of R_M is *t*-linked over R_M [5, Corollary 2.7] and so it is *t*-linked over *R*. Thus *T* is a *w*-divisorial domain. By Proposition 4.8, R_M is Noetherian. We conclude that *R* is a (Strong) Mori domain.

 $(2) \Rightarrow (3)$. *R* is clearly *w*-divisorial. Hence R_M is a one-dimensional Noetherian domain (Corollary 4.3). Let *T* be a *t*-linked overring of R_M . Hence *T* is *t*-linked over *R* and so by assumption it is *w*-divisorial. By Proposition 4.8 R_M is totally divisorial.

 $(3) \Rightarrow (4)$. *R* is *w*-divisorial by Theorem 4.5. Hence R_M is one-dimensional and Noetherian by Corollary 4.3. Thus, for each $M \in t$ -Max(R), each ideal of R_M is two generated by Proposition 4.8. By using Lemma 4.10, we conclude that every nonzero ideal of *R* is a two *w*-generated *w*-divisorial ideal.

 $(4) \Rightarrow (5)$ is clear.

 $(5) \Rightarrow (3)$. If (5) holds, *R* is a Strong Mori domain and so R_M is a Noetherian domain, for each $M \in t$ -Max(*R*). Let IR_M be a nonzero ideal of R_M , where *I* is an ideal of *R*. By assumption, $I_w = (a, b)_w$ for some $a, b \in R$. Thus $IR_M = (a, b)_w R_M = (a, b)R_M$ is a two generated ideal. It follows from Proposition 4.8 that R_M is a totally divisorial domain.

(3) \Rightarrow (2). *R* is *w*-divisorial by Theorem 4.5. Let *T* be a *t*-linked overring of *R*, $T \neq K$. By Corollary 4.7, *T* is a Mori domain. To show that *T* is *w*-divisorial, by Theorem 4.5, we have to prove that T_N is a divisorial domain, for each $N \in t$ -Max(*T*). Since $R \subseteq T$ is *t*-linked, then $Q = (N \cap R)_t \neq R$ [5, Proposition 2.1]; but as *R* has *t*-dimension one (Corollary 4.3), then *Q* is a *t*-maximal ideal of *R*. Since R_Q is totally divisorial and $R_Q \subseteq T_N$, then T_N is a divisorial domain.

 $(2) \Rightarrow (1)$ by Corollary 4.3. \Box

Corollary 4.12. Let *R* be a domain and assume that each *t*-linked overring of *R* is *w*-divisorial. Then *R* is a Mori domain if and only if it has *t*-dimension one.

Example 4.13. Mori non-Krull and non-Noetherian domains satisfying the equivalent conditions of Theorem 4.11 can be constructed by using pullbacks, as the following example shows.

Let *T* be a Krull domain having a maximal ideal *M* of height one and assume that the residue field K = T/M has a subfield *k* such that [K : k] = 2. Let $R = \varphi^{-1}(k)$ be the pullback of *k* with respect to the canonical projection $\varphi: T \to K$.

The domain *R* is Mori and it is Noetherian if and only if *T* is Noetherian [11, Theorems 4.12 and 4.18]. *M* is a maximal ideal of *R* that is divisorial; thus $M \in t$ -Max(*R*). Since R_M is the pullback of *k* with respect to the natural projection $T_M \rightarrow K$, R_M is divisorial by [27, Corollary 3.5]. In addition T_M is the only overring of R_M . In fact each overring of R_M is comparable with T_M under inclusion; but T_M is a *DVR* and [K:k] = 2. Thus R_M is totally divisorial.

If *N* is a *t*-maximal ideal of *R* and $N \neq M$, there is a unique *t*-maximal ideal *N'* of *T* such that $N' \cap R = N$ [12, Theorem 2.6(1)] and for this prime $T_{N'} = R_N$. Thus R_N is a *DVR*. It follows that R_N is totally divisorial, for each $N \in t$ -Max(*R*).

Acknowledgment

We thank the referee for his/her careful reading and relevant observations.

References

- D.D. Anderson, M. Zafrullah, Independent locally-finite intersections of localizations, Houston J. Math. 25 (1999) 433–452.
- [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963) 8-28.
- [3] S. Bazzoni, L. Salce, Warfield domains, J. Algebra 185 (1996) 836-868.
- [4] S. Bazzoni, Divisorial domains, Forum Math. 12 (2000) 397-419.
- [5] D.E. Dobbs, E.G. Houston, T.G. Lucas, M. Zafrullah, t-Linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989) 2835–2852.
- [6] D.E. Dobbs, E.G. Houston, T.G. Lucas, M. Zafrullah, t-Linked overrings as intersections of localizations, Proc. Amer. Math. Soc. 109 (1990) 637–646.
- [7] S. El Baghdadi, On a class of Prüfer v-multiplication domains, Comm. Algebra 30 (2002) 3723–3742.
- [8] M. Fontana, J. Huckaba, I. Papick, Prüfer Domains, Monogr. Textbooks Pure Appl. Math., vol. 203, Dekker, New York, 1997.
- [9] R.M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, 1973.
- [10] S. Gabelli, On Nagata's Theorem for the class group, II, in: Lecture Notes in Pure and Appl. Math., vol. 206, Dekker, New York, 1999, pp. 117–142.
- [11] S. Gabelli, E.G. Houston, Coherent-like conditions in pullbacks, Michigan Math. J. 44 (1997) 99–123.
- [12] S. Gabelli, E.G. Houston, Ideal theory in pullbacks, in: Non-Noetherian Commutative Ring Theory, in: Math. Appl., vol. 520, Kluwer Academic, Dordrecht, 2000, pp. 199–227.
- [13] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
- [14] S. Glaz, W. Vasconcelos, Flat ideals, II, Manuscripta Math. 22 (1977) 325–341.
- [15] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967) 710-722.
- [16] F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory, Monogr. Textbooks Pure Appl. Math., vol. 211, Dekker, New York, 1998.
- [17] W.J. Heinzer, Integral domains in which each non-zero ideal is divisorial, Matematika 15 (1968) 164–170.
- [18] J.R. Hedstrom, E.G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980) 37-44.
- [19] E.G. Houston, On divisorial prime ideals in Prüfer v-multiplication domains, J. Pure Appl. Algebra 42 (1986) 55–62.
- [20] E.G. Houston, M. Zafrullah, Integral domains in which each *t*-ideal is divisorial, Michigan Math. J. 35 (1988) 291–300.

- [21] P. Jaffard, Les Systèmes d'Idéaux, Dunod, Paris, 1970.
- [22] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989) 151–170.
- [23] D.J. Kwak, Y.S. Park, On t-flat overrings, Chinese J. Math. 23 (1995) 17-24.
- [24] D. Nour el Abidine, Groupe des classes de certain anneaux intègres et idéaux transformés, Thèse de Doctorat, Lyon, 1992.
- [25] E. Matlis, Reflexive domains, J. Algebra 8 (1968) 1-33.
- [26] E. Matlis, Torsion-Free Modules, The University of Chicago Press, Chicago-London, 1972.
- [27] A. Mimouni, TW-domains and Strong Mori domains, J. Pure Appl. Algebra 177 (2003) 79–93.
- [28] B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra 205 (1998) 480-504.
- [29] B. Olberding, Stability, duality, 2-generated ideals and a canonical decomposition of modules, Rend. Sem. Mat. Univ. Padova 106 (2001) 261–290.
- [30] N. Popescu, On a class of Prüfer domains, Rev. Roumaine Math. Pure Appl. 29 (1984) 777-786.
- [31] J. Querré, Sur les anneaux reflexifs, Canad. J. Math. 27 (6) (1975) 1222-1228.
- [32] F. Wang, R.L. McCasland, On *w*-modules over Strong Mori domains, Comm. Algebra 25 (1997) 1285–1306.
- [33] F. Wang, R.L. McCasland, On Strong Mori domains, J. Pure Appl. Algebra 135 (1999) 155-165.
- [34] M. Zafrullah, Putting *t*-invertibility to use, in: Non-Noetherian Commutative Ring Theory, in: Math. Appl., vol. 520, Kluwer Academic, Dordrecht, 2000, pp. 429–458.