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Abstract

We study the class of domains in which eacfideal is divisorial, extending several properties of
divisorial and totally divisorial domains to a much wider class of domains. In particular we consider
PvMDs and Mori domains.
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Introduction

The class of domains in which each nonzero ideal is divisorial has been studied, inde-
pendently and with different methods, by H. Bass [2], E. Matlis [25] and W. Heinzer [17]
in the sixties. Following S. Bazzoni and L. Salce [3,4], these domains are now dalled
visorial domains Among other results, Heinzer proved that an integrally closed domain is
divisorial if and only if it is a Prifer domain with certain finiteness properties [17, Theo-
rem 5.1].

Twenty years later E. Houston and M. Zafrullah introduced in [20] the class of do-
mains in which eackrideal is divisorial, which they calleiV-domains and characterized
PvMDs with this property [20, Theorem 3.1]. However they observed that an integrally
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closedTV-domain need not be BvMD [20, Remark 3.2]; thus in some sense the class
of TV-domains is not the right setting for extendingRoMDs the properties of divisorial
Prufer domains.

The purpose of this paper is to investigatedivisorial domains that is domains in
which eachw-ideal is divisorial. This class of domains proves to be the most suitable
t-analogue of divisorial domains. In fact, by using this concept we are able to improve
and generalize several results proved for Noetherian and Prifer divisorial domains in
[3,17,28,31].

The main result of Section 1 is Theorem 1.5. It states thé a w-divisorial domain
if and only if R is a weakly Matlis domain (that is a domain witHinite character such
that each-prime ideal is contained in a uniquenaximal ideal) and?,, is a divisorial do-
main, for eacti-maximal ideal . In this way we recover the characterization of divisorial
domains given in [3, Proposition 5.4].

In Section 2, we study the transfer of the propertiesedivisoriality and divisoriality
to certain (generalized) rings of fractions, such as localizations)arifme ideals, 1-)flat
overrings ands(-)subintersections.

In Section 3 we considap-divisorial PuMDs. We prove thar is an integrally closed
w-divisorial domain if and only ifR is a weakly MatlisPuMD and each-maximal ideal
is t-invertible (Theorem 3.3). This is theanalogue of [17, Theorem 5.1]. We also prove
that whenRr is integrally closed, eachlinked overring ofR is w-divisorial if and only if
R is a generalized Krull domain and eacprime ideal is contained in a uniqaemaximal
ideal (Theorem 3.5). Since in the Prifer case generalized Krull domains coincide with
generalized Dedekind domains [7], we obtain that an integrally closed domain is totally
divisorial if and only if it is a divisorial generalized Dedekind domain [28, Section 4].

The last section is devoted to Mari-divisorial domains. A Moriw-divisorial domain
is necessarily of-dimension one and each of its localizations at a height-one prime is
Noetherian (Corollary 4.3). Noetherian divisorial and totally divisorial domains were in-
tensely studied in [2,3,25,31]. It turns out that several of the results proved there can be
extended to the Mori case by using different technical tools. In Theorem 4.2 we charac-
terize w-divisorial Mori domains and in Theorems 4.5 and 4.11 we studgivisoriality
of their overrings. In particular, we show that generalized rings of fractiomsdiisorial
Mori domains arev-divisorial and we prove that a domain whasknked overings are all
w-divisorial is Mori if and only if it hast-dimension one.

Throughout this papeR will denote an integral domain with quotient field and we
will assume thaR # K .

We shall use the language of star operationsta@ operationis a map/ — I* from
the setF'(R) of nonzero fractional ideals at to itself such that:

(1) R*=Rand(al)*=al* foralla e K\ {0};
@ 1crfandicJ=I1*CJ*
(3) I* =1*.

General references for systems of ideals and star operations are [13,15,16,21].
A star operatiork is of finite typeif I* = J{J*; J C I and/J is finitely generated}, for
eachl/ € F(R). To any star operatio®, we can associate a star operatignof finite type
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by definingZ*s = | J J*, with the union taken over all finitely generated idealsontained
in 7. Clearly7*s € I'*. A nonzero ideal is x-finiteif /* = J* for some finitely generated
ideal J.

The identity is a star operation, called #ieperation. The- and thes-operations are
the best known nontrivial star operations and are defined in the following way. For a pair
of nonzero ideald andJ of a domainR we let(J : I) denote the seftx € K; xI C J}.

We setl, = (R: (R : 1)) andI, = | J, with the union taken over all finitely generated
idealsJ contained in/. Thus ther-operation is the finite type star operation associated to
the v-operation.

A nonzero fractional ideal is called ax-ideal if I = I*. If I = I, we say that/
is divisorial. For each star operation, we havel* C I, thus each divisorial ideal is a
x-ideal.

The setF,(R) of x-ideals of R is a semigroup with respect to themultiplication
defined by(7, J) — (1J)*, with unity R. We say that an idedl € F(R) is x-invertibleif
I* is a unit in the semigrou@, (R). In this case the-inverseof I is (R : I). ThusI is
s-invertible if and only if (1 (R : I))* = R. Invertible ideals arex-invertible) x-ideals.

A prime x-ideal is also called a-prime A x-maximalideal is an ideal that is maximal
in the set of the propes-ideals. Ax-maximal ideal (if it exists) is a prime ideal. i
is a star operation of finite type, an easy application of Zorn’s Lemma shows that the
setx-Max(R) of the x-maximal ideals ofR is not empty. Moreover, for eache F(R),

I* = (Vyses-maxr) I* Rus in particularR = (/¢ ,-vax(r) R [15]-

The w-operation is the star operation defined by setng= (/¢,-maxr) { Rm- An
equivalent definition is obtained by settifg = | J{(I : J); J is finitely generated and
(R : J) = R}. By using the latter definition, one can see that the notiow-afleal co-
incides with the notion o§emi-divisorialideal introduced by S. Glaz and W. Vasconcelos
in 1977 [14]. As a star operation, theoperation was first considered by E. Hedstrom and
E. Houston in 1980 under the name Bf,-operation [18]. Since 1997 this star operation
was intensely studied by Wang Fanggui and R. McCasland in a more general context. In
particular they showed that the notion wfclosure is a very useful tool in the study of
Strong Mori domains [32,33].

The w-operation is of finite type. We have-Max(R) = t-Max(R) and IRy =
I, Ry C IRy, for eachl € F(R) andM € t-Max(R). Thus/l, C I, C I,.

We denote byr-SpecR) the set oft-prime ideals ofR. Each height one prime is a
t-prime and each prime minimal over-adeal is at-prime. We say thak hast-dimension
oneif eacht-prime ideal has height one.

1. w-Divisorial domains

A divisorial domainis a domain such that each ideal is divisorial [3] and we say that a
domainR is w-divisorial if eachw-ideal is divisorial, that isv = v. Sincel,, C I, < I,, for
each nonzero fractional idea) thenR is w-divisorial if and only ifw = ¢t = v. A domain
with the property that = v is called in [20] aTV-domain Mori domains (i.e., domains
satisfying the ascending chain condition on proper divisorial ideals)\&@omains. A do-
main such thatv = ¢ is called aTW-domain[27]. An important class of W-domains is
the class oPvMDs; in fact aPvMD is precisely an integrally closédN-domain [22, The-
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orem 3.1]. (Recall that a domaitis aPriifer v-multiplication domainfor short aPvMD,
if Ry is a valuation domain for eachmaximal idealM of R.) Since a Krull domain is
a Mori PuMD, a Krull domain is aw-divisorial domain. An example due to M. Zafrullah
shows that in generab £ ¢ # v [27, Proposition 1.2]. Also there exi3tV-domains and
TW-domains that are nat-divisorial [27, Example 2.7].

If R is a Prufer domain, in particular a valuation domain, thedivisoriality coincides
with divisoriality, because each ideal of a Prufer domainssdeal.

Proposition 1.1. A w-divisorial domainR is divisorial if and only if each maximal ideal
of R is at-ideal. Hence a one-dimensionatdivisorial domain is divisorial.

Proof. If each maximal ideal oR is az-ideal, then each ideal at is aw-ideal by [27,
Proposition 1.3]. Hence, iR is w-divisorial it is also divisorial. The converse is clear

Following [1], we say that a nonempty family of nonzero prime ideals @t is of finite
characterif each nonzero element & belongs to at most finitely many members/oand
we say thatA is independenif no two members ofA contain a common nonzero prime
ideal. We observe that a family of primes is independent if and only if no two members
of A contain a common-prime ideal. In fact a minimal prime of a nonzero principal ideal
is ar-ideal.

The domainR has finite character (respectivetyfinite character) if MaxR) (respec-
tively, -Max(R)) is of finite character. If the set M&R) is independent of finite character,
the domainR is called by E. Matlis ark-local domain [26]; thusR is k-local if it has finite
character and each nonzero prime ideal is contained in a unique maximal ideal. A dbmain
such thatt-Max(R) is independent of finite character is called in [Ivaakly Matlis do-
main;, hencer is a weakly Matlis domain if it hasfinite character and eackprime ideal
is contained in a uniquemaximal ideal.

Clearly, a domain of-dimension one is a weakly Matlis domain if and only if it has
t-finite character. A one-dimensional domain is a weakly Matlis domain if and only if it is
h-local; if and only if it has finite character.

We recall that any'V-domain, hence any-divisorial domain, has-finite character by
[20, Theorem 1.3]. The main result of this section shows #falivisorial domains form a
distinguished class of weakly Matlis domains.

We start by proving some technical properties of weakly Matlis domains.

Lemma 1.2. Let R be an integral domain. The following conditions are equivalent

(1) R is aweakly Matlis domain
(2) For eacht-maximal idealM of R and a collection{l,} of w-ideals of R such that
Ny La #0, i, I € M, thenl, € M for somex.

Proof. (1) = (2) follows from [1, Corollary 4.4 and Proposition 4.7], by takitfg=
t-Max(R) and thenxr = w.

(2) = (1). First, we show that eactiprime ideal is contained in a uniquemaximal
ideal. We adapt the proof of [17, Theorem 2.4]. IRzbe ar-prime which is contained in



S. El Baghdadi, S. Gabelli / Journal of Algebra 285 (2005) 335-355 339

two distinctr-maximal idealsM, and M». Let {I,} be the set of all-ideals of R which
containP but are not contained if1. Such a collection is nonempty sing£ is in it. Let

I =(I,. Thenl ¢ M1 andI C My. Takex € I\ My. Sincex? ¢ My, then(P +x2R),, €
{I,} and sax € (P 4 x?R),,. Thusx € (P + x?R) Ry, # Ry, andsx = p + x?r for some

s € R\ Mz, pe Pandr € R. Whence(s —rx)x=pe P C M1 N My. Nows —rx ¢ P
because ¢ M, andrx € I C M». But alsox ¢ P, sincex ¢ M1; a contradiction because
P is prime.

Next we show thaiR hasz-finite character. Let & x € R and{Mg} be the set of all
t-maximal ideals ofR which containx. For a fixedg, let Ag be the intersection of all
w-ideals of R which containx but are not contained iMg. By assumptiorAg ¢ Mpg.
SetA =} ;Ap. Thenx € A and A is contained in naMyz. HenceA; = R. Let F =
(ag,,ap,, ...,ap,), whereag, € Ag,, be a finitely generated ideal & such thatF; = R.
Now, if Mg ¢ {Mpg,, Mg,, ..., Mg,}, necessarilyMg 2 F, which is impossible because
Mg is a propert-ideal andF; = R. We conclude thafMg} = {Mg,, Mg,, ..., Mg,} is
finite. O

Lemma 1.3. Let R be aw-divisorial domain,M at-maximal ideal ofR and{/,} a collec-
tion of w-ideals ofR such thaf), I, # 0. If ), I € M, thenl, C M for somex.

Proof. SetA =, I«. Sincer is aTW-domain, then thé,’s andA aret-ideals. SinceR
is also arV-domain, by [20, Lemma 1.2], if, ¢ M, for eachw, thenA ¢ M. O

Lemma 1.4. If R is a weakly Matlis domain, theh,Ry; = (I Ry),, for each nonzero
fractional ideal/ and eachr-maximal idealM.

Proof. Apply [1, Corollary 5.3] forF =¢-Max(R). O

We are now ready to prove theanalogue of [3, Proposition 5.4], which states that
a domainR is divisorial if and only if it isz-local and Ry, is a divisorial domain, for
each maximal ideaM . Local divisorial domains have been studied in [3, Section 5] and
completely characterized in [4, Section 2].

Theorem 1.5. Let R be an integral domain. The following conditions are equivalent

(1) R is aw-divisorial domain

(2) R is a weakly Matlis domain an®,, is a divisorial domain, for each-maximal
ideal M;

(3) RisaTV-domain andry, is a divisorial domain, for eachrmaximal idealM ;

(4) IRy = (IRy)y = I, Ry, for each nonzero fractional ideal and eachr-maximal
ideal M.

Proof. (1) = (2). ThatR is a weakly Matlis domain follows from Lemmas 1.3 and 1.2.
Now let M be ar-maximal ideal ofR and I = J Ry a nonzero ideal oR;,, whereJ

is an ideal ofR. By Lemma 1.4, we havé, = (JRy), = JyRy. SinceJ, = J,, then

I, =JywRy = JRy = 1. HenceRy, is a divisorial domain.
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(2) = (4) follows from Lemma 1.4.

(4) = (1). Let I be a nonzero fractional ideal &. Thenl, = (/c;-maxr) I Rm =
Mmer-Maxry lvRm = I,. Whencer is aw-divisorial domain.

(D) = (3) via (2).

(3) = (4). Sincer = v in R andd =r = v in Ry, for each nonzero fractional ideal
and each-maximal idealM of R, we have

IRy ={URy)y=URy)i =U;Ry)r =Ry =1, Ry. |

Any almost Dedekind domain that is not Dedekind provides an example of a locally
divisorial domain that is noi-divisorial, because it is not of finite character [13, Theo-
rem 37.2].

Corollary 1.6. Let R be a domain of-dimension one. TheR is w-divisorial if and only
if R hast-finite character andRp is divisorial, for each height one prime.

2. Localizations of w-divisorial domains

A domain whose overrings are all divisorial is calledally divisorial [3]. Not all di-
visorial domains are totally divisorial [17, Remark 5.4]; in fact a valuation don®aia
divisorial if and only if its maximal ideal is principal [17, Lemma 5.2], but it is totally
divisorial if and only if it is strongly discrete [3, Proposition 7.6], equivalen®lRp is
a principal ideal for each prime ide& of R [8, Proposition 5.3.8]. Since for valuation
domains divisoriality coincides witky-divisoriality and each overring of a valuation do-
main is a localization at a certain-Jprime, we see thab-divisoriality is not stable under
localization att-primes.

We say that an integral domaiR is a strongly w-divisorial domain (respectively,
a strongly divisorial domaihif R is w-divisorial (respectively, divisorial) an®p is a
divisorial domain for eactP < t-SpecR) (respectively,P € SpecR)). Note that ifR is
strongly w-divisorial (respectively, strongly divisorial), the®p is strongly divisorial for
eachP € t-SpeR) (respectively, for eacl? € SpecR)).

By Theorem 1.5 (respectively, [3, Proposition 5.4)is a stronglyw-divisorial domain
(respectively, a strongly divisorial domain) if and onlyAf is a weakly Matlis domain
(respectively, ark-local domain) andRp is a divisorial domain for eacl? € r-SpecR)
(respectively,P € SpecR)).

If R hast-dimension one, theR is w-divisorial if and only if it is stronglyw-divisorial.

In this section we shall study the extensiorueflivisoriality and divisoriality to distin-
guished classes of generalized rings of fractions such as localizationypainte ideals,
(¢-)flat overrings andz€)subintersections.

We recall the requisite definitions. A nonempty famffyof nonzero ideals of a domain
R is said to be anultiplicative systerof ideals if/J € F, for eachl, J € F. If Fisamul-
tiplicative system, the set of ideals Bfcontaining some ideal of is still a multiplicative
system, which is called theaturation of 7 and is denoted by S@fF). A multiplicative
systemF is said to besaturatedif 7 = Sa{F).
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If F is a multiplicative system of ideals, the overriRg- := | J{(R: J); J € F} of Ris
called thegeneralized ring of fractionsf R with respect taF. For any fractional ideal
of R, Ir:=J{(I:J); J € F}is afractional ideal oRr and/Rr C Ir. ClearlyIr =
Isagr)-

The mapP — Pr is an order-preserving bijection between the set of prime idRals
of R such thatP ¢ Sai{F) and the set of prime ideal@ of R such that/Rr & Q for
any J € F, with inverse mapQ — Q N R. In addition,Rp = (Rr)p, for each prime
ideal P ¢ Sa(F). If Q is at-prime ideal ofRx, thenQ N R is at-prime ideal ofR [10,
Proposition 1.3].

If A is a nonempty family of nonzero prime ideals Bf the setF(A) ={J; J C
R is anideal and/ ¢ P for each P € A} is a saturated multiplicative system of ideals
and Ir4 = {IRp; P € A}, for each fractional ideal of R; in particular Rr(4) =
({Rp; P € A}. A generalized ring of fractions of typRr,) is called asubintersection
of R; whenA C t-Speg¢R), we say thaiR x4 is at-subintersectiomf R.

A multiplicative system of ideal§ of R is finitely generatedf each ideall € F con-
tains a finitely generated idedlwhich is still in 7. As in [10], we say thafF is av-finite
multiplicative system if each-ideal I € Sa{F) contains a finitely generated idealsuch
thatJ, € SaiF). A finitely generated multiplicative systemausfinite. If F is v-finite, the
set A of t-ideals which are maximal with respect to the property of not being iG/Sat
is not empty,A C ¢-SpegR), F(A) is v-finite andT = Rr,) [10, Proposition 1.9(a)
and (b)].

An overring T of R is said to ber-flat over R if Ty = Rynr, for eachr-maximal
ideal M of T [23], equivalentlyTp = Rgnr, for eachs-prime idealQ of T [7, Proposi-
tion 2.6]. Flatness implies-flatness, but the converse is not true [23, Remark 2.12]. By
[7, Theorem 2.6]7 is t-flat overR if and only if there exists a-finite multiplicative sys-
tem F of R such thatl’ = Rr. ThusT is ¢-flat if and only if T = Rx(4), whereA is a
family of pairwise incomparableprimes ofR andF(A) is v-finite. It follows that a¢-flat
overring of R is az-subintersection oR.

In turn, any generalized ring of fractions ig-finked overring; but the converse does not
hold in general [5, Proposition 2.2]. We recall that an overiihgf an integral domairR is
t-linked over R if, for each nonzero finitely generated ideabf R such thatR : J) = R,
we have(T : JT) =T [5]. This is equivalent to say th&t = (1) Tr\p, where P ranges
over ther-primes ofR [5, Proposition 2.13(a)].

It is well known that if P is az-prime ideal ofR, thenP Rp need not be &ideal of Rp.
When PRp is ar-prime ideal, P is called by M. Zafrullah avell behaved-prime [34,
page 436]. We prefer to say thAts-localizesor that it is az-localizing prime Height-one
prime ideals and divisoriatmaximal primes, e.gz-invertible ¢-primes, are examples of
t-localizing primes.

A large class of domains with the property that eagitime ideak-localizes is the class
of v-coherent domains. We recall that a domaiis calledv-coherenif the ideal(R : J) is
v-finite whenever/ is finitely generated. This class of domains properly inclueide Ds,
Mori domains and coherent domains [11,24].

If R is aw-divisorial (respectively, stronghy-divisorial) domain, then eachmaximal
(respectivelyy-prime) ideal:-localizes.
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Lemma 2.1. Let A be a set of-localizingz-primes ofR. Then

(2) Pr(ay € 1-SpeqRF(4)), for eachP € A.
(2) If F(A) is v-finite,t--Max(RF(4)) = {PF(a); P maximal inA}.

Proof. SetF = F(A) andT = Rr.

(1) Let P € A. SinceRp = Tp, and by hypothesi® Rp = PrTp, is at-ideal, then
Pr=PrTp, NT is at-ideal of T

(2) SincePr is at-ideal by part (1), we can apply [10, Proposition 1.9(c)lx

Proposition 2.2. Let A be a set of pairwise incomparabddocalizingz-primes ofR. Then

(1) A is independent of finite character if and only/#(A) is v-finite and Rz, is a
weakly Matlis domain.
(2) If Rx(4) is w-divisorial, thenA is independent of finite character.

Proof. SetF = F(A) andT = Rr.

(2) If Fisv-finite, by Lemma 2.1(2) we haveMax(T) = {Pr; P € A}. It follows that
A isindependent of finite character if and onlyifMax(T) = { Pr; P € A}isindependent
of finite character, that i% is a weakly Matlis domain. On the other handifis of finite
character, thetF is v-finite by [10, Lemma 1.16].

(2) SinceT is a weakly Matlis domain, by part (1) it suffices to show thais of finite
character.

By Lemma 2.1(1),P£ is at-prime of T, for eachP € A. We show that each proper
divisorial ideal of7 is contained in som&z. We havel = (\p.4 Rp = \pea Tpg. If
I is a proper divisorial ideal of , there isx € K \ T (whereK is the quotient field ofR)
such that/ € x~1T N T. Sincex ¢ T, there exists? € A such thatr ¢ Tp,, equivalently
x~ITNT C Pr.

Sincet = v on T, we conclude that-Max(T) = {Px; P € A}. SinceT hast-finite
character, it follows thati is of finite character. O

Theorem 2.3. Let R be aw-divisorial domain. IfA C r-Max(R), thenRr,) is at-flat
w-divisorial overring ofR.

Proof. SinceRr is a weakly Matlis domain (Theorem 1.5}Max(R) is independent of
finite character; thust has the same properties. In addition, eaghaximal ideal is a
t-localizing prime ideal. It follows thaf (A) is v-finite andT := R x4 is at-flat weakly
Matlis domain (Proposition 2.2(1)). By Lemma 2.1(2), for ea¢lke t-Max(T), there ex-
ists M € A such thatN = Mx,. It follows that Ty = Ry, is divisorial and soT" is
w-divisorial by Theorem 1.5. O

As we have mentioned above, the localization af-alivisorial domain at a-prime
need not be auy(-)divisorial domain. Thus Theorem 2.3 does not hold for an arbitrary
A C t-SpecR). However, under the hypothesis thais stronglyw-divisorial, we have a
satisfying result.
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Theorem 2.4. Let R be a stronglyw-divisorial domain andA a set of pairwise incompa-
rable t-primes ofR. The following conditions are equivalent

(1) Rx(a) is w-divisorial;

(2) Rr(a) is stronglyw-divisorial,

(3) Rr(4) is at-flat weakly Matlis domain
(4) Rr(n) is at-flat TV-domain

(5) A is independent of finite character.

Proof. Set F = F(A) and T = Rx. Since R is strongly w-divisorial, eachP € A
t-localizes.

(1) = (5) by Proposition 2.2(2).

(5) = (3) by Proposition 2.2(1).

3) = (2. If Qis at-prime of T, thenP = Q N R € t-Spe¢R) andTgp = Rp is
divisorial. Whencel is stronglyw-divisorial.

(3) & (4). By t-flatness,Ty, is divisorial for eachr-maximal idealM. Thus we can
apply Theorem 1.5.

(2) = (1) is obvious. O

Divisorial flat overrings of a strongly divisorial domain have a similar characterization.
Recall that an overrin@ of R is flat if T); = Ryng, for each maximal ideal/ of T; in
this casel’ = Rr(4), WhereA is a set of pairwise incomparable prime idealsRof

Corollary 2.5. Let R be a strongly divisorial domain an@ = Rr4 a flat overring,
whereA is a set of pairwise incomparable prime idealskafThe following conditions are
equivalent

(1) T is divisorial,

(2) T is strongly divisoriaj

(3) T is h-local,

(4) Aisindependent of finite character.

Proof. (1) < (3). By [3, Proposition 5.4]T is divisorial if and only if it ish-local and
locally divisorial. But, sincd’ is flat andR is strongly divisorial, for each maximal idesd
of T, Tyy = Rynr is divisorial.

(1) = (2). SinceT is flat andR is strongly divisorial, therTp = Rgnr is divisorial,
for each prime idea of T.

(2) = (4). SinceR andT are divisorial, thenl = w=¢=v in R andT. Thus we can
apply Theorem 2.4(@) = (5)).

(4) = (1). Sinced =w =t =v in R, by Theorem 2.4(6) = (1)), T is w-divisorial.
To prove thatT is divisorial, we show that each maximal ideal ©fis a ¢-ideal (Propo-
sition 1.1). If M is a maximal ideal off', by flathess we hav&y; = Ryng. SinceRr is
strongly divisorial,M Ty, is at-ideal and sof = M Ty, N T is at-ideal. O

Corollary 2.6. Let R be an integral domain. The following conditions are equivalent
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(1) Eachs-flat overring of R is stronglyw-divisorial;

(2) R is stronglyw-divisorial and eachr-flat overring is a weakly Matlis domain

(3) R is stronglyw-divisorial and each-flat overring is a TV-domain

(4) R is stronglyw-divisorial and each familyd of pairwise incomparable-primes ofR
such thatF(A) is v-finite is independent of finite character.

Proof. By Theorem 2.4, recalling that an overririy is z-flat over R if and only if
T = Rr(s), Where A is a family of pairwise incomparableprimes of R and F(A) is
v-finite. O

In order to study-subintersections, we need the following technical lemma.

Lemma2.7. Let R be anintegral domain and an ascending chain eflocalizingz-primes
of R. If Rr(c) is a TV-domain, theg is stationary.

Proof. Let C = {P,} and setF = F(C) andT = Rr. By Lemma 2.1(1),(P,)F is a
t-prime ideal of T, for eacha. It follows that M = J,(Py)r is a proper-prime ideal
of T (since it is an ascending union ofprimes) and saV is divisorial (becausé is a
TV-domain). We havd" = (1, Tr\p,; thus the mag — I* = (1, ITg\p, defines a star
operation orl'. SinceM is divisorial, we haveM* C M; so thatM™* is a proper ideal. It
follows that there exists such that™ N R € P,. HenceM N R = P, and soPg = P, for
BZa. O

Theorem 2.8. Let R be an integral domain. The following conditions are equivalent

(1) Eachr-subintersection oR is stronglyw-divisorial;

(2) R is a stronglyw-divisorial domain which satisfies the ascending chain condition on
t-prime ideals and each familyt of pairwise incomparable-primes ofR is indepen-
dent of finite character.

Proof. (1) = (2). Clearly R is a stronglyw-divisorial domain. IfA is a set of pairwise
incomparable-prime ideals, then by assumptidtiz ) is stronglyw-divisorial. Hence
A is independent of finite character, by Theorem 2.4. It remains to showktinats the
ascending chain condition arprime ideals. This follows from Lemma 2.7. In fact,df
is an ascending chain ofprime ideals ofR, Rr ) is stronglyw-divisorial. Hence each
t-prime inC t-localizes and it follows thaf is stationary.

(2) = (1). Let Rxr(4) be ar-subintersection oR. By the ascending chain condition on
t-prime ideals,A has maximal elements; thus we can assume thit a set of pairwise
incomparable-primes. The conclusion follows from Theorem 2.4

Corollary 2.9. Let R be a domain. If eachsubintersection oR is stronglyw-divisorial,
then eachr-subintersection oR is ¢-flat.

Proof. If eachz-subintersection oR is stronglyw-divisorial, thenR satisfies the ascend-
ing chain condition orr-primes (Theorem 2.8). Thus eactsubintersection is of type
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Rr(a), WhereA is a family of pairwise incomparableprimes. By Theorem 2.8R r () is
t-flat. O

Remark 2.10. If each subintersection of the domakinis strongly divisorial, then clearl

is strongly divisorial. In addition, sincé= w = = v on R, thenR satisfies the ascending
chain condition on prime ideals and each familyof pairwise incomparable prime ideals
of R is independent of finite character (Theorem 2.8).

Conversely, assume thAtis a strongly divisorial domain satisfying the ascending chain
condition on prime ideals and that each famityof pairwise incomparable prime ideals
of R is independent of finite character.

Then each subintersectidn of R is of type Rr(4), where A is a family of pairwise
incomparable prime ideals independent of finite character. Fus is finitely generated
[10, Lemma 1.16] and’ is stronglyw-divisorial and:-flat by Theorem 2.4. We conclude
thatT is (strongly) divisorial if and only if each maximal ideal &fis az-ideal (Proposi-
tion 1.1) if and only ifT is flat.

We observe that in general, f is a finitely generated multiplicative system of ideals,
thenR x need not be a flat extension Bf[9, page 32]. On the other hand, we do not know
any example of a strongly divisorial domait with a finitely generated multiplicative
systemF such thatR £ is not flat.

If Ris any domain, we say that Sg& (respectivelyt-SpegR)) is treed(under inclu-
sion) if any maximal (respectivelysmaximal) ideal ofR cannot contain two incomparable
primes (respectively-primes). The Spectrum of a Priifer domain andrt8pectrum of a
PvMD are treed. If Spe®) is treed, then Spé®) = ¢-SpecR) [23, Proposition 2.6]; in
particular each maximal ideal ig ddeal and sav-divisoriality coincides with divisoriality
by Proposition 1.1.

If z-SpegR) is treed and-Max(R) is independent of finite character, then each family
A of pairwise incomparable-prime ideals ofR is independent of finite character. Hence
the next results are easy consequences of Theorems 2.4 and 2.8 respectively.

Corollary 2.11. Let R be an integral domain such thatSpecR) is treed. The following
conditions are equivalent

(1) R is stronglyw-divisorial;

(2) Rra) is a t-flat w-divisorial domain, for each sel of pairwise incomparable
t-primes

(3) Rx(a) is at-flat stronglyw-divisorial domain, for each seA of pairwise incompara-
ble t-primes.

If R hasz-dimension one, then clearlySpecR) is treed. In this case, the conditions
stated in Corollary 2.11 are all satisfiedfis w-divisorial (cf. Theorem 2.3).

Corollary 2.12. Let R be an integral domain such thatSpecR) is treed. The following
conditions are equivalent
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(1) R is a stronglyw-divisorial domain which satisfies the ascending chain conditions on
t-prime ideals
(2) Eachr-subintersection oR is ¢-flat and stronglyw-divisorial.

3. Integrally closed w-divisorial domains

W. Heinzer proved in [17] that an integrally closed domain is divisorial if and only if it is
anh-local Prifer domain with invertible maximal ideals. We start this section by showing
that integrally closedv-divisorial domains have a similar characterization ameniIDs.
Note that a divisoriaPvMD is a Prifer domain.

Lemma 3.1. Let R be aw-divisorial domain andV € ¢-Max(R). The following conditions
are equivalent

(1) M ist-invertible
(2) MRy, is a principal ideal
(3) Ry is avaluation domain.

Proof. (1) & (2). Sincer- Max(R) hast-finite character (Theorem 1.5), we can apply [34,
Theorem 2.2 and Proposition 3.1].

(2) = (3) follows from [31, Lemme 1, Section 4], becauBg is a divisorial domain
(Theorem 1.5), and3) = (2) follows from [17, Lemma 5.2]. O

Proposition 3.2. Let R be aw-divisorial domain. ThemR is a PuMD if and only if each
t-maximal ideal ofR is ¢-invertible.

Theorem 3.3. Let R be an integral domain. The following conditions are equivalent

(1) R is an integrally closedv-divisorial domain
(2) R is aweakly Matlis RMD and eachr-maximal ideal ofR is z-invertible.

Proof. (1) = (2). A domainR is aPvMD if and only if R is an integrally closedW-
domain [22, Theorem 3.5]. Hence an integrally clogedivisorial domain is &@vMD. By
Theorem 1.5R is a weakly Matlis domain and by Proposition 3.2 eachaximal ideal is
t-invertible.

(2) = (1). A t-maximal idealM of a PuMD is t-invertible if and only if MRy, is a
principal ideal [19]. SinceR, is a valuation domain, this means tiy; is divisorial [17,
Lemma 5.2]. Now we can apply Theorem 1.53

The previous theorem can be proved also by using the fact that a démsaPvMD if
and only ifR is an integrally close@W-domain [22, Theorem 3.5] and the characterization
of PuMDs which areTV-domains given in [20, Theorem 3.1].

Recall that a Prifer domaiR is strongly discrete ifP2 P for each nonzero prime
ideal P of R [8, Section 5.3] and that a generalized Dedekind domain is a strongly discrete
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Prufer domain with the property that each ideal has finitely many minimal primes [30].
We say that @vMD R is strongly discretaf (P?); # P, for eachP € t-Spe¢R) [7,
Remark 3.10]. IfR is a strongly discret®vMD and eachr-ideal of R has only finitely
many minimal primes, theRr is called ageneralized Krull domaifi7].

The next theorem shows that the class of stromgigivisorial domains and the class of
strongly discreté®vMDs are strictly related to each other.

Lemma 3.4. Let R be a domain. The following conditions are equivalent

(1) R is astrongly discrete PMD;

(2) Ry is a strongly discrete valuation domain, for eakhe -Max(R);

(3) Rp is a strongly discrete valuation domain, for eahe r-Spe¢R);

(4) Rp is avaluation domain an@® Rp is a principal ideal, for eachP € t-Spe¢R);
(5) Rp is adivisorial valuation domain, for each € t-SpecgR).

Proof. (1) < (4). For each-prime idealP of R, we have(P2), = P2Rp N R [19, Propo-
sition 1.3]. Hence P2), # P ifand only if P2Rp # P Rp. Now recall that a maximal ideal
of a valuation domain is not idempotent if and only if it is principal.

(2) & (3) because each overring of a strongly discrete valuation domain is a strongly
discrete valuation domain [8, Proposition 5.3.1(3)].

(3) & (4) by [8, Proposition 5.3.8(2) < (6))].

(4 < (5 by [17, Lemmab.2]. O

Theorem 3.5. Let R be an integral domain. The following conditions are equivalent

(1) R is astrongly discrete PMD and a weakly Matlis domaijn

(2) R is an integrally closed strongly-divisorial domain

(3) R isintegrally closed and eactiflat overring ofR is w-divisorial;

(4) R isintegrally closed and eacdhlinked overring ofR is w-divisorial;

(5) R is aw-divisorial generalized Krull domain

(6) R is a generalized Krull domain and eactprime ideal ofR is contained in a unique
t-maximal ideal.

Proof. (1) = (2). Clearly R is integrally closed. In addition, by Lemma 3.8p is a
divisorial domain, for eact? € t-SpecR). HenceR is a stronglyw-divisorial domain.

(2) = (3). By Theorem 3.3R is aPvMD; in particularz-SpegR) is treed. Thus we
can apply Corollary 2.11.

(3) = (1). By Theorem 3.3R is a weakly MatlisPvMD. Now, givenP € r-SpegR),
Rp is a divisorial valuation domain. Hendeis a strongly discret®vMD by Lemma 3.4.

(3) & (4). By Theorem 3.3, statements (3) and (4) imply tRat aPvMD. The con-
clusion now follows from the fact that eacHinked overring of aPvMD R is ¢-flat [23,
Proposition 2.10].

(1) = (5). By (1) = (2), R is aw-divisorial domain. To show thaR is a generalized
Krull domain, let! be az-ideal of R. SinceR hast-finite character, ther is contained
in only finitely many¢-maximal ideals. Furthermore, eactprime ideal is contained in
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a uniquer-maximal ideal. Thug has just finitely many minimals§)prime ideals. We
conclude by using [7, Theorem 3.9].

(5) = (6) is clear.

(6) = (2). It is enough to show thak hast-finite character. This follows from the fact
that each nonzero principal ideal has finitely many minimgp¢imes. O

As a consequence of Theorem 3.5, we obtain the following characterization of integrally
closed totally divisorial domains (see also [28]).

Corollary 3.6. Let R be an integral domain. The following conditions are equivalent

(1) Ris anintegrally closed totally divisorial domain

(2) R isintegrally closed and each flat overring Bfis divisorial;

(3) R is an integrally closed strongly divisorial domain

(4) R is anh-local strongly discrete Prifer domain

(5) R is adivisorial generalized Dedekind domain

(6) R is a generalized Dedekind domain and each nonzero prime ideal is contained in a
unigue maximal ideal.

Proof. This follows from the fact that in a Prifer domain ttheandz-operation coincide,
that each overring of a Prifer domain is a flat Priifer domain, and that a Prufer domain is a
generalized Krull domain if and only if it is a generalized Dedekind domain [T].

Recall that theomplete integral closuref R is the overringk := (J{(I : I); I nonzero
ideal of R}. If R = R, we say thaR is completely integrally closed

Proposition 3.7. Let R be an integral domain. The following conditions are equivalent

(1) R is anintegrally closedv-divisorial domain oft-dimension ong

(2) R is an integrally closed domain efdimension one and eacHinked overring ofR
is w-divisorial;

(3) R is acompletely integrally closed-divisorial domain

(4) R is aKrull domain.

Proof. (1) & (2) & (4). Clearly aw-divisorial domain ofs-dimension one is strongly
w-divisorial. Since a generalized Krull domain oflimension one is a Krull domain [7,
Theorem 3.11], we can conclude by applying Theorem 3.5.

(3) & (4) because a completely integrally clos&¥-domain is Krull [20, Theo-
rem2.3]. O

It is well known that a divisorial Krull domain is a Dedekind domain; hence by the
previous proposition we recover that a completely integrally closed divisorial domain is a
Dedekind domain [17, Proposition 5.5].
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Remark 3.8. Recall that, for any domaiRr, Ris integrally closed and-linked overRr [5,
Corollary 2.3]. Since each localization of dinked overring ofR is still ¢-linked overRr, if
each-linked overring ofR is w-divisorial, we have thaR is an integrally closed strongly
w-divisorial domain. In this case, by Theorem 3Sis a weakly Matlis strongly discrete
PuMD. If in addition R is completely integrally closed, for example(R : R) # 0, by
Proposition 3.7R is a Krull domain.

In a similar way, by using Corollary 3.6, we see thaRifs totally divisorial, the integral
closure ofR is ank-local strongly divisorial Priifer domain.

4, Mori w-divisorial domains

We start by recalling some properties of Noetherian divisorial domains proved in [17,
31].

Proposition 4.1. Let R be a domain. The following conditions are equivalent

(1) R is aone-dimensionab-divisorial Mori domain

(2) R is adivisorial Mori domain

(3) R is adivisorial Noetherian domajn

(4) R is a Mori domain and each two generated idealrofs divisorial;

(5) R is a one-dimensional Mori domain an@® : M) is a two generated ideal, for each
M € Max(R);

(6) R is a one-dimensional Noetherian domain aiitl: M) is a two generated ideal, for
eachM € Max(R).

Proof. (1) = (2) by Proposition 1.1.

(2) = (3) because eactrideal of a Mori domain ig-finite.

(3) = (1) because Noetherian divisorial domains are one-dimensional [17, Corol-
lary 4.3].

(3) & (6) and(2) & (4) & (5) by [31, Theorem 3, Section 2].0

An integrally closedw-divisorial Mori domain is a Krull domain. In fact it has to be
a PvMD (Theorem 3.3). By Proposition 4.1, any Noetherian integrally closed domain of
dimension greater than one istadivisorial Noetherian domain that is not divisorial.

We say that a nonzero fractional iddadf R is aw-divisorial idealif I, = I,,. With this
notation, aw-divisorial domain is a domain in which each nonzero ideabidivisorial.
We also say that, fon > 1, I is n w-generated ifl,, = (a1R + --- + a,R)y, for some
ai, ...,a, in the quotient field ofR.

Theorem 4.2. Let R be a Mori domain. The following conditions are equivalent

(1) R is aw-divisorial domain
(2) Each two generated nonzero ideakisdivisorial,
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(3) R has t-dimension one andR : M) is a two w-generated ideal, for eaclM ¢
t-Max(R).

Proof. (1) = (2) is clear.

(2 = (3). Let M € t-Max(R). Since R is a Mori domain, thenM is a divisor-
ial ideal. Letx € (R: M) \ R, then (R : M) = (R + Rx),. So that by assumption
(R: M) = (R+ Rx)y. To conclude, we show thak,, is one-dimensional. Lef be a
nonzero two generated ideal &f,. Then, we can assume that= (a, b) Ry, for some
a,b e I N R. SinceR is a Mori domain, thenl, = ((a, b)Ry)v = (a, b), Ry . Hence
I, = (a,b)y, Ry = (a,b)Ry; = I. Thus each two generated ideal Bf; is divisorial. It
follows from Proposition 4.1 thak,, is one-dimensional.

(3) = (1). SinceR is aTV-domain, by Theorem 1.5, it is enough to show tRaf is
a divisorial domain for eaciM € t-Max(R). This follows again from Proposition 4.1. In
fact, by assumptiorR,, is a Mori domain of dimension one. LéR : M) = (a, b),, for
somea, b € (R: M). Then(Ry : MRy) = (R : MRy = (a, b)y Ry = (a, b)Ryy is two
generated (the first equality holds becadsés v-finite). 0O

Recall that eéStrong Mori domairis a domain satisfying the ascending chain condition
onw-ideals. A domairr is a Strong Mori domain if and only if it hasfinite character and
Ry is Noetherian, for eachhmaximal idealM [33, Theorem 1.9]. Thus a Mori domain is
Strong Mori if and only ifRy, is Noetherian, for eackhmaximal idealM .

Corollary 4.3[27, Corollary 2.5] A w-divisorial Mori domain is a Strong Mori domain of
t-dimension one.

Proof. A w-divisorial Mori domain is Strong Mori (because= v) and hag-dimension
one by Theorem 4.2. 0O

We next investigatev-divisoriality of overrings of Mori domains. Our first result in
this direction shows that, iR is Mori, w-divisoriality is inherited by generalized ring of
fractions. This improves [27, Theorem 2.4].

We observe that a Mori domain istacoherenfTV-domain, because eackideal of a
Mori domain isv-finite. We also recall that iR is v-coherent, we havg Rg = (I Rs),, for
each nonzero fractional idealand each multiplicative set

Proposition 4.4. Let R be av-coherent domain. The following conditions are equivalent

(1) Risa TW-domain

(2) Allthe nonzero ideals ok, aret-ideals, for eachM € r-Max(R);
(3) All'the nonzero ideals akp arer-ideals, for eachP € r-SpecR);
(4) Eachr-flat overring ofR is a TW-domain.

Proof. (1) < (2). LetI be a nonzero ideal and at-maximal ideal ofR. If t = w on R,
thenI Ry = IyRy = 1Ry = (IRy);-
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Conversely, we havéRy; = (I Ry;); = I; Ry Thus

Iy = ﬂ IRy = ﬂ LRy =1,.

Met-Max(R) Met-Max(R)

(2) = (3). Let I be a nonzero ideal R, P az-prime of R and M at-maximal ideal
containingP. Then

IRp =(IRy)Rp =(IRy):Rp=Ry)Rp=1I,Rp = (IRp);.

(3) = (4). Let T be ar-flat overring ofR. ThenT is av-coherent domain [10, Proposi-
tion 3.1]. If N is ar-maximal ideal ofT’, thenP = N N R is at-prime of R andTy = Rp.
Hence, if (3) holds, each nonzero ideal B is a¢-ideal andT is a TW-domain by
2= Q.

(4 = (D isclear. O

Theorem 4.5. Let R be a Mori domain. The following conditions are equivalent

(1) R is w-divisorial;

(2) R is stronglyw-divisorial;

(3) Eachr-flat overring ofR is w-divisorial;

(4) Each generalized ring of fractions & is w-divisorial
(5) Ry is adivisorial domain, for eaclM € t-Max(R).

Proof. Each generalized ring of fractions of a Mori domain is Mori [31, Corollaire 1,
Section 3]; thus it is &V-domain. In addition, each generalized ring of fractions of a Mori
domain ist-flat, because eacdhideal isv-finite and so each multiplicative system of ideals
is v-finite. Hence we can apply Proposition 4.40

t-Linked overrings of Mori domains do not behave as well as generalized rings of
fractions. In fact a Mori non-Krull domain haslinked overrings which are natflat [6,
Corollary 2.10]. Also, if each-linked overring of a Mori domairR is Mori, thenR has
t-dimension one [5, Proposition 2.20]. The converse holdgi§ a Strong Mori domain;
precisely, we have the following result.

Proposition 4.6. Eacht-linked overring of a Strong Mori domain efdimension one is
either a field or a Strong Mori domain efdimension one.

Proof. It follows from [33, Theorem 3.4] recalling that an overring of a domain is-a
module if and only if it ist-linked [5, Proposition 2.13(a)]. O

Corollary 4.7. If R is a w-divisorial Mori domain, then each-linked overring ofR is
either a field or a Strong Mori domain efdimension one.

Proof. It follows from Corollary 4.3 and Proposition 4.6.00
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Our next purpose is to improve and generalize to Mori domains some results proved
in [3] for Noetherian totally divisorial domains.

Proposition 4.8. Let R be a domain. The following conditions are equivalent

(1) R is aone-dimensional domain and eaclinked overring ofR is w-divisorial;
(2) R is aone-dimensional totally divisorial domain

(3) R is a Noetherian totally divisorial domajn

(4) Each ideal ofR is two generated.

Proof. (1) = (2). Since din{R) = 1, each overring oRR is ¢-linked overR [5, Corol-
lary 2.7(b)]. Hence each overririg of R is w-divisorial. Assume thaT is not a field. To
prove thatT is divisorial it suffices to check that diffi) = 1 (Proposition 1.1). LeR’ be
the integral closure ok and7’ that of T. SinceR’ is one-dimensional ana-divisorial,
then R’ is divisorial. ThusR’, being integrally closed, is a Prifer domain [17, Theo-
rem 5.1]. It follows that the extensioR’ € T’ is flat, and so dinT’) < dim(R’) = 1.
Hence diniT) = dim(7’) = 1. We conclude thaf is divisorial and therefore® is totally
divisorial.

(2) = (3) by [3, Proposition 7.1].

(3) = (1) by Proposition 4.1.

3) & (4 by [3, Theorem 7.3], because in the Noetherian case a domain is totally
divisorial if and only if it is totally reflexive [29, Section 3].0

Lemma 4.10 below is similar to [26, Theorem 26(2)]. We will need the following ver-
sion of Chinese Remainder Theorem, whose proof is straightforward.

Lemma 4.9. Let R be an integral domain] an ideal ofR, P1, ..., P, a set of pairwise
incomparable prime ideals an= R\ (PLU---U Py). If x1,...,x, € I, there exists
x € IRg such thatr = x; (modI P;Rp,), foreachi =1, ..., n.

Lemma 4.10. Let R be an integral domain which hasfinite character andl a nonzero
ideal of R. Letn be a positive integer and assume that, for etk -Max(R), a minimal
set of generators of Ry, has at most elements. Thelh is w-generated by a number of
generatorsn < max2, n).

Proof. If I is not contained in any-maximal ideal, thenl,, = R. Otherwise, let
My, ..., M, be ther-maximal ideals ofR which contain/. Fori =1,...,r, let
ai,...,ay € I be such thatIRMi = (ay,....ani)Ry,. By Lemma 4.9, ifS=R\
(My U ---UM,), for eachj =1,...,n, there existsa; € IRg C IRy, such that
aj = aj; (ModIM;Ry;), for eachi = 1,...,r. By going modulo/ M; Ry, and using
Nakayama’'s Lemma, we géiRy;, = (ay,...,a,) Ry, for eachi =1,...,r. We can as-
sume that the:;’s are inI andai # 0. Let Ny, ..., N, be the set of-maximal ideals
which containas, with Ny = M1,...,N, = M,. Letbe I\ U;‘.zﬂrl M;. ThenIRy, =
(a1,...,an)Ry; for j=1,....r andIRy; = (a1,b)Rn; = Ry, for j =r +1,...,s5. By
arguing as above, there exigt= a1, b, ..., b, € I such thatIRN(,. = (b1, ..., bn)Ry; for
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eachj =1,...,s. We claim thatl,, = (b1, ..., b,)y. Let M be ar-maximal ideal ofR.
If M =N, for somej, thenIRy = (by,...,b,)Ry. If M £ N; for j=1,...,s, then
IRy =Ry = (b1,...,by)Ry, SiNCEDL=a1 ¢ M. O

Theorem 4.11. Let R be a domain. The following conditions are equivalent

(1) R hasz-dimension one and eaeHinked overring ofR is w-divisorial,
(2) R is a Mori domain and each-linked overring ofR is w-divisorial,

(3) R is aMori domain andrjy, is totally divisorial, for eachM € r-Max(R);
(4) Each nonzero ideal oR is a twow-generatedv-divisorial ideat

(5) Each nonzero ideal aR is two w-generated.

Proof. (1) = (2). R hast-finite character, because it is-divisorial (Theorem 1.5). We
now show that, for each € r-Max(R), Ry is Noetherian. Sinc&), is a one-dimensional
t-linked overring ofR, thenR), is divisorial (Proposition 1.1). In addition, each overrifig
of Ry is t-linked over Ry [5, Corollary 2.7] and so it ig-linked overR. ThusT is
a w-divisorial domain. By Proposition 4.8&,, is Noetherian. We conclude th&t is a
(Strong) Mori domain.

(2) = (3). R is clearly w-divisorial. HenceR,, is a one-dimensional Noetherian do-
main (Corollary 4.3). Lef" be ar-linked overring ofRy,. HenceT is ¢-linked overR and
so by assumption it is)-divisorial. By Proposition 4.& ), is totally divisorial.

3) = (4). R is w-divisorial by Theorem 4.5. Henc&,, is one-dimensional and
Noetherian by Corollary 4.3. Thus, for eathe r-Max(R), each ideal oRRy, is two gen-
erated by Proposition 4.8. By using Lemma 4.10, we conclude that every nonzero ideal
of R is a twow-generatedv-divisorial ideal.

(4) = (5) is clear.

(5) = (). If (5) holds, R is a Strong Mori domain and sBy, is a Noetherian domain,
for eachM € t-Max(R). Let I Ry, be a nonzero ideal ok, where! is an ideal ofR.
By assumption/,, = (a, b),, for somea, b € R. ThusIRy; = (a, b)y, Ry = (a,b)Ry IS a
two generated ideal. It follows from Proposition 4.8 tiRa} is a totally divisorial domain.

(3) = (2). R is w-divisorial by Theorem 4.5. Lef be ar-linked overring ofR, T # K .
By Corollary 4.7,T is a Mori domain. To show th&f is w-divisorial, by Theorem 4.5,
we have to prove thafy is a divisorial domain, for eac € t-Max(T). SinceR C T
is t-linked, thenQ = (N N R); # R [5, Proposition 2.1]; but a® hasr-dimension one
(Corollary 4.3), therD is az-maximal ideal ofR. SinceRy is totally divisorial andR gy <
Ty, thenTy is a divisorial domain.

(2) = (1) by Corollary 4.3. O

Corollary 4.12. Let R be a domain and assume that eachinked overring ofR is
w-divisorial. ThenR is a Mori domain if and only if it has-dimension one.

Example4.13. Mori non-Krull and non-Noetherian domains satisfying the equivalent con-
ditions of Theorem 4.11 can be constructed by using pullbacks, as the following example
shows.
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Let T be a Krull domain having a maximal ide# of height one and assume that the
residue fieldk = T/M has a subfield such that{K : k] = 2. Let R = ¢~ 1(k) be the
pullback ofk with respect to the canonical projectipnT — K.

The domainR is Mori and it is Noetherian if and only if" is Noetherian [11, Theo-
rems 4.12 and 4.18\M is a maximal ideal ofR that is divisorial; thusM € t-Max(R).
Since Ry, is the pullback ofc with respect to the natural projectidiy; — K, Ry is di-
visorial by [27, Corollary 3.5]. In additiorTy, is the only overring ofRy,. In fact each
overring of Ry, is comparable witlT,; under inclusion; buf), is aDVRand[K : k] = 2.
Thus Ry, is totally divisorial.

If N is az-maximal ideal ofR andN # M, there is a unique-maximal idealN’ of T
such thatN' N R = N [12, Theorem 2.6(1)] and for this prini&y: = Ry. ThusRy is a
DVR It follows that Ry is totally divisorial, for eachV € r-Max(R).
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